Factor analysis. George Balabanis

Size: px
Start display at page:

Download "Factor analysis. George Balabanis"

Transcription

1 Factor analysis George Balabanis

2 Key Concepts and Terms Deviation. A deviation is a value minus its mean: x - mean x Variance is a measure of how spread out a distribution is. It is computed as the average squared deviation of each number from its mean. Standard Deviation is the square root of the variance. Covariance is a measure of how much the deviations of two variables match. The equation is: cov(x,y) = SUM[(x - mean x )(y - mean y )]. When the match is best, high positive deviations in x will be matched with high positive deviations in y, high negatives with high negatives, and so on. Such a best-case match-up will result in the highest possible sum in the formula above. Standardization is the process of making variables comparable in magnitude and dispersion: one subtracts the mean from each variable and divides by its standard deviation, giving all variables a mean of 0 and a standard deviation of 1. Correlation is the covariance of standardized variables - that is, of variables after you make them comparable by subtracting the mean and dividing by the standard deviation.

3 Key Concepts and Terms Pearson's r: This is the usual measure of correlation, sometimes called product-moment correlation. Pearson's r is a measure of association which varies from -1 to +1, with 0 indicating no relationship (random pairing of values) and 1 indicating perfect relationship, taking the form, "The more the x, the more the y, and vice versa." A value of - 1 is a perfect negative relationship, taking the form "The more the x, the less the y, and vice versa Coefficient of determination, r 2 : The coefficient of determination is the square of the Pearsonian correlation coefficient. It represents the percent of the variance in the dependent variable explained by the independent.

4 Factor analysis Exploratory factor analysis (EFA) seeks to uncover the underlying structure of a relatively large set of variables. The researcher's à priori assumption is that any indicator may be associated with any factor. There is no prior theory and one uses factor loadings to feel the factor structure of the data. Confirmatory factor analysis (CFA) seeks to determine if the number of factors and the loadings of measured (indicator) variables on them conform to what is expected on the basis of pre-established theory.

5 Exploratory Factor Analysis A book manuscript by Ledyard Tucker and Robert MacCallum

6 Factor analysis Principal Components Analysis (PCA) is generally used when the research purpose is data reduction (to reduce the information in many measured variables into a smaller set of components). Factor analysis is generally used when the research purpose is to identify latent variables which contribute to the common variance of the set of measured variables, excluding variable-specific (unique) variance.

7 Uses of factor analysis To reduce a large number of variables to a smaller number of factors for modelling purposes, To select a subset of variables from a larger set, (based on which original variables have the highest correlations with the principal component factors). To create a set of factors to be treated as uncorrelated variables as one approach to handling multicollinearity in such procedures as multiple regression To validate a scale or index by demonstrating that its constituent items load on the same factor, and to drop proposed scale items which cross-load on more than one factor. To establish that multiple tests measure the same factor, thereby giving justification for administering fewer tests. To identify clusters of cases and/or outliers. To determine network groups by determining which sets of people cluster together (using Q-mode factor analysis)

8 sampling adequacy Measured by the Kaiser-Meyer-Olkin (KMO) statistics, sampling adequacy predicts if data are likely to factor well, based on correlation and partial correlation. In the old days of manual factor analysis, this was extremely useful. KMO can still be used, however, to assess which variables to drop from the model because they are too multicollinear. There is a KMO statistic for each individual variable, and their sum is the KMO overall statistic. KMO overall should be.60 or higher to proceed with factor analysis. If it is not, drop the indicator variables with the lowest individual KMO statistic values, until KMO overall rises above.60.

9 Bartlett's test of sphericity Is an indicator of the strength of the relationship among variables Bartlett's test of sphericity is used to test the null hypothesis that the variables in the population correlation matrix are uncorrelated. It needs to be statistically significant (<0.05)

10 loadings Factor loadings: The factor loadings, also called component loadings in PCA, are the correlation coefficients between the variables (rows) and factors (columns). the squared factor loading is the percent of variance in that variable explained by the factor.

11 Communality, h 2, is the squared multiple correlation for the variable using the factors as predictors. The communality measures the percent of variance in a given variable explained by all the factors jointly and may be interpreted as the reliability of the indicator When an indicator variable has a low communality, the factor model is not working well for that indicator and possibly it should be removed from the model If the communality exceeds 1.0, there is a spurious solution, which may reflect too small a sample or the researcher has too many or too few factors.

