Simulation of Optics Correction for ERLs. V. Sajaev, ANL

Size: px
Start display at page:

Download "Simulation of Optics Correction for ERLs. V. Sajaev, ANL"

Transcription

1 Simulation of Optics Correction for ERLs V. Sajaev, ANL

2 Introduction Minimization of particle losses in ERL arcs requires use of sextupoles As in storage rings, trajectory errors in the presence of sextupoles lead to optics distortion and coupling In synchrotron light sources, the optics is corrected to a very high accuracy using response matrix fit Here we simulated optics correction using response matrix fit for an unclosed beamline to test what kind of correction accuracy can be achieved CEBAF performed optics correction many years ago using same approach but with limited scope and accuracy 1 1 V. Lebedev et al., PAC 97 V. Sajaev, Simulation of Optics Correction... 06/11/2009 2

3 Orbit Response Matrix Fit (ORM) ORM is well known and widely used method for optics correction in storage rings Theoretically, there is no significant difference between ORM for closed and non-closed beamlines: x( s) θ β βθ sin( ψ ψ θ ) = s s θ x( s) = β s βθ cos( ψ s ψ θ πν ) 2sin( πν ) Measured trajectories in both cases depend on beta functions and phase advances and therefore can be used to derive linear optics The main practical difference is that the ORM for a non-closed beamline is triangular with zeros in the top right triangle V. Sajaev, Simulation of Optics Correction... 06/11/2009 3

4 Response matrix fit at APS Response matrix fit is used at APS routinely for lattice correction after fill pattern and lattice changes and also for other measurements like local impedance or local chromaticity The fitting program and GUI are written in Tcl/tk and use elegant 1 for orbit calculations and SDDS toolkit 2 for data processing We added an option for working with non-closed trajectories We used only APS portion of the ERL for simplicity 1 M. Borland, APS-LS 287, M. Borland et al., Proc. of PAC 2003 V. Sajaev, Simulation of Optics Correction... 06/11/2009 4

5 Choice of correctors for measurements For circular machines: Presently, APS has 320 correctors in each plane. Only small fraction of them are used for measurements 27 correctors in each plane. The main requirement is to spread correctors over some phase advance while avoid placing correctors at nπ phase advance For linear machines: Measured trajectory is only affected by elements that are located after the steering magnet, therefore different trajectories provide different amount of useful data One would want to use as many correctors in the beginning of the beamline as possible while keeping them at some phase-space distance V. Sajaev, Simulation of Optics Correction... 06/11/2009 5

6 Choice of correctors Most natural choice for a beamline only two correctors in the beginning of the beamline that are used to scan the phase space. Generate a number of equally-spaced points on the phase-space ellipse at the beginning of the beamline and calculate respective angles and positions at the exit of the second corrector Calculate corrector strengths that would generate the same angles and positions and use these strengths for measurements This way one can generate as many different trajectories as required while still using only correctors in the beginning of the beamline Turns out 1 that was the original idea for the response matrix fit method 1 J. Corbett, private communications V. Sajaev, Simulation of Optics Correction... 06/11/2009 6

7 Simulation procedure Elegant parameter file is generated with element errors The trajectory in the beamline is corrected Measured response matrix and dispersion are calculated on the corrected orbit Response matrix fit is calculated (dispersion included); 30 trajectories were used Quadrupole and skew quadrupole corrections are applied and the resulting beta functions are compared with the ideal beta functions The entire process was run 100 times V. Sajaev, Simulation of Optics Correction... 06/11/2009 7

8 Errors used in calculations Quadrupole gradient error 0.1% Quadrupole tilt error rad Sextupole X and Y displacement 0.5 mm Corrector calibration error 2% Corrector tilt rad BPM calibration error 5% BPM tilt rad BPM measurement noise 1 µm Errors are Gaussian-distributed with two-sigma cut off Sextupole displacements are chosen large based on APS experience and policy of allowing local steering for user beamlines V. Sajaev, Simulation of Optics Correction... 06/11/2009 8

9 Typical beta functions and dispersion before correction Beta X Beta Y X dispersion Y dispersion V. Sajaev, Simulation of Optics Correction... 06/11/2009 9

10 Optics errors before correction For every seed, the beta functions (and dispersion) in the middle of ID straight sections are compared to the ideal lattice and rms difference is calculated. This represents one value for the histogram calculation V. Sajaev, Simulation of Optics Correction... 06/11/

11 Optics correction At APS all quadrupoles have separate power supplies. Therefore, the straightforward way is to apply gradient corrections opposite to those obtained in the ORM fit In real life we use another approach we correct beta functions obtained in the ORM fit using beta function response matrix. This way we can control the strength of the quadrupole corrections that are applied and the accuracy of the correction In these simulations we used this straightforward approach to simplify simulation process V. Sajaev, Simulation of Optics Correction... 06/11/

12 Optics correction results We used several ORM fit configurations First and most straightforward all quadrupoles are used in the fit (Case 1 in the table below) The results were not good; after analyzing differences between seed errors and fit results we noticed that the biggest discrepancies were in the beginning of the lattices To limit quadrupole changes in the beginning of the lattice, we included quadrupole strength constraints in the fit and put heavier constraints on the quadrupoles in the first sector. The improvement was significant Errors Variables Quadrupole constraints β x rms (%) β y rms (%) Case 1 All All No Case 2 All All Yes Case 3 All No half S1 No Case 4 No S1 No S1 No V. Sajaev, Simulation of Optics Correction... 06/11/

13 Optics correction results Why the correction is not perfect? Turns out that the errors in the beginning of lattice cannot be determined precisely enough But it can be compensated by changing incoming beam parameters (if one can measure beta functions downstream Adjustment of incoming beta functions V. Sajaev, Simulation of Optics Correction... 06/11/

14 Piece by piece During our simulations, we have also found that if the focusing errors of the lattice are large enough, sometimes the response matrix fit does not converge We have tested the following procedure that helps in case of convergence problem: split lattice in pieces and perform response matrix fit piece by piece and apply corrections from piece-by-piece solutions This piece by piece approach will probably have to be used at larger facilities to avoid long measurements and huge matrices V. Sajaev, Simulation of Optics Correction... 06/11/2009

15 Coupling correction APS has only 19 dedicated skew quadrupole correctors; this number is adequate for coupling correction to a level of 1% for storage ring beam This turns out to be insufficient for coupling correction of the small ERL beam spurious vertical dispersion could not be corrected well enough Increasing number of skew quads to 80 solves the problem V. Sajaev, Simulation of Optics Correction... 06/11/2009

16 Conclusions We have simulated optics correction for non-closed beamlines using response matrix fit We used 2-corrector measurements to maximize the amount of data obtained in RM measurements We have found that response matrix fit can be used to measure and correct linear lattice successfully We have tested the piece-by-piece approach when one can measure and correct only a part of non-closed beamline which might be useful for large ERLs Since the errors in the beginning of the beamline are harder to determine, one might use piece-by-piece approach with overlapping pieces V. Sajaev, Simulation of Optics Correction... 06/11/

Use of Crab Cavities for Short X-ray Pulse Production in Rings

Use of Crab Cavities for Short X-ray Pulse Production in Rings Use of Crab Cavities for Short X-ray Pulse Production in Rings Michael Borland Argonne National Laboratory March 2010 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne

More information

Experience on Coupling Correction in the ESRF electron storage ring

Experience on Coupling Correction in the ESRF electron storage ring Experience on Coupling Correction in the ESRF electron storage ring Laurent Farvacque & Andrea Franchi, on behalf of the Accelerator and Source Division Future Light Source workshop 2012 Jefferson Lab,

More information

Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance

Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance 2009.05.08. K. Kubo, S. Kuroda, T. Okugi (KEK) M.D. Woodley (SLAC), A. Wolski, K. Panagiotidis (U. Liverpool

More information

Analysis of KEK-ATF Optics and Coupling Using Orbit Response Matrix Analysis 1

Analysis of KEK-ATF Optics and Coupling Using Orbit Response Matrix Analysis 1 Analysis of KEK-ATF Optics and Coupling Using Orbit Response Matrix Analysis 1 A. Wolski Lawrence Berkeley National Laboratory J. Nelson, M. Ross, M. Woodley Stanford Linear Accelerator Center S. Mishra

More information

Lattice Optimization Using Multi-Objective Genetic Algorithm

Lattice Optimization Using Multi-Objective Genetic Algorithm Lattice Optimization Using Multi-Objective Genetic Algorithm Vadim Sajaev, Michael Borland Mini-workshop on ICA in Beam Measurements and Genetic Algorithm in Nonlinear Beam Dynamics March 14, 2012 Introduction

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

Comparison of the APS Upgrade to

Comparison of the APS Upgrade to Comparison of the APS Upgrade to ERL@APS Michael Borland Argonne National Laboratory March 2010 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory

More information

HE-LHC Optics Development

HE-LHC Optics Development SLAC-PUB-17224 February 2018 HE-LHC Optics Development Yunhai Cai and Yuri Nosochkov* SLAC National Accelerator Laboratory, Menlo Park, CA, USA Mail to: yuri@slac.stanford.edu Massimo Giovannozzi, Thys

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with ILC Spin Rotator Super B Workshop III Presenter: Jeffrey Smith, Cornell University with Peter Schmid, DESY Peter Tenenbaum and Mark Woodley, SLAC Georg Hoffstaetter and David Sagan, Cornell Based on NLC

More information

Beam dynamics and magnet design challenges for 4th-generation storage ring light sources

Beam dynamics and magnet design challenges for 4th-generation storage ring light sources Beam dynamics and magnet design challenges for 4th-generation storage ring light sources Michael Borland December 1, 2014 Accelerator Systems Division Outline What do storage ring light source users want?

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Conceptual design of an accumulator ring for the Diamond II upgrade

Conceptual design of an accumulator ring for the Diamond II upgrade Journal of Physics: Conference Series PAPER OPEN ACCESS Conceptual design of an accumulator ring for the Diamond II upgrade To cite this article: I P S Martin and R Bartolini 218 J. Phys.: Conf. Ser. 167

More information

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25 SABER Optics Y. Nosochkov, K. Bane, P. Emma, R. Erickson SABER Workshop, SLAC, March 15-16, 2006 1/25 Outline White paper optics design Beam tracking for SABER and for the old South Arc Magnet overlap

More information

Storage Ring Optics Measurement, Model, and Correction. Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

Storage Ring Optics Measurement, Model, and Correction. Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. SLAC-PUB-12438 April 2007 Storage Ring Optics Measurement, Model, and Correction Yiton T. Yan SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, USA 1 Introduction To improve the optics of a storage ring,

More information

Studies of Beam Halo Formation in the 12 GeV CEBAF Design

Studies of Beam Halo Formation in the 12 GeV CEBAF Design JLAB-TN-0-08 Studies of Beam Halo Formation in the GeV CEBAF Design Yves Roblin and Arne Freyberger Beam halo formation in the GeV beam transport design is investigated using beam transport models and

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 3: Vertical Emittance Generation, Calculation, and Tuning Andy Wolski The Cockcroft Institute, and the University

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

USPAS Accelerator Physics 2017 University of California, Davis

USPAS Accelerator Physics 2017 University of California, Davis USPAS Accelerator Physics 207 University of California, Davis Lattice Extras: Linear Errors, Doglegs, Chicanes, Achromatic Conditions, Emittance Exchange Todd Satogata (Jefferson Lab) / satogata@jlab.org

More information

Chromatic Corrections for the LCLS-II Electron Transport Lines

Chromatic Corrections for the LCLS-II Electron Transport Lines Chromatic Corrections for the LCLS-II Electron Transport Lines LCLS-II TN-16-07 3/4/2016 P. Emma, Y. Nosochkov, M. Woodley March 23, 2016 LCLSII-TN-16-07 Chromatic Corrections for the LCLS-II Electron

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

Magnet Alignment Sensitivities in ILC DR Configuration Study Lattices. Andy Wolski. US ILC DR Teleconference July 27, 2005

Magnet Alignment Sensitivities in ILC DR Configuration Study Lattices. Andy Wolski. US ILC DR Teleconference July 27, 2005 Magnet Alignment Sensitivities in ILC DR Configuration Stud Lattices And Wolski Lawrence Berkele National Laborator US ILC DR Teleconference Jul 7, 005 : Equilibrium vertical emittance in ILC DR must be

More information

Beam Scattering Effects - Simulation Tools Developed at The APS. A. Xiao and M. Borland Mini-workshop on Dynamic Aperture Issues of USR Nov.

Beam Scattering Effects - Simulation Tools Developed at The APS. A. Xiao and M. Borland Mini-workshop on Dynamic Aperture Issues of USR Nov. Beam Scattering Effects - Simulation Tools Developed at The APS A. Xiao and M. Borland Mini-workshop on Dynamic Aperture Issues of USR Nov. 12, 2010 Motivation A future light source requires: Ultra low

More information

M. Lee, Y Cai, J. Corbett, H. Shoaee, D. Whitturn, G. White, Y. Yan Stanford Linear Accelerator Center, Stanford, California Y.

M. Lee, Y Cai, J. Corbett, H. Shoaee, D. Whitturn, G. White, Y. Yan Stanford Linear Accelerator Center, Stanford, California Y. SLAC-PUB-7500 May 1997 CONF- 770 503--/g.7 LATTCE COMMSSONNG STRATEGY FOR THE B-FACTORY * M. Lee, Y Cai, J. Corbett, H. Shoaee, D. Whitturn, G. White, Y. Yan Stanford Linear Accelerator Center, Stanford,

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

HLS. The Closed Orbit Correction in HLS

HLS. The Closed Orbit Correction in HLS The Closed Orbit Correction in HLS The Closed Orbit Correction in HLS Abstract:HLS(Hefei Light Source)which energy is 800MeV dedicate to synchrotron light source. The closed orbit of the stored electrons

More information

Injection, extraction and transfer

Injection, extraction and transfer Injection, etraction and transfer An accelerator has limited dnamic range. hain of stages needed to reach high energ Periodic re-filling of storage rings, like LH Eternal eperiments, like NG &(5&RPOH[

More information

MAX-lab. MAX IV Lattice Design: Multibend Achromats for Ultralow Emittance. Simon C. Leemann

MAX-lab. MAX IV Lattice Design: Multibend Achromats for Ultralow Emittance. Simon C. Leemann Workshop on Low Emittance Rings 2010 CERN Jan 12 15, 2010 MAX-lab MAX IV Lattice Design: Multibend Achromats for Ultralow Emittance Simon C. Leemann simon.leemann@maxlab.lu.se Brief Overview of the MAX

More information

On-axis injection into small dynamic aperture

On-axis injection into small dynamic aperture On-axis injection into small dynamic aperture L. Emery Accelerator Systems Division Argonne National Laboratory Future Light Source Workshop 2010 Tuesday March 2nd, 2010 On-Axis (Swap-Out) injection for

More information

Ultra-Low Emittance Storage Ring. David L. Rubin December 22, 2011

Ultra-Low Emittance Storage Ring. David L. Rubin December 22, 2011 Ultra-Low Emittance Storage Ring David L. Rubin December 22, 2011 December 22, 2011 D. L. Rubin 2 Much of our research is focused on the production and physics of ultra-low emittance beams. Emittance is

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

Beam Based Solenoid Compensation for the PEP-II è

Beam Based Solenoid Compensation for the PEP-II è SLC-PU-8236 ugust 999 eam ased Solenoid Compensation for the PEP-II è Yunhai Cai Stanford Linear ccelerator Center, Stanford University, Stanford, C 9439 bstract Commissioning the compensation system of

More information

Simulation and Optimization of the Tevatron Accelerator

Simulation and Optimization of the Tevatron Accelerator Simulation and Optimization of the Tevatron Accelerator Pavel Snopok, Carol Johnstone, and Martin Berz 3 Fermi National Accelerator Laboratory, Michigan State University, snopok@pa.msu.edu Fermi National

More information

STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI

STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI S. Srichan #, A. Kwankasem, S. Boonsuya, B. Boonwanna, V. Sooksrimuang, P. Klysubun Synchrotron Light Research Institute, 111 University Ave, Muang District,

More information

02: Introduction to the elegant code

02: Introduction to the elegant code 02: Introduction to the elegant code WONG, Chun Yan Jonathan; HAO, Yue; LUND, Steven; RICHARD, Christopher; USPAS Accelerator Physics June 2018 (Version 20180606) This material is based upon work supported

More information

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse Transverse Dynamics E. Wilson - CERN Components of a synchrotron Dipole Bending Magnet Magnetic rigidity Bending Magnet Weak focusing - gutter Transverse ellipse Fields and force in a quadrupole Strong

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF2

LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF2 LAYOUT AND SIMULATIONS OF THE FONT SYSTEM AT ATF J. Resta-López, P. N. Burrows, JAI, Oxford University, UK August 1, Abstract We describe the adaptation of a Feedback On Nano-second Timescales (FONT) system

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 x Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const x ε beam emittance = woozilycity of the particle

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

ILC Damping Ring Alternative Lattice Design **

ILC Damping Ring Alternative Lattice Design ** ILC Damping Ring Alternative Lattice Design ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 1 Institute of High Energy Physics, CAS, Beijing 2 Key Laboratory of Heavy Ion Physics, Peking University, Beijing

More information

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team Diagnostics at the MAX IV 3 GeV storage ring during commissioning PPT-mall 2 Åke Andersson On behalf of the MAX IV team IBIC Med 2016, linje Barcelona Outline MAX IV facility overview Linac injector mode

More information

FODO Cell Introduction to OptiM

FODO Cell Introduction to OptiM FODO Cell Introduction to OptiM S. Alex Bogacz Jefferson Lab 1 FODO Optics cell Most accelerator lattices are designed in modular ways Design and operational clarity, separation of functions One of the

More information

Emittance preserving staging optics for PWFA and LWFA

Emittance preserving staging optics for PWFA and LWFA Emittance preserving staging optics for PWFA and LWFA Physics and Applications of High Brightness Beams Havana, Cuba Carl Lindstrøm March 29, 2016 PhD Student University of Oslo / SLAC (FACET) Supervisor:

More information

COMMISSIONING AND STATUS OF THE DIAMOND STORAGE RING

COMMISSIONING AND STATUS OF THE DIAMOND STORAGE RING COMMISSIONING AND STATUS OF THE DIAMOND STORAGE RING R.P. Walker, Diamond Light Source (DLS), Oxfordshire, U.K., on behalf of the Diamond Machine Commissioning Team Abstract The commissioning of the Diamond

More information

Beam Transfer Lines. Brennan Goddard CERN

Beam Transfer Lines. Brennan Goddard CERN Beam Transfer Lines Distinctions between transfer lines and circular machines Linking machines together Trajectory correction Emittance and mismatch measurement Blow-up from steering errors, optics mismatch

More information

Comparison Between Various Beam Steering Algorithms for the CEBAF Lattice* INTRODUCTION. SVD Based Algorithm

Comparison Between Various Beam Steering Algorithms for the CEBAF Lattice* INTRODUCTION. SVD Based Algorithm JLAB-ACC-96-06 Comparison Between Various Beam Steering Algorithms for the CEBAF Lattice* M. Chowdhary, Y-C Chao, S. Witherspoon Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 USA

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 Lattice Design... in 10 seconds... the Matrices Transformation of the coordinate vector (x,x ) in a lattice x(s) x = M 0 x'(s) 1 2 x' 0

More information

2.6 Electron transport lines

2.6 Electron transport lines 2.6 Electron transport lines 2.6 Electron transport lines Overview The electron transport lines consist of all of the electron beamline segments that are neither part of the Linacs nor part of the injector.

More information

Xiaobiao Huang Accelerator Physics August 28, The Dipole Passmethod for Accelerator Toolbox

Xiaobiao Huang Accelerator Physics August 28, The Dipole Passmethod for Accelerator Toolbox STANFORD SYNCHROTRON RADIATION LABORATORY Accelerator Physics Note CODE SERIAL PAGE 021 8 AUTHOR GROUP DATE/REVISION Xiaobiao Huang Accelerator Physics August 28, 2009 TITLE The Dipole Passmethod for Accelerator

More information

Phase Space Gymnastics

Phase Space Gymnastics Phase Space Gymnastics As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Phase space gymnastics becomes a new focus of accelerator physics

More information

Particle Accelerators: Transverse Beam Dynamics

Particle Accelerators: Transverse Beam Dynamics Particle Accelerators: Transverse Beam Dynamics Volker Ziemann Department of Physics and Astronomy Uppsala University Research Training course in Detector Technology Stockholm, Sept. 8, 2008 080908 V.

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

Beam dynamics measurement during ALBA commissioning

Beam dynamics measurement during ALBA commissioning Beam dynamics measurement during ALBA commissioning Marc Munoz on behalf of ALBA Accelerator Division LOCO Data: Index Recovering of the optics Effect of the ID Orbit Stability Bare orbit BBA Long term

More information

CEPC partial double ring magnet error effects

CEPC partial double ring magnet error effects CEPC partial double ring magnet error effects Sha Bai, Dengjie Xiao, Yiwei Wang, Feng Su, Huiping Geng, Dou Wang 2016 04 08 CEPC SppC study group meeting LEP Alignment parameters From: LEP Design Report

More information

The optimization for the conceptual design of a 300 MeV proton synchrotron *

The optimization for the conceptual design of a 300 MeV proton synchrotron * The optimization for the conceptual design of a 300 MeV proton synchrotron * Yu-Wen An ( 安宇文 ) 1,2), Hong-Fei Ji ( 纪红飞 ) 1,2), Sheng Wang ( 王生 ) 1,2), Liang-Sheng Huang ( 黄良生 ) 1,2;1) 1 Institute of High

More information

First commissioning of the HLS-II storage ring*

First commissioning of the HLS-II storage ring* Submitted to Chinese Physics C First commissioning of the HLS-II storage ring* LIU Gang-Wen( 刘刚文 ) XUAN Ke( 宣科 ) 1) XU Wei( 徐卫 ) WANG Lin( 王琳 ) LI Wei-Min( 李为民 ) LI Jing-yi( 李京祎 ) National Synchrotron

More information

Compensation of CSR in bunch compressor for FACET-II. Yichao Jing, BNL Vladimir N. Litvinenko, SBU/BNL 10/17/2017 Facet II workshop, SLAC

Compensation of CSR in bunch compressor for FACET-II. Yichao Jing, BNL Vladimir N. Litvinenko, SBU/BNL 10/17/2017 Facet II workshop, SLAC Compensation of CSR in bunch compressor for FACET-II Yichao Jing, BNL Vladimir N. Litvinenko, SBU/BNL 10/17/2017 Facet II workshop, SLAC Outline Single C-type bunch compressor and performance. Options

More information

Status of Optics Design

Status of Optics Design 17th B2GM, February 5, 2014 Status of Optics Design Y. Ohnishi /KEK 17th B2GM KEK, February 5, 2014 Contents! Lattice parameters! Dynamic aperture under influence of beam-beam effect! Lattice preparation

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

TRIUMF Document: 10049

TRIUMF Document: 10049 TRIUMF Document: 10049 DESIGN NOTE TRI-DN-07-18 Beam Line 2A Optics: Calculations and Measurements Legacy Document Document Type: Design Note Name: Signature: Date: Approved By: N/A Note: Before using

More information

Polarization Preservation and Control in a Figure-8 Ring

Polarization Preservation and Control in a Figure-8 Ring Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660090 (7 pages) c The Author(s) DOI: 10.1142/S2010194516600909 Polarization Preservation and Control

More information

USPAS Accelerator Physics 2013 Duke University

USPAS Accelerator Physics 2013 Duke University USPAS Accelerator Physics 2013 Duke University Lattice Extras: Linear Errors, Doglegs, Chicanes, Achromatic Conditions, Emittance Exchange Todd Satogata (Jefferson Lab) / satogata@jlab.org Waldo MacKay

More information

LHC ORBIT SYSTEM, PERFORMANCE AND STABILITY

LHC ORBIT SYSTEM, PERFORMANCE AND STABILITY LHC ORBIT SYSTEM, PERFORMANCE AND STABILITY Kajetan Fuchsberger Abstract During the LHC run period in 2009 the Orbit system proved to be very reliable. In the following the analysis results of the first

More information

Studies of Emittance Bumps and Adaptive Alignment method for ILC Main Linac

Studies of Emittance Bumps and Adaptive Alignment method for ILC Main Linac Studies of Emittance Bumps and Adaptive Alignment method for ILC Main Linac Nikolay Solyak #, Kirti Ranjan, Valentin Ivanov, Shekhar Mishra Fermilab 22-nd Particle Accelerator Conference, Albuquerque,

More information

Optics considerations for

Optics considerations for Optics considerations for ERL x-ray x sources Georg H. Hoffstaetter* Physics Department Cornell University Ithaca / NY Georg.Hoffstaetter@cornell.edu 1. Overview of Parameters 2. Critical Topics 3. Phase

More information

1.1.1 Introduction. SLAC-PUB June 2009

1.1.1 Introduction. SLAC-PUB June 2009 LOCO with constraints and improved fitting technique Xiaobiao Huang, James Safranek Mail to: xiahuang@slac.stanford.edu Stanford Linear Accelerator Center, Menlo Park, CA 9405, USA Greg Portmann Lawrence

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

Transverse Beam Optics of the FLASH Facility

Transverse Beam Optics of the FLASH Facility Transverse Beam Optics of the FLASH Facility ( current status and possible updates ) Nina Golubeva and Vladimir Balandin XFEL Beam Dynamics Group Meeting, 18 June 2007 Outline Different optics solutions

More information

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1 Modeling CESR-c D. Rubin July 22, 2005 Modeling 1 Weak strong beambeam simulation Motivation Identify component or effect that is degrading beambeam tuneshift Establish dependencies on details of lattice

More information

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1 Introduction: bunch length measurements Reminder of optics Non- linear dynamics Low- alpha operation On the user side: THz and X- ray short bunch science CSR measurement and modeling Future Light Sources

More information

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Urschütz Peter (AB/ABP) CLIC meeting, 29.10.2004 1 Overview General Information on the PS Booster Synchrotron Motivation

More information

Part V Undulators for Free Electron Lasers

Part V Undulators for Free Electron Lasers Part V Undulators for Free Electron Lasers Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble V, 1/22, P. Elleaume, CAS, Brunnen July 2-9, 2003. Oscillator-type Free Electron Laser V, 2/22,

More information

Thu June 16 Lecture Notes: Lattice Exercises I

Thu June 16 Lecture Notes: Lattice Exercises I Thu June 6 ecture Notes: attice Exercises I T. Satogata: June USPAS Accelerator Physics Most o these notes ollow the treatment in the class text, Conte and MacKay, Chapter 6 on attice Exercises. The portions

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

Transverse Beam Dynamics II

Transverse Beam Dynamics II Transverse Beam Dynamics II II) The State of the Art in High Energy Machines: The Theory of Synchrotrons: Linear Beam Optics The Beam as Particle Ensemble Emittance and Beta-Function Colliding Beams &

More information

2 Closed Orbit Distortions A dipole kick j at position j produces a closed orbit displacement u i at position i given by q i j u i = 2 sin Q cos(j i ;

2 Closed Orbit Distortions A dipole kick j at position j produces a closed orbit displacement u i at position i given by q i j u i = 2 sin Q cos(j i ; LHC Project Note 4 March 2, 998 Jorg.Wenninger@cern.ch Quadrupole Alignment and Closed Orbits at LEP : a Test Ground for LHC J. Wenninger Keywords: CLOSED-ORBIT ALIGNMENT CORRECTORS Summary A statistical

More information

AC dipole based optics measurement and correction at RHIC

AC dipole based optics measurement and correction at RHIC BNL-1132-213-CP AC dipole based optics measurement and correction at RHIC X. Shen, S. Y. Lee Indiana University of Bloomington, IN 4745, USA M. Bai, S. White, G. Robert-Demolaize, Y. Luo, A. Marusic BNL,

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

Study of Alternative Optics for the NLC Prelinac Collimation section

Study of Alternative Optics for the NLC Prelinac Collimation section LCC 0057 03/01 Linear Collider Collaboration Tech Notes Study of Alternative Optics for the NLC Prelinac Collimation section March 2001 Yuri Nosochkov, Pantaleo Raimondi, Tor Raubenheimer Stanford Linear

More information

FIRST OPERATION OF THE SWISS LIGHT SOURCE

FIRST OPERATION OF THE SWISS LIGHT SOURCE FIRST OPERATION OF THE SWISS LIGHT SOURCE M. Böge, PSI, Villigen, Switzerland Abstract The Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI) is the most recent 3rd generation light source to

More information

arxiv: v2 [physics.acc-ph] 18 Nov 2015

arxiv: v2 [physics.acc-ph] 18 Nov 2015 International Journal of Modern Physics: Conference Series c The Authors arxiv:1511.0039v [physics.acc-ph] 18 Nov 015 Studies of systematic limitations in the EDM searches at storage rings Artem Saleev

More information

Lattices for Light Sources

Lattices for Light Sources Andreas Streun Swiss Light Source SLS, Paul Scherrer Institute, Villigen, Switzerland Contents: Global requirements: size, brightness, stability Lattice building blocks: magnets and other devices Emittance:

More information

Transverse Emittance Preserving Arc Compressor: Sensitivity to Beam Optics, Charge and Energy

Transverse Emittance Preserving Arc Compressor: Sensitivity to Beam Optics, Charge and Energy Transverse Emittance Preserving Arc ompressor: Sensitivity to Beam Optics, harge and Energy S. Di Mitri Elettra Sincrotrone Trieste ERL'5, Stony Broo Univ., NY simone.dimitri@elettra.eu Where I come from...

More information

Monochromatization Option for NLC Collisions

Monochromatization Option for NLC Collisions LCC-0134 SLAC-TN-04-003 February 19, 2004 Linear Collider Collaboration Tech Notes Monochromatization Option for NLC Collisions Andrei Seryi, Tor Raubenheimer Stanford Linear Accelerator Center Stanford

More information

Mechanical Motion Measurement System Design, Initial Results and Experiments with Orbit Feedback

Mechanical Motion Measurement System Design, Initial Results and Experiments with Orbit Feedback Mechanical Motion Measurement System Design, Initial Results and Experiments with Orbit Feedback Workshop on Ambient Ground Motion and Vibration Suppression for Low Emittance Storage Rings 12/11/2017 1

More information

ERL upgrade of an existing X-ray facility: CHESS at CESR

ERL upgrade of an existing X-ray facility: CHESS at CESR ERL-5-8 ERL upgrade of an existing X-ray facility: CHESS at CESR G.H. Hoffstaetter Abstract Cornell University has proposed an Energy-Recovery Linac (ERL) based synchrotron-light facility which uses 5GeV,

More information

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron Preliminary design study of JUICE Joint Universities International Circular Electronsynchrotron Goal Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV Goal Make a 3th generation Synchrotron

More information

Enhanced Performance of the Advanced Light Source Through Periodicity Restoration of the Linear Lattice

Enhanced Performance of the Advanced Light Source Through Periodicity Restoration of the Linear Lattice SLAC-PUB-9463 August 2002 Enhanced Performance of the Advanced Light Source Through Periodicity Restoration of the Linear Lattice D. Robin et al Presented at the 7th European Particle Accelerator Conference

More information

Ideas for a sextupole-free final focus system

Ideas for a sextupole-free final focus system Ideas for a sextupole-free final focus system LCWS15 Whistler, Canada Carl A Lindstrøm Nov 3, 2015 PhD Student University of Oslo, Department of Physics Advisor: Erik Adli 1 In short Chromaticity as a

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Features and Applications of the Program elegant. Michael Borland Associate Director Accelerator Systems Division Argonne National Laboratory

Features and Applications of the Program elegant. Michael Borland Associate Director Accelerator Systems Division Argonne National Laboratory Features and Applications of the Program elegant Michael Borland Associate Director Accelerator Systems Division Argonne National Laboratory Outline Overview of features and capabilities SDDS and the tool-based

More information

PEP-II Lattices. U. Wienands for many others from AD, ARD, NLC. U. Wienands, PEP-II MAC

PEP-II Lattices. U. Wienands for many others from AD, ARD, NLC. U. Wienands, PEP-II MAC PEP-II Lattices U. Wienands for many others from AD, ARD, NLC PEP-II Lattices Parameters & how we determine them Online Lattice Model Coupling Orbit Control Working point & MIA Lattice Correction Priorities

More information

COMBINER RING LATTICE

COMBINER RING LATTICE CTFF3 TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 4, 21 Note: CTFF3-2 COMBINER RING LATTICE C. Biscari 1. Introduction The 3 rd CLIC test facility, CTF3, is foreseen to check the feasibility

More information

Beam Optics for Parity Experiments

Beam Optics for Parity Experiments Beam Optics for Parity Experiments Mark Pitt Virginia Tech (DHB) Electron beam optics in the injector, accelerator, and transport lines to the experimental halls has a significant impact on helicitycorrelated

More information

Beam-Based Measurement of Dynamical Characteristics in Nuclotron

Beam-Based Measurement of Dynamical Characteristics in Nuclotron Bulg. J. Phys. 32 (2005) 136 146 Beam-Based Measurement of Dynamical Characteristics in Nuclotron O. Brovko 1, E. Ivanov 1, D. Dinev 2 1 Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region,

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 1: Introduction Examples of nonlinear dynamics in accelerator systems Nonlinear Single-Particle Dynamics in High Energy Accelerators

More information

ILC Damping Ring Alternative Lattice Design (Modified FODO)

ILC Damping Ring Alternative Lattice Design (Modified FODO) ILC Damping Ring Alternative Lattice Design (Modified FODO) Yi-Peng Sun 1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics, CAS, China 2 State Key Laboratory of Nuclear Physics

More information