hep-th/ v2 20 Aug 1997

Size: px
Start display at page:

Download "hep-th/ v2 20 Aug 1997"

Transcription

1 Newman-Penrose dyads and the null string motion equations in a background of antisymmetric elds hep-th/ v2 20 Aug 1997 K Ilienko Balliol College and Mathematical Institute, University of Oxford, 24{29 St Giles', Oxford OX1 3LB, UK A A Zheltukhin y Kharkiv Institute for Physics and Technology, 1 Akademichna Str, Kharkiv , Ukraine Abstract An application of the Newman-Penrose dyad formalism for description of tensionless (null) string dynamics in 4D Minkowski spacetime is studied in a background of antisymmetric elds. We present a special class of background antisymmetric elds which admits exact solutions of the null string motion equations and formulate a sucient condition of the absence of interaction of a null string with such elds. address: ilienko@math.ox.ac.uk y address: zheltukhin@kipt.kharkov.ua 1

2 1 Introduction Recently, there has been considerable interest in investigation of the null string motion equations in dierent backgrounds of external elds and in curved spacetimes (e.g. [1, 2, 3] and references therein). Finding of the exact solutions for the equations of motion in such systems is a rather dicult task, mainly due to the nonlinear character of the motion equations, so, it seems interesting to study those situations in which these equations possess exact solutions. It is known that the motion equations for strings in 4D Minkowski spacetime, null strings in some backgrounds and for particular types of curved spacetimes can be solved exactly [4, 5, 6]. Being a zero tension limit of strings [7], null strings possess simpler equations of motion than those of strings and can be considered as a zero approximation with the string tension as the perturbation parameter [8, 9, 10]. This explains our current interest in this problem. Geometrically world sheets of null strings are lightlike (null) 2-surfaces which generalise world lines of massless particles [11, 12, 13]. By convention, null string interactions with various elds can be analysed into two types. To the rst type we attribute the interactions which violate the lightlike character of the world sheets and, therefore, lead to generation of non-zero tension. All other interactions fall into the second type. In particular, null string interactions with antisymmetric background tensor elds are of the second type. As shown in [14], 2-component spinors of 3D Minkowski spacetime provide particularly convenient framework for studying the general solutions of null string motion equations in arbitrary antisymmetric background elds T mn (x). On the other hand, convenience of adopting 2-spinor description for spacelike and timelike strings in 4D Minkowski spacetime was demonstrated in [15] and for free null (super) strings and p-branes in [16]. Therefore, it is interesting to investigate the possibility of application of such a formalism in the form of the Newman-Penrose dyad calculus in 4D Minkowski spacetime for the description of null strings in background antisymmetric elds which is one of the main goals of the present article. In addition, we nd a special class of background antisymmetric elds which gives rise to exact solutions of the null string motion equations and formulate a sucient condition for the absence of interaction of a null string with background antisymmetric elds. 2 Equations of motion Let us consider the action of a null string in an external antisymmetric eld T mn (x). In the spinor form it can be rewritten as follows S = Z x AB0 o A o B 0? " 1 1 x A 1B 0 2 x A 2B 0 2 T A1 A 2 B 0 1B 0 2(x AB0 ) i d 2 ; (1) where T A1 A 2 B 0 1B 0 2, x AB0 and d 2 represent eld T mn, coordinates of the null string x m (; ) and the area element dd of the world sheet. We assume that = (; ) is a smooth parametrisation of the null-string world sheet, choose " =?" = 2

3 ?1, ij = diag(+???) and use The coordinates on the world sheet are dimensionless and we assume the world sheet vector density () to have the dimensions of inverse length. ensures invariance of action (1) under arbitrary non-degenerate reparametrisations of the null string world sheet. Interaction constant has the dimensions of inverse length. Spinor elds o A and A form a basis for 2-dimensional complex vector space and obey the normalisation condition o A A = (o B 0 B0 ) = ; (2) where (x AB0 ) represents a possibility of rescaling of the Newman-Penrose dyad element A at each spacetime point x AB0. The relation T A1 B 0 1A 2 B 0 2 = T A1 A 2 B 0 1B 0 2 =?T A2 A 1 B 0 2B 0 1 (3) holds for antisymmetric tensor eld T mn and we AB AB0, _x AB0 x AB0, x AB0 x AB0 and 3@ [AB 0T A1 A 2 B 0 1B 0 2] AB 0T A1 A 2 B 0 1B 0 2 A1 B 0 1 T A 2 AB 0 2B 0 A 2 B 0 2 T AA 1 B 0 B 0 1 : (4) Variation of action (1) results in the equations describing the null string x AB0 o A = x AB0 o A o B 0 = ( o A o B 0) + 3" 1 1 x A 1B 0 2 x A 2B 0 [AB 0T A1 A 2 B 0 1B 0 2] = 0; (5) and complex conjugate of them. The rst equation in (5) and its complex conjugate x AB0 = eo A o B0 ; (6) where e() is an arbitrary real-valued function with transformation properties of a scalar world sheet density. Assuming that is a nowhere zero function we rewrite this equation as _x AB0 = e oa o B0? Taking into account the second equation in (5) we obtain xab0 : (7) x AB0 o A o B 0 = 0: (8) This equation yields representation for spin-tensor x AB0 in the form 1 x AB0 = o A r B0 + r A o B0 ; (9) where condition o A r A 6= 0 is imposed on the spinor eld r A. Action (1) is invariant with respect to the following transformations ~o A = o A ; ~ A = A + uo A ; (10) 1 Representations (7) and (9) imply _x 2 = ( = ) 2 x 2 and _xx =?( = )x 2. Hence, the determinant of the induced metric on the null string world sheet vanishes identically ( _x 2 x 2? ( _xx) 2 = 0). This veries that the action principle (1) provides a description of a null string world sheet. 3

4 and ~o A = e v o A ; ~ A = e?v A ; ~ = e?(v+v) (11) with complex-valued functions u() and v(). Expanding spinor eld r A in the basis (o A, A ) as r A = po A + q A, where functions p() and q() are complex-valued, representing q in the form q = jqj exp(i') and using (9) we get x AB0 = (p + p)o A o B0 + jqj(e?i' o A B0 + e i' A o B0 ): (12) Carrying out successive transformations (10) and (11) with parameters u = jqj?1 p exp(?i') and v =?[ln( =e) + i']=2 we obtain _x AB0 = o A o B0? xab0 ; x AB0 = jqj(o A B0 + A o B0 ): (13) Here we omitted the tildes over the basis spinors, because motion equations (5) are invariant with respect to transformations (10) and (11). Using the possibility of rescaling the dyad element A ~o A = o A ; ~ A = A ; ~ = ; (14) we incorporate factor jqj into A and write (13) in the form _x AB0 = o A o B0? xab0 ; x AB0 = o A B0 + A o B0 : (15) Using (15) we represent the last equation in (5) ( o A o B 0) = i(q AD 0o D0 o B 0? o A Q CB 0o C ); (16) where spin-tensor Q AB 0 corresponds to vector Q k = " [l T mn] with 3!@ [l T mn] = " lmnp " q T rs and we take " 0123 =?" 0123 = 1. Invariance of action (1) under arbitrary reparametrisations of the world sheet implies (via the second Noether's theorem [17, 18]) that the solutions of the motion equations depend upon two arbitrary real-valued functions. We x one of them using a condition = 0: (17) Then, the null string motion equations take the form _x AB0 = o A o B0 ; x AB0 = o A B0 + A o B0 ; ( o A o B 0) : = i(q AD 0 o D0 o B 0? o A o C Q CB 0); (18) and the rst two of them result in the Virasoro constraints appearing in the standard theory of null strings. _x 2 = 0 and _xx = 0 (19) 4

5 3 Absence of interaction with antisymmetric eld Projecting equation (16) on the spin-tensor basis element o A B0 we obtain o o A = io A Q AB 0o B0 : (20) When the external antisymmetric eld vanishes Q AB 0 is equal to zero and (20) gives a reparametrization invariant equation of a null string world sheet which is generated by null geodesics (cf. [7]). Thus, setting Q AB 0 to zero we get under gauge condition (17) equation _o A o A = 0 (21) as a sucient condition for a null string world sheet to be a geodesic one. We note that this condition, together with the null string motion equations and the Virasoro constraints, is invariant under non-degenerate transformations of the form (see [14]) ~ = ~(; ) and ~ = ~(): (22) Equation (21) under gauge condition (17) shows that the sucient condition of the absence of the null string interaction with an antisymmetric external eld is Q AB 0o A o B0 = 0; (23) or Q k _x k = 0 in vector form. Since vector Q k is dual to the eld strength [l T mn] we observe that condition (23) is equivalent to the impossibility of constructing a non-zero 4-volume out of the eld strength tensor and vector _x k. Thus, the measure of this volume can be taken as a measure of interaction. This case corresponds to system (40) with = 0 (cf. equation (21)). The solution for spinors o A and A is given by and (2) implies where o A = A ()e m 2 ; A = [ A () + Z o (o A + io A )e m 2 d]e? m 2 (24) A A + A A R = e?m?m 2 ; (25) R = Z 0 e m+m 2 d; (26) as the normalisation condition. Representation (24) allows to write (18) in the form _x AB0 = A B0 _R; x AB0 = A B 0 + A B0 + ( A B0 R) 0 ; R + _ R _ = i R[( _ A + A R)Q AB 0 B0? A Q AB 0( B0 + B0 R)]: Equation (23) and the rst two equations in (27) ensure that the restriction of the background antisymmetric eld T mn (x) to the null string world sheet given by spintensor Q AB 0 depends on only through R. Hence making use of (24) in (23) we obtain Q AB 0 = A w B 0(R; ) + w A (R; ) B 0: (28) 5 (27)

6 Imposing the second gauge condition in a form = 1; (29) analogues to [14], we are able to nd solution for R of the last equation in system (27) in implicit form = Z R 0 Z y where the function F (x; ) is given by 0 F (x; )dx?1dy; (30) F (x; ) = i[( A A + x A A ) B0 w B 0(x; )? A w A (x; )( B 0 B 0 + x B 0 B0 )]: (31) Taking into account invariance of the null string motion equations under transformations (22) we may choose new local coordinates by ~ = R(; ) and ~ =. Then, the rst equation in system (27) results in the equation of motion for a free null string ~x AB0 (~ ; ~) = 0 (32) (or ~x m = 0 in the vector form), where the dierentiation is performed with respect to ~. This equation possesses exact solution and can be easily integrated, thus we nd that the null string motion equations in background antisymmetric elds which obey conditions (23) can also be solved exactly. 4 Conclusion In this paper null string motion equations in arbitrary background of antisymmetric elds are considered. We nd a special class of the elds, singled out by condition (23), which can be eliminated by a particular choice of parametrisation for the null string world sheet, such that the null string motion equations are reduced to those of a free null string and, therefore, admit exact solution. At this point, it seems interesting to generalise the above mentioned results to the case of tensionless p- branes in antisymmetric external elds and for d-dimensional spacetimes. 5 Acknowledgements This work is supported, in part, by Dutch Government and INTAS Grants No 94{ 2317, No ext and No ext. The rst author would like to acknowledge the Dervorguilla Graduate Scholarship awarded by Balliol College. He is also grateful to Profs R Penrose and Yu P Stepanovsky for fruitful discussions. The second author wish to acknowledge nancial support by the Government Fund for Fundamental Research of the Ministry of Research and Technology of Ukraine and a High Energy Physics Grant awarded by the ministry. After submitting this article the authors learnt about recent paper [19] which contains an interesting approach to the description of interaction of tensionless strings with other elds and has an interesting intersection with our consideration. We are grateful to Dr B Jensen who informed us about this work. 6

7 A Analysis of consistency relations Let us analyse consistency relations for the representations of _x AB0 ( _x AB0 ) 0 is equal to (x AB0 ) : the spinors o A and A obey the relation and x AB0. Since o A o B0 + o A o B0 = o A _ B0 + _o A B0 + A _o B0 + _ A o B0 : (33) Multiplying both sides of equation (33) by o A o B 0 we get which yields _o A o A + _o B0 o B 0 = 0; (34) _o A o A + i = 0; (35) where () is an arbitrary real-valued function. Allowing for (2), one can write _o A = 1 2 _moa? i A : (36) Here m() is an arbitrary complex-valued function. Substituting (36) into (33) and projecting the obtained equation on o A B 0 we nd (_ A _ m A? o A )o A = 0: (37) From (37) it follows that _ A _ m A? o A = ~o A : (38) Substituting again (36) and (38) into (33) we obtain ~ = i; (39) where () is an arbitrary real-valued function. Thus, consistency relation (33) results in a system of equations for the basis spinors o A and A _o A = 1 2 _moa? i A ; _ A = io A? 1 2 _ m A + o A : (40) 7

8 References [1] Veneziano G 1996 String Gravity and Physics at the Planck Energy Scale (Erice), NATO ASI Series C 476 ed N Sanchez and A Zichichi p 285 [2] de Vega H J and Sanchez N 1996 String Gravity and Physics at the Planck Energy Scale (Erice), NATO ASI Series C 476 ed N Sanchez and A Zichichi p 11 [3] Kar S 1996 Phys. Rev. A [4] Roshchupkin S N and Zheltukhin A A 1995 Class. Quantum Grav [5] Kar S 1996 Phys. Rev. D [6] Dabrowski M P and Larsen A L Preprint hep-th/ [7] Schild A 1977 Phys. Rev. D [8] Zheltukhin A A 1996 Class. Quantum Grav [9] de Vega H J, Giannakis I and Nicolaidis A 1995 Mod. Phys. Lett. A [10] Lousto C O and Sanchez N 1996 Phys. Rev. D [11] Karlhede A and Lindstrom U 1986 Class. Quantum Grav. 3 L73 [12] Zheltukhin A A 1987 Sov. Phys.-JETP Lett [13] Zheltukhin A A 1988 Sov. J. Nucl. Phys [14] Zheltukhin A A 1990 Sov. J. Nucl. Phys [15] Hughston L P and Shaw W T 1990 LMS Lecture Notes 156 p 218 [16] Bandos I A and Zheltukhin A A 1992 Theor. Math. Phys [17] Noether E 1918 Nach. v. d. Ges. d. Wiss. zu Gottingen 235 [18] Barbashov B M and Nesterenko V V 1983 Fortschr. Phys [19] Jensen B and Lindstrom U 1997 Phys. Lett. B

STRING QUANTIZATION IN CURVED SPACETIMES: NULL STRING APPROACH. LPTHE, Laboratoire Associe au CNRS UA 280, Universite Paris VI. F Paris, France

STRING QUANTIZATION IN CURVED SPACETIMES: NULL STRING APPROACH. LPTHE, Laboratoire Associe au CNRS UA 280, Universite Paris VI. F Paris, France THES-TP-09/94 CTP-TAMU-14/94 ACT-42/94 STRING QUANTIZATION IN CURVED SPACETIMES: NULL STRING APPROACH H. J. DE VEGA (a;b), I. GIANNAKIS (c;d) and A. NICOLAIDIS (e) (a) LPTHE, Laboratoire Associe au CNRS

More information

arxiv:hep-th/ v1 9 Dec 1994

arxiv:hep-th/ v1 9 Dec 1994 THES-TP-09/94 CTP-TAMU-14/94 ACT-42/94 STRING QUANTIZATION IN CURVED SPACETIMES: NULL STRING APPROACH arxiv:hep-th/9412081v1 9 Dec 1994 H. J. DE VEGA (a,b), I. GIANNAKIS (c,d) and A. NICOLAIDIS (e) (a)

More information

STRING DYNAMICS IN COSMOLOGICAL AND BLACK HOLE BACKGROUNDS: THE NULL STRING EXPANSION C. O. LOUSTO. Department of Physics, University of Utah

STRING DYNAMICS IN COSMOLOGICAL AND BLACK HOLE BACKGROUNDS: THE NULL STRING EXPANSION C. O. LOUSTO. Department of Physics, University of Utah STRING DYNAMICS IN COSMOLOGICAL AND BLACK HOLE BACKGROUNDS: THE NULL STRING EXPANSION C. O. LOUSTO Department of Physics, University of Utah Salt Lake City, UT 8411, USA N. SANCHEZ Observatoire de Paris,

More information

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012 dario.rosa@mib.infn.it Dipartimento di Fisica, Università degli studi di Milano Bicocca Milano, Thursday, September 27th, 2012 1 Holomorphic Chern-Simons theory (HCS) Strategy of solution and results 2

More information

one tries, the metric must always contain singularities. The point of this note is to give a simple proof of this fact in the case that n is even. Thi

one tries, the metric must always contain singularities. The point of this note is to give a simple proof of this fact in the case that n is even. Thi Kinks and Time Machines Andrew Chamblin, G.W. Gibbons, Alan R. Steif Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, England. We show that it is not possible

More information

Universita Degli Studi Di Padova Dipartimento Di Fisica \Galileo Galilei" Abstract

Universita Degli Studi Di Padova Dipartimento Di Fisica \Galileo Galilei Abstract Preprint DFPD 95/TH/16 hep-th/ March, 1995 Note on manifest Lorentz and general coordinate invariance in duality symmetric models PostScript processed by the SLAC/DESY Libraries on 27 Mar 1995. Paolo Pasti,

More information

1. Introduction As is well known, the bosonic string can be described by the two-dimensional quantum gravity coupled with D scalar elds, where D denot

1. Introduction As is well known, the bosonic string can be described by the two-dimensional quantum gravity coupled with D scalar elds, where D denot RIMS-1161 Proof of the Gauge Independence of the Conformal Anomaly of Bosonic String in the Sense of Kraemmer and Rebhan Mitsuo Abe a; 1 and Noboru Nakanishi b; 2 a Research Institute for Mathematical

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

arxiv:hep-th/ v1 28 Jan 1999

arxiv:hep-th/ v1 28 Jan 1999 N=1, D=10 TENSIONLESS SUPERBRANES II. 1 arxiv:hep-th/9901153v1 28 Jan 1999 P. Bozhilov 2 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia We consider a model for tensionless (null)

More information

1. Introduction A few years ago, Ba~nados, Teitelboim and Zanelli (BTZ) showed that three-dimensional General Relativity with a negative cosmological

1. Introduction A few years ago, Ba~nados, Teitelboim and Zanelli (BTZ) showed that three-dimensional General Relativity with a negative cosmological STATIONARY BLACK HOLES IN A GENERALIZED THREE-DIMENSIONAL THEORY OF GRAVITY Paulo M. Sa Sector de Fsica, Unidade de Ci^encias Exactas e Humanas, Universidade do Algarve, Campus de Gambelas, 8000 Faro,

More information

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Comparison of the Bondi{Sachs and Penrose Approaches to Asymptotic Flatness J. Tafel S.

More information

arxiv: v1 [gr-qc] 2 Feb 2015

arxiv: v1 [gr-qc] 2 Feb 2015 arxiv:1502.00424v1 [gr-qc] 2 Feb 2015 Valiente Kroon s obstructions to smoothness at infinity James Grant Department of Mathematics, University of Surrey, Paul Tod Mathematical Institute University of

More information

arxiv:gr-qc/ v1 23 Jun 1998

arxiv:gr-qc/ v1 23 Jun 1998 Superluminal travel requires negative energies Ken D. Olum Institute of Cosmology Department of Physics and Astronomy Tufts University Medford, MA 02155 (June 1998) arxiv:gr-qc/9806091v1 23 Jun 1998 Abstract

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates Amir H. Fatollahi Department of Physics, Alzahra University, P. O. Box 19938, Tehran 91167, Iran fath@alzahra.ac.ir Abstract

More information

UNIVERSITY OF CRAIOVA FACULTY OF PHYSICS DAN CORNEA. Summary of Ph.D. THESIS

UNIVERSITY OF CRAIOVA FACULTY OF PHYSICS DAN CORNEA. Summary of Ph.D. THESIS UNIVERSITY OF CRAIOVA FACULTY OF PHYSICS DAN CORNEA Summary of Ph.D. THESIS COHOMOLOGICAL APPROACHES TO EINSTEIN-HILBERT GRAVITY Ph.D. supervisor Prof. dr. CONSTANTIN BIZDADEA CRAIOVA 2008 Contents 1 Introduction

More information

Dirac Equation with Self Interaction Induced by Torsion

Dirac Equation with Self Interaction Induced by Torsion Advanced Studies in Theoretical Physics Vol. 9, 2015, no. 12, 587-594 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2015.5773 Dirac Equation with Self Interaction Induced by Torsion Antonio

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

Nonperturbative dynamics for abstract p,q string networks

Nonperturbative dynamics for abstract p,q string networks Nonperturbative dynamics for abstract p,q string networks Fotini Markopoulou* and Lee Smolin Center for Gravitational Physics and Geometry Department of Physics, The Pennsylvania State University, University

More information

arxiv:gr-qc/ v1 22 Jul 1994

arxiv:gr-qc/ v1 22 Jul 1994 A COMPARISON OF TWO QUANTIZATION PROCEDURES FOR LINEAL GRAVITY Eric Benedict arxiv:gr-qc/9407035v1 22 Jul 1994 Department of Physics Boston University 590 Commonwealth Avenue Boston, Massachusets 02215

More information

arxiv:hep-th/ v1 22 Jan 2000

arxiv:hep-th/ v1 22 Jan 2000 arxiv:hep-th/0001149v1 22 Jan 2000 TUW 00-03 hep-th/0001149 2000, January 20, ON ACTION FUNCTIONALS FOR INTERACTING BRANE SYSTEMS I. BANDOS Institute for Theoretical Physics, NSC Kharkov Institute of Physics

More information

arxiv:hep-th/ v1 10 Apr 2006

arxiv:hep-th/ v1 10 Apr 2006 Gravitation with Two Times arxiv:hep-th/0604076v1 10 Apr 2006 W. Chagas-Filho Departamento de Fisica, Universidade Federal de Sergipe SE, Brazil February 1, 2008 Abstract We investigate the possibility

More information

Superfield Approach to Abelian 3-form gauge theory. QFT 2011 (23 27 Feb. 2011) [IISER, Pune]

Superfield Approach to Abelian 3-form gauge theory. QFT 2011 (23 27 Feb. 2011) [IISER, Pune] Superfield Approach to Abelian 3-form gauge theory QFT 2011 (23 27 Feb. 2011) [IISER, Pune] References 1. R. P. Malik, Eur. Phys. J. C 60 (2009) 2. L. Bonora, R. P. Malik, J. Phys. A: Math. Theor. 43 (2010)

More information

Black Hole Production in Planckian Scattering*

Black Hole Production in Planckian Scattering* Black Hole Production in Planckian Scattering* Kyungsik Kang and Horatiu Nastase Department of Physics, Brown University, Providence, RI 02912, USA Gauge/gravity duality correspondence suggests to a new

More information

Invariant differential operators and the Karlhede classification of type N vacuum solutions

Invariant differential operators and the Karlhede classification of type N vacuum solutions Class. Quantum Grav. 13 (1996) 1589 1599. Printed in the UK Invariant differential operators and the Karlhede classification of type N vacuum solutions M P Machado Ramos and J A G Vickers Faculty of Mathematical

More information

TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* ABSTRACT

TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* ABSTRACT SLAC-PUB-5022 May, 1989 T TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* DAVID C. LEWELLEN Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 ABSTRACT.*

More information

A Lax Representation for the Born-Infeld Equation

A Lax Representation for the Born-Infeld Equation A Lax Representation for the Born-Infeld Equation J. C. Brunelli Universidade Federal de Santa Catarina Departamento de Física CFM Campus Universitário Trindade C.P. 476, CEP 88040-900 Florianópolis, SC

More information

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018 Gravitational wave memory and gauge invariance David Garfinkle Solvay workshop, Brussels May 18, 2018 Talk outline Gravitational wave memory Gauge invariance in perturbation theory Perturbative and gauge

More information

/95 $ $.25 per page

/95 $ $.25 per page Fields Institute Communications Volume 00, 0000 McGill/95-40 gr-qc/950063 Two-Dimensional Dilaton Black Holes Guy Michaud and Robert C. Myers Department of Physics, McGill University Montreal, Quebec,

More information

Topological DBI actions and nonlinear instantons

Topological DBI actions and nonlinear instantons 8 November 00 Physics Letters B 50 00) 70 7 www.elsevier.com/locate/npe Topological DBI actions and nonlinear instantons A. Imaanpur Department of Physics, School of Sciences, Tarbiat Modares University,

More information

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS. LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS Merab Gogberashvili a and Paul Midodashvili b a Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 3877, Georgia E-mail: gogber@hotmail.com

More information

DOUBLY SUPERSYMMETRIC NULL STRINGS AND STRING TENSION GENERATION. Igor A. Bandos

DOUBLY SUPERSYMMETRIC NULL STRINGS AND STRING TENSION GENERATION. Igor A. Bandos DOUBLY SUPERSYMMETRIC NULL STRINGS AND STRING TENSION GENERATION Igor A. Bandos Kharkov Institute of Physics and Technology Kharkov, 310108, the Ukraine Dmitrij P. Sorokin, Mario Tonin Dipartimento di

More information

A note on the principle of least action and Dirac matrices

A note on the principle of least action and Dirac matrices AEI-2012-051 arxiv:1209.0332v1 [math-ph] 3 Sep 2012 A note on the principle of least action and Dirac matrices Maciej Trzetrzelewski Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,

More information

action? Pawe l Wegrzyn z Jagellonian University, Institute of Physics Reymonta 4, 30{059 Krakow, Poland Abstract

action? Pawe l Wegrzyn z Jagellonian University, Institute of Physics Reymonta 4, 30{059 Krakow, Poland Abstract Boundary terms in Nambu{Goto string action? Leszek Hadasz y Pawe l Wegrzyn z Jagellonian University, Institute of Physics Reymonta 4, 30{059 Krakow, Poland Abstract We investigate classical strings dened

More information

One can specify a model of 2d gravity by requiring that the eld q(x) satises some dynamical equation. The Liouville eld equation [3] ) q(

One can specify a model of 2d gravity by requiring that the eld q(x) satises some dynamical equation. The Liouville eld equation [3] ) q( Liouville Field Theory and 2d Gravity George Jorjadze Dept. of Theoretical Physics, Razmadze Mathematical Institute Tbilisi, Georgia Abstract We investigate character of physical degrees of freedom for

More information

Brane Gravity from Bulk Vector Field

Brane Gravity from Bulk Vector Field Brane Gravity from Bulk Vector Field Merab Gogberashvili Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 380077, Georgia E-mail: gogber@hotmail.com September 7, 00 Abstract It is shown

More information

arxiv:hep-th/ v1 21 Feb 2006

arxiv:hep-th/ v1 21 Feb 2006 Spinor field realizations of the non-critical W 2,4 string based on the linear W 1,2,4 algebra Zhang Li-Jie 1 and Liu Yu-Xiao 2 1 Department of Mathematics and Physics, Dalian Jiaotong University, Dalian

More information

Stress-energy tensor is the most important object in a field theory and have been studied

Stress-energy tensor is the most important object in a field theory and have been studied Chapter 1 Introduction Stress-energy tensor is the most important object in a field theory and have been studied extensively [1-6]. In particular, the finiteness of stress-energy tensor has received great

More information

On a Quadratic First Integral for the Charged Particle Orbits in the Charged Kerr Solution*

On a Quadratic First Integral for the Charged Particle Orbits in the Charged Kerr Solution* Commun. math. Phys. 27, 303-308 (1972) by Springer-Verlag 1972 On a Quadratic First Integral for the Charged Particle Orbits in the Charged Kerr Solution* LANE P. HUGHSTON Department of Physics: Joseph

More information

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes Andrew Hodges Wadham College, University of Oxford London Mathematical Society Durham Symposium on Twistors, Strings and Scattering Amplitudes, 20

More information

Stringy Quantum Cosmology of the Bianchi Class. Abstract. found for all Bianchi types and interpreted physically as a quantum wormhole.

Stringy Quantum Cosmology of the Bianchi Class. Abstract. found for all Bianchi types and interpreted physically as a quantum wormhole. Stringy Quantum Cosmology of the Bianchi Class A James E. Lidsey NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 6050 Abstract The quantum cosmology of the string

More information

2-Form Gravity of the Lorentzian Signature

2-Form Gravity of the Lorentzian Signature 2-Form Gravity of the Lorentzian Signature Jerzy Lewandowski 1 and Andrzej Oko lów 2 Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoża 69, 00-681 Warszawa, Poland arxiv:gr-qc/9911121v1 30

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

Angular momentum and Killing potentials

Angular momentum and Killing potentials Angular momentum and Killing potentials E. N. Glass a) Physics Department, University of Michigan, Ann Arbor, Michigan 4809 Received 6 April 995; accepted for publication September 995 When the Penrose

More information

arxiv:hep-th/ v1 20 Jul 1998

arxiv:hep-th/ v1 20 Jul 1998 Massive spinning particles and the geometry of null curves Armen Nersessian a,1 and Eduardo Ramos b,2 arxiv:hep-th/9807143v1 20 Jul 1998 Abstract a Joint Institute for Nuclear Research Bogolyubov Laboratory

More information

Space-Times Admitting Isolated Horizons

Space-Times Admitting Isolated Horizons Space-Times Admitting Isolated Horizons Jerzy Lewandowski Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoża 69, 00-681 Warszawa, Poland, lewand@fuw.edu.pl Abstract We characterize a general

More information

arxiv:hep-th/ v2 27 Aug 1997

arxiv:hep-th/ v2 27 Aug 1997 INJE TP 97 1, hep th/9701116 Negative modes in the four dimensional stringy wormholes Jin Young Kim 1, H.W. Lee 2, and Y.S. Myung 2 1 Division of Basic Science, Dongseo University, Pusan 616 010, Korea

More information

Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles

Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles Poincaré gauge theory and its deformed Lie algebra mass-spin classification of elementary particles Jens Boos jboos@perimeterinstitute.ca Perimeter Institute for Theoretical Physics Friday, Dec 4, 2015

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

arxiv: v1 [gr-qc] 15 Jul 2011

arxiv: v1 [gr-qc] 15 Jul 2011 Comment on Hamiltonian formulation for the theory of gravity and canonical transformations in extended phase space by T P Shestakova N Kiriushcheva, P G Komorowski, and S V Kuzmin The Department of Applied

More information

arxiv: v1 [gr-qc] 28 Mar 2012

arxiv: v1 [gr-qc] 28 Mar 2012 Causality violation in plane wave spacetimes arxiv:103.6173v1 [gr-qc] 8 Mar 01 Keywords: vacuum spacetimes, closed null geodesics, plane wave spacetimes D. Sarma 1, M. Patgiri and F. Ahmed 3 Department

More information

On the Geometry of Planar Domain Walls. F. M. Paiva and Anzhong Wang y. Abstract. The Geometry of planar domain walls is studied.

On the Geometry of Planar Domain Walls. F. M. Paiva and Anzhong Wang y. Abstract. The Geometry of planar domain walls is studied. On the Geometry of Planar Domain Walls F. M. Paiva and Anzhong Wang y Departmento de Astrofsica, Observatorio Nacional { CNPq, Rua General Jose Cristino 77, 091-400 Rio de Janeiro { RJ, Brazil Abstract

More information

D-Branes at Finite Temperature in TFD

D-Branes at Finite Temperature in TFD D-Branes at Finite Temperature in TFD arxiv:hep-th/0308114v1 18 Aug 2003 M. C. B. Abdalla a, A. L. Gadelha a, I. V. Vancea b January 8, 2014 a Instituto de Física Teórica, Universidade Estadual Paulista

More information

Dirac Equation with Self Interaction Induced by Torsion: Minkowski Space-Time

Dirac Equation with Self Interaction Induced by Torsion: Minkowski Space-Time Advanced Studies in Theoretical Physics Vol. 9, 15, no. 15, 71-78 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/astp.15.5986 Dirac Equation with Self Interaction Induced by Torsion: Minkowski Space-Time

More information

SEARCH FOR THE QCD GROUND STATE. M. Reuter. DESY, Notkestrae 85, D Hamburg. C. Wetterich. Institut fur Theoretische Physik

SEARCH FOR THE QCD GROUND STATE. M. Reuter. DESY, Notkestrae 85, D Hamburg. C. Wetterich. Institut fur Theoretische Physik DESY 94-081 HD{THEP{94{6 hep-ph/9405300 SEARCH FOR THE QCD GROUND STATE M. Reuter DESY, Notkestrae 85, D-22603 Hamburg C. Wetterich Institut fur Theoretische Physik Universitat Heidelberg Philosophenweg

More information

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory 1 Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory Itzhak Bars University of Southern California Talk at 4 th Sakharov Conference, May 2009 http://physics.usc.edu/~bars/homepage/moscow2009_bars.pdf

More information

Probability in relativistic quantum mechanics and foliation of spacetime

Probability in relativistic quantum mechanics and foliation of spacetime Probability in relativistic quantum mechanics and foliation of spacetime arxiv:quant-ph/0602024v2 9 May 2007 Hrvoje Nikolić Theoretical Physics Division, Rudjer Bošković Institute, P.O.B. 180, HR-10002

More information

Graviton contributions to the graviton self-energy at one loop order during inflation

Graviton contributions to the graviton self-energy at one loop order during inflation Graviton contributions to the graviton self-energy at one loop order during inflation PEDRO J. MORA DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA PASI2012 1. Description of my thesis problem. i. Graviton

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

Helicity conservation in Born-Infeld theory

Helicity conservation in Born-Infeld theory Helicity conservation in Born-Infeld theory A.A.Rosly and K.G.Selivanov ITEP, Moscow, 117218, B.Cheryomushkinskaya 25 Abstract We prove that the helicity is preserved in the scattering of photons in the

More information

arxiv:hep-th/ v2 14 Oct 1997

arxiv:hep-th/ v2 14 Oct 1997 T-duality and HKT manifolds arxiv:hep-th/9709048v2 14 Oct 1997 A. Opfermann Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK February

More information

arxiv:gr-qc/ v4 23 Feb 1999

arxiv:gr-qc/ v4 23 Feb 1999 gr-qc/9802042 Mod. Phys. Lett. A 3 (998) 49-425 Mass of perfect fluid black shells Konstantin G. Zloshchastiev arxiv:gr-qc/9802042v4 23 Feb 999 Department of Theoretical Physics, Dnepropetrovsk State University,

More information

Coupled Dark Energy and Dark Matter from dilatation symmetry

Coupled Dark Energy and Dark Matter from dilatation symmetry Coupled Dark Energy and Dark Matter from dilatation symmetry Cosmological Constant - Einstein - Constant λ compatible with all symmetries Constant λ compatible with all observations No time variation in

More information

On a non-cp-violating electric dipole moment of elementary. particles. J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D Gottingen

On a non-cp-violating electric dipole moment of elementary. particles. J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D Gottingen On a non-cp-violating electric dipole moment of elementary particles J. Giesen, Institut fur Theoretische Physik, Bunsenstrae 9, D-3773 Gottingen (e-mail: giesentheo-phys.gwdg.de) bstract description of

More information

Unification of twistors and Ramond vectors: transmutation of superconformal boosts into local supersymmetry

Unification of twistors and Ramond vectors: transmutation of superconformal boosts into local supersymmetry Unification of twistors and Ramond vectors: transmutation of superconformal boosts into local supersymmetry arxiv:0707.3453v1 [hep-th] 23 Jul 2007 A.A. Zheltukhin Kharkov Institute of Physics and Technology,

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

Lorentzian elasticity arxiv:

Lorentzian elasticity arxiv: Lorentzian elasticity arxiv:1805.01303 Matteo Capoferri and Dmitri Vassiliev University College London 14 July 2018 Abstract formulation of elasticity theory Consider a manifold M equipped with non-degenerate

More information

New first-order formulation for the Einstein equations

New first-order formulation for the Einstein equations PHYSICAL REVIEW D 68, 06403 2003 New first-order formulation for the Einstein equations Alexander M. Alekseenko* School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA Douglas

More information

Dynamic and Thermodynamic Stability of Black Holes and Black Branes

Dynamic and Thermodynamic Stability of Black Holes and Black Branes Dynamic and Thermodynamic Stability of Black Holes and Black Branes Robert M. Wald with Stefan Hollands arxiv:1201.0463 Commun. Math. Phys. 321, 629 (2013) (see also K. Prabhu and R.M. Wald, Commun. Math.

More information

Free totally (anti)symmetric massless fermionic fields in d-dimensional anti-de Sitter space

Free totally (anti)symmetric massless fermionic fields in d-dimensional anti-de Sitter space Free totally (anti)symmetric massless fermionic fields in d-dimensional anti-de Sitter space R. R. Metsaev Department of Theoretical Physics, P. N. Lebedev Physical Institute, Leninsky prospect 53, 11794,

More information

Einstein-aether waves

Einstein-aether waves Einstein-aether waves T. Jacobson* Insitut d Astrophysique de Paris, 98 bis Bvd. Arago, 75014 Paris, France D. Mattingly Department of Physics, University of California Davis, Davis, California 95616,

More information

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Hisaaki Shinkai 1, and Takashi Torii 2, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

More information

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001 Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/0111045v1 15 Nov 2001 S. Q. Wu and X. Cai Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079, P.R. China

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Wound String Scattering in NCOS Theory

Wound String Scattering in NCOS Theory UUITP-09/00 hep-th/0005 Wound String Scattering in NCOS Theory Fredric Kristiansson and Peter Rajan Institutionen för Teoretisk Fysik, Box 803, SE-75 08 Uppsala, Sweden fredric.kristiansson@teorfys.uu.se,

More information

Yadernaya Fizika, 56 (1993) Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993)

Yadernaya Fizika, 56 (1993) Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993) Start of body part published in Russian in: Yadernaya Fizika, 56 (1993) 45-5 translated in English in: Soviet Journal of Nuclear Physics, vol. 56, No 1, (1993) A METHOD FOR CALCULATING THE HEAT KERNEL

More information

arxiv:hep-th/ v2 13 Sep 2001

arxiv:hep-th/ v2 13 Sep 2001 Compactification of gauge theories and the gauge invariance of massive modes. Amorim a and J. Barcelos-Neto b Instituto de Física Universidade Federal do io de Janeiro J 21945-97 - Caixa Postal 68528 -

More information

String Theory and The Velo-Zwanziger Problem

String Theory and The Velo-Zwanziger Problem String Theory and The Velo-Zwanziger Problem Rakibur Rahman Scuola Normale Superiore & INFN, Pisa February 10, 2011 DAMTP, University of Cambridge M. Porrati A. Sagnotti M. Porrati, RR and A. Sagnotti,

More information

A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula

A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula Arshad Momen and Tapobrata Sarkar the Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11 4014 Trieste, Italy

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

Introduction to String Theory ETH Zurich, HS11. 6 Open Strings and D-Branes

Introduction to String Theory ETH Zurich, HS11. 6 Open Strings and D-Branes Introduction to String Theory ETH Zurich, HS11 Chapter 6 Prof. N. Beisert 6 Open Strings and D-Branes So far we have discussed closed strings. The alternative choice is open boundary conditions. 6.1 Neumann

More information

arxiv:hep-th/ v1 10 May 1997

arxiv:hep-th/ v1 10 May 1997 Exact solutions in two dimensional string cosmology with back reaction Sukanta Bose and Sayan Kar Inter University Centre for Astronomy and Astrophysics, arxiv:hep-th/9705061v1 10 May 1997 Post Bag 4,

More information

En búsqueda del mundo cuántico de la gravedad

En búsqueda del mundo cuántico de la gravedad En búsqueda del mundo cuántico de la gravedad Escuela de Verano 2015 Gustavo Niz Grupo de Gravitación y Física Matemática Grupo de Gravitación y Física Matemática Hoy y Viernes Mayor información Quantum

More information

Talk at the International Workshop RAQIS 12. Angers, France September 2012

Talk at the International Workshop RAQIS 12. Angers, France September 2012 Talk at the International Workshop RAQIS 12 Angers, France 10-14 September 2012 Group-Theoretical Classification of BPS and Possibly Protected States in D=4 Conformal Supersymmetry V.K. Dobrev Nucl. Phys.

More information

Tutorial: Statistical distance and Fisher information

Tutorial: Statistical distance and Fisher information Tutorial: Statistical distance and Fisher information Pieter Kok Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH, UK Statistical distance We wish to construct a space of probability

More information

Holographic Wilsonian Renormalization Group

Holographic Wilsonian Renormalization Group Holographic Wilsonian Renormalization Group JiYoung Kim May 0, 207 Abstract Strongly coupled systems are difficult to study because the perturbation of the systems does not work with strong couplings.

More information

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

Gravity, Lorentz violation, and the standard model

Gravity, Lorentz violation, and the standard model PHYSICAL REVIEW D 69, 105009 2004 Gravity, Lorentz violation, and the standard model V. Alan Kostelecký Physics Department, Indiana University, Bloomington, Indiana 47405, USA Received 8 January 2004;

More information

arxiv:gr-qc/ v1 11 Oct 1999

arxiv:gr-qc/ v1 11 Oct 1999 NIKHEF/99-026 Killing-Yano tensors, non-standard supersymmetries and an index theorem J.W. van Holten arxiv:gr-qc/9910035 v1 11 Oct 1999 Theoretical Physics Group, NIKHEF P.O. Box 41882, 1009 DB Amsterdam

More information

FromBigCrunchToBigBang IsItPossible? Nathan Seiberg School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540, USA.

FromBigCrunchToBigBang IsItPossible? Nathan Seiberg School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540, USA. hep-th/0201039 FromBigCrunchToBigBang IsItPossible? Nathan Seiberg School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540, USA seiberg@ias.edu ABSTRACT We discuss the possibility of

More information

Holography for 3D Einstein gravity. with a conformal scalar field

Holography for 3D Einstein gravity. with a conformal scalar field Holography for 3D Einstein gravity with a conformal scalar field Farhang Loran Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran. Abstract: We review AdS 3 /CFT 2 correspondence

More information

arxiv: v1 [gr-qc] 1 Mar 2011

arxiv: v1 [gr-qc] 1 Mar 2011 Dynamics of stringy congruence in early universe Yong Seung Cho Department of Mathematics, Ewha Womans University, Seoul 2-75 Korea Soon-Tae Hong Department of Science Education and Research Institute

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

arxiv:gr-qc/ v2 9 Feb 2006

arxiv:gr-qc/ v2 9 Feb 2006 Gravitational field of charged gyratons arxiv:gr-qc/0512124 v2 9 Feb 2006 Valeri P. Frolov 1 and Andrei Zelnikov 1,2 1 Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada, T6G

More information

Chapter 2: Deriving AdS/CFT

Chapter 2: Deriving AdS/CFT Chapter 8.8/8.87 Holographic Duality Fall 04 Chapter : Deriving AdS/CFT MIT OpenCourseWare Lecture Notes Hong Liu, Fall 04 Lecture 0 In this chapter, we will focus on:. The spectrum of closed and open

More information

Chapter 3: Duality Toolbox

Chapter 3: Duality Toolbox 3.: GENEAL ASPECTS 3..: I/UV CONNECTION Chapter 3: Duality Toolbox MIT OpenCourseWare Lecture Notes Hong Liu, Fall 04 Lecture 8 As seen before, equipped with holographic principle, we can deduce N = 4

More information

Conformal factor dynamics in the 1=N. expansion. E. Elizalde. Department ofphysics, Faculty of Science, Hiroshima University. and. S.D.

Conformal factor dynamics in the 1=N. expansion. E. Elizalde. Department ofphysics, Faculty of Science, Hiroshima University. and. S.D. Conformal factor dynamics in the =N expansion E. Elizalde Department ofphysics, Faculty of Science, Hiroshima University Higashi-Hiroshima 74, Japan and S.D. Odintsov Department ECM, Faculty ofphysics,

More information

Twistors and Conformal Higher-Spin. Theory. Tristan Mc Loughlin Trinity College Dublin

Twistors and Conformal Higher-Spin. Theory. Tristan Mc Loughlin Trinity College Dublin Twistors and Conformal Higher-Spin Tristan Mc Loughlin Trinity College Dublin Theory Based on work with Philipp Hähnel & Tim Adamo 1604.08209, 1611.06200. Given the deep connections between twistors, the

More information

Wilson Lines and Classical Solutions in Cubic Open String Field Theory

Wilson Lines and Classical Solutions in Cubic Open String Field Theory 863 Progress of Theoretical Physics, Vol. 16, No. 4, October 1 Wilson Lines and Classical Solutions in Cubic Open String Field Theory Tomohiko Takahashi ) and Seriko Tanimoto ) Department of Physics, Nara

More information