12 Eigenvalues: Also called characteristic roots A factor's eigenvalue is the sum of its squared factor loadings for all the variables. eigenvalues measure the amount of variation in the total sample accounted for by each factor. eigenvalues associated with the unrotated and rotated solution will differ, though their total will be the same

13 Criteria for determining the number of factors Kaiser criterion: drop all components with eigenvalues under 1.0. Scree plot: drop all further components after the one eigenvalues start to elbow. Variance explained criteria: keeping enough factors to account for 90% (sometimes 80%) of the variation. Joliffe criterion: crop all components with eigenvalues under.7. Comprehensibility.

14 Rotation Methods. Rotation serves to make the output more understandable and is usually necessary to facilitate the interpretation of factors

15 Rotations No rotation The original, unrotated principal components solution maximizes the sum of squared factor loadings, efficiently creating a set of factors which explain as much of the variance in the original variables as possible. Varimax rotation is an orthogonal rotation of the factor axes to maximize the variance of the squared loadings of a factor (column) on all the variables (rows) in a factor matrix, which has the effect of differentiating the original variables by extracted factor. Quartimax rotation is an orthogonal alternative which minimizes the number of factors needed to explain each variable. Equimax rotation is a compromise between Varimax and Quartimax criteria. Direct oblimin rotation is the standard method when one wishes a nonorthogonal solution -- that is, one in which the factors are allowed to be correlated.. Promax rotation is an alternative non-orthogonal rotation method which is computationally faster than the direct oblimin method and therefore is sometimes used for very large datasets.

16 Varimax (orthogonal) rotation

17 Oblique rotation

18 How high does a factor loading have to be to consider that variable as a defining part of that factor minimum cut-off of.3 or.35. Norman and Streiner (1994: 139) formula for minimum loadings when the sample size, N, is 100 or more: Min FL = 5.152/[SQRT(N-2)]. loadings are "weak" if less than.4, "strong" if more than.6, and otherwise "moderate." Norman, G. R., and D. L. Streiner (1994). Biostatistics: The bare essentials. St. Louis, MO: Mosby.

19 How many cases do I need to do factor analysis? no scientific answer to this question, onlyarbitrary "rules of thumb," Rule of 10. There should be at least 10 cases for each item in the instrument being used. STV ratio. The subjects-to-variables ratio should be no lower than 5 (Bryant and Yarnold, 1995) Rule of 100: The number of subjects should be the larger of 5 times the number of variables, or 100. Even more subjects are needed when communalities are low and/or few variables load on each factor. (Hatcher, 1994) Rule of 150: Hutcheson and Sofroniou (1999) recommends at least cases, more toward the 150 end when there are a few highly correlated variables, as would be the case when collapsing highly multicollinear variables. Rule of 200. There should be at least 200 cases, regardless of STV (Gorsuch, 1983) Significance rule. There should be 51 more cases than the number of variables, to support chi-square testing (Lawley and Maxwell, 1971)

20 Confirmatory factor analysis (CFA) CFA seeks to determine if the number of factors and the loadings of measured (indicator) variables on them conform to what is expected on the basis of preestablished theory.

21 terminology Indicators are observed variables, sometimes called manifest variables or reference variables, such as items (questions) in a survey instrument Latent variables are the unobserved variables or constructs or factors which are measured by their respective indicators

22

23 terminology The measurement model. The measurement model is that part (possibly all like the CFA) of a SEM model which deals with the latent variables and their indicators. The null model. The measurement model is frequently used as the "null model," differences from which must be significant if a proposed structural model (the one with straight arrows connecting some latent variables) is to be investigated further. In the null model, the covariances in the covariance matrix for the latent variables are all assumed to be zero.

24

25 terminology Metric: In SEM, each unobserved latent variable must be assigned explicitly a metric, which is a measurement range. This is normally done by constraining one of the paths from the latent variable to one of its indicator (reference) variables, as by assigning the value of 1.0 to this path or by setting the factor variances to 1

26 terminology Error and disturbance terms. An error term refers to the measurement error factor associated with a given indicator. Measurement error terms are not to be confused with residual error terms, also called disturbance terms, which reflect the unexplained variance in the latent endogenous variable(s) due to all unmeasured causes

27

28 terminology Correlated error terms refers to situations in which knowing the residual of one indicator helps in knowing the residual associated with another indicator. Loadings: The latent variables in SEM are similar to factors in factor analysis, and the indicator variables likewise have loadings on their respective latent variables

29 Loadings are used to assess the reliability of the latent variables Construct reliability,(at least.70) reliability = [(SUM(sl i )) 2 ]/[(SUM(sli)) 2 + SUM(e i ))]. where sl i = standardized loadings e i =error term or Error= 1 (square of the indicator's standardized loading). Variance extracted (at least.50). Variance extracted = [(SUM(sl i2 )]/[(SUM(sl i2 ) + SUM(e i ))].

30 Types of estimation of coefficients in CFA Maximum likelihood estimation (MLE) (the most common method). MLE makes estimates based on maximizing the probability (likelihood) that the observed covariances are drawn from a population assumed to be the same as that reflected in the coefficient estimates. That is, MLE picks estimates which have the greatest chance of reproducing the observed data. It needs large samples; indicator variables with multivariate normal distribution; valid specification of the model; and continuous indicator variables

31 Other estimation methods GLS (generalized least squares) [2nd most popular method]. It minimizes the sum of the differences between observed and predicted covariances rather than between estimates and scores It needs very large samples (n>2500) even for non-normal data. Ordinary least squares (OLS). It makes estimates based on minimizing the sum of squared deviations of the linear estimates from the observed scores Weighted least squares (WLS) requires very large sample sizes (>2,000 in one simulation study) for dependable results Unweighted least squares (ULS) also focuses on the difference between observed and predicted covariances, but does not adjust for differences in the metric (scale) used to measure different variables, whereas GLS is scale-invariant, and is usually preferred for this reason Asymptotically distribution-free (ADF) estimation does not assume multivariate normality

32 Goodness of fit tests Goodness of fit tests determine if the model being tested should be accepted or rejected. Kline (1998: 130) recommends at least four tests, such as chi-square; GFI, NFI, or CFI; NNFI (or TLI); and SRMR. Another list of which-to-publish lists chi-square, AGFI and RMSEA. Kline, Rex B. (1998). Principles and practice of structural equation modeling. NY: Guilford Press.

33 Goodness-of-fit tests The chi-square value should not be significant if there is a good model fit, Goodness-of-fit index, GFI (Jöreskog-Sörbom GFI): >.90 Adjusted goodness-of-fit index, AGFI: >.90 Standardized root mean square residual, standardized RMR (SRMR): The smaller the standardized RMR, the better the model fit. 0 indicates perfect fit Centrality index, CI: >.90 Comparative fit index, CFI >.90 Normed fit index, NFI, >.90 for some >.80 Non-normed fit index, NNFI or (Tucker Lewis Index, TLI) >.95 others >.90 or >.80 Root mean square error of approximation, RMSEA good if <.05 adequate if <.08

34 Increasing model fit- Modification indices (MI) MI is often used to alter models to achieve better fit, but this must be done carefully and with theoretical justification. In MI, improvement in fit is measured by a reduction in chi-square (recall a finding of chi-square significance corresponds to rejecting the model as one which fits the data).

35 Sample size In the literature, sample sizes commonly run for models with indicators. median sample size (in 72 SEM studies) was 198. Sample size should be at least 50 more than 8 times the number of variables in the model. Stevens (1996), is to have at least 15 cases per measured variable or indicator. Bentler and Chou (1987) recommend at least 5 cases per parameter estimate (including error terms as well as path coefficients). Bentler, P. M. and C. P. Chou (1987). Practical issues in structural modelling. Sociological Methods and Research. 16(1): Stevens, J. (1996). Applied multivariate statistics for the social sciences.

VAR2 VAR3 VAR4 VAR5. Or, in terms of basic measurement theory, we could model it as:

VAR2 VAR3 VAR4 VAR5. Or, in terms of basic measurement theory, we could model it as: 1 Neuendorf Factor Analysis Assumptions: 1. Metric (interval/ratio) data 2. Linearity (in the relationships among the variables) -Factors are linear constructions of the set of variables (see #8 under

More information

Applied Multivariate Analysis

Applied Multivariate Analysis Department of Mathematics and Statistics, University of Vaasa, Finland Spring 2017 Dimension reduction Exploratory (EFA) Background While the motivation in PCA is to replace the original (correlated) variables

More information

Or, in terms of basic measurement theory, we could model it as:

Or, in terms of basic measurement theory, we could model it as: 1 Neuendorf Factor Analysis Assumptions: 1. Metric (interval/ratio) data 2. Linearity (in relationships among the variables--factors are linear constructions of the set of variables; the critical source

More information

Introduction to Structural Equation Modeling Dominique Zephyr Applied Statistics Lab

Introduction to Structural Equation Modeling Dominique Zephyr Applied Statistics Lab Applied Statistics Lab Introduction to Structural Equation Modeling Dominique Zephyr Applied Statistics Lab SEM Model 3.64 7.32 Education 2.6 Income 2.1.6.83 Charac. of Individuals 1 5.2e-06 -.62 2.62

More information

Dimensionality Reduction Techniques (DRT)

Dimensionality Reduction Techniques (DRT) Dimensionality Reduction Techniques (DRT) Introduction: Sometimes we have lot of variables in the data for analysis which create multidimensional matrix. To simplify calculation and to get appropriate,

More information

Multivariate Fundamentals: Rotation. Exploratory Factor Analysis

Multivariate Fundamentals: Rotation. Exploratory Factor Analysis Multivariate Fundamentals: Rotation Exploratory Factor Analysis PCA Analysis A Review Precipitation Temperature Ecosystems PCA Analysis with Spatial Data Proportion of variance explained Comp.1 + Comp.2

More information

STAT 730 Chapter 9: Factor analysis

STAT 730 Chapter 9: Factor analysis STAT 730 Chapter 9: Factor analysis Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Data Analysis 1 / 15 Basic idea Factor analysis attempts to explain the

More information

LECTURE 4 PRINCIPAL COMPONENTS ANALYSIS / EXPLORATORY FACTOR ANALYSIS

LECTURE 4 PRINCIPAL COMPONENTS ANALYSIS / EXPLORATORY FACTOR ANALYSIS LECTURE 4 PRINCIPAL COMPONENTS ANALYSIS / EXPLORATORY FACTOR ANALYSIS NOTES FROM PRE- LECTURE RECORDING ON PCA PCA and EFA have similar goals. They are substantially different in important ways. The goal

More information

Principal Component Analysis & Factor Analysis. Psych 818 DeShon

Principal Component Analysis & Factor Analysis. Psych 818 DeShon Principal Component Analysis & Factor Analysis Psych 818 DeShon Purpose Both are used to reduce the dimensionality of correlated measurements Can be used in a purely exploratory fashion to investigate

More information

Short Answer Questions: Answer on your separate blank paper. Points are given in parentheses.

Short Answer Questions: Answer on your separate blank paper. Points are given in parentheses. ISQS 6348 Final exam solutions. Name: Open book and notes, but no electronic devices. Answer short answer questions on separate blank paper. Answer multiple choice on this exam sheet. Put your name on

More information

The European Commission s science and knowledge service. Joint Research Centre

The European Commission s science and knowledge service. Joint Research Centre The European Commission s science and knowledge service Joint Research Centre Step 7: Statistical coherence (II) Principal Component Analysis and Reliability Analysis Hedvig Norlén COIN 2018-16th JRC Annual

More information

Statistical Analysis of Factors that Influence Voter Response Using Factor Analysis and Principal Component Analysis

Statistical Analysis of Factors that Influence Voter Response Using Factor Analysis and Principal Component Analysis Statistical Analysis of Factors that Influence Voter Response Using Factor Analysis and Principal Component Analysis 1 Violet Omuchira, John Kihoro, 3 Jeremiah Kiingati Jomo Kenyatta University of Agriculture

More information

Confirmatory Factor Analysis. Psych 818 DeShon

Confirmatory Factor Analysis. Psych 818 DeShon Confirmatory Factor Analysis Psych 818 DeShon Purpose Takes factor analysis a few steps further. Impose theoretically interesting constraints on the model and examine the resulting fit of the model with

More information

Introduction to Confirmatory Factor Analysis

Introduction to Confirmatory Factor Analysis Introduction to Confirmatory Factor Analysis Multivariate Methods in Education ERSH 8350 Lecture #12 November 16, 2011 ERSH 8350: Lecture 12 Today s Class An Introduction to: Confirmatory Factor Analysis

More information

Exploratory Factor Analysis and Principal Component Analysis

Exploratory Factor Analysis and Principal Component Analysis Exploratory Factor Analysis and Principal Component Analysis Today s Topics: What are EFA and PCA for? Planning a factor analytic study Analysis steps: Extraction methods How many factors Rotation and

More information

2/26/2017. This is similar to canonical correlation in some ways. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

2/26/2017. This is similar to canonical correlation in some ways. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 What is factor analysis? What are factors? Representing factors Graphs and equations Extracting factors Methods and criteria Interpreting

More information

EVALUATION OF STRUCTURAL EQUATION MODELS

EVALUATION OF STRUCTURAL EQUATION MODELS 1 EVALUATION OF STRUCTURAL EQUATION MODELS I. Issues related to the initial specification of theoretical models of interest 1. Model specification: a. Measurement model: (i) EFA vs. CFA (ii) reflective

More information

Exploratory Factor Analysis and Principal Component Analysis

Exploratory Factor Analysis and Principal Component Analysis Exploratory Factor Analysis and Principal Component Analysis Today s Topics: What are EFA and PCA for? Planning a factor analytic study Analysis steps: Extraction methods How many factors Rotation and

More information

Dimensionality Assessment: Additional Methods

Dimensionality Assessment: Additional Methods Dimensionality Assessment: Additional Methods In Chapter 3 we use a nonlinear factor analytic model for assessing dimensionality. In this appendix two additional approaches are presented. The first strategy

More information

Factor Analysis: An Introduction. What is Factor Analysis? 100+ years of Factor Analysis FACTOR ANALYSIS AN INTRODUCTION NILAM RAM

Factor Analysis: An Introduction. What is Factor Analysis? 100+ years of Factor Analysis FACTOR ANALYSIS AN INTRODUCTION NILAM RAM NILAM RAM 2018 PSYCHOLOGY R BOOTCAMP PENNSYLVANIA STATE UNIVERSITY AUGUST 16, 2018 FACTOR ANALYSIS https://psu-psychology.github.io/r-bootcamp-2018/index.html WITH ADDITIONAL MATERIALS AT https://quantdev.ssri.psu.edu/tutorials

More information

Introduction to Factor Analysis

Introduction to Factor Analysis to Factor Analysis Lecture 10 August 2, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #10-8/3/2011 Slide 1 of 55 Today s Lecture Factor Analysis Today s Lecture Exploratory

More information

Multivariate and Multivariable Regression. Stella Babalola Johns Hopkins University

Multivariate and Multivariable Regression. Stella Babalola Johns Hopkins University Multivariate and Multivariable Regression Stella Babalola Johns Hopkins University Session Objectives At the end of the session, participants will be able to: Explain the difference between multivariable

More information

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

2/26/2017. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 What is SEM? When should we use SEM? What can SEM tell us? SEM Terminology and Jargon Technical Issues Types of SEM Models Limitations

More information

STRUCTURAL EQUATION MODELING. Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013

STRUCTURAL EQUATION MODELING. Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013 STRUCTURAL EQUATION MODELING Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013 Introduction: Path analysis Path Analysis is used to estimate a system of equations in which all of the

More information

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables /4/04 Structural Equation Modeling and Confirmatory Factor Analysis Advanced Statistics for Researchers Session 3 Dr. Chris Rakes Website: http://csrakes.yolasite.com Email: Rakes@umbc.edu Twitter: @RakesChris

More information

Exploratory Factor Analysis and Canonical Correlation

Exploratory Factor Analysis and Canonical Correlation Exploratory Factor Analysis and Canonical Correlation 3 Dec 2010 CPSY 501 Dr. Sean Ho Trinity Western University Please download: SAQ.sav Outline for today Factor analysis Latent variables Correlation

More information

Introduction to Structural Equation Modeling

Introduction to Structural Equation Modeling Introduction to Structural Equation Modeling Notes Prepared by: Lisa Lix, PhD Manitoba Centre for Health Policy Topics Section I: Introduction Section II: Review of Statistical Concepts and Regression

More information

1 A factor can be considered to be an underlying latent variable: (a) on which people differ. (b) that is explained by unknown variables

1 A factor can be considered to be an underlying latent variable: (a) on which people differ. (b) that is explained by unknown variables 1 A factor can be considered to be an underlying latent variable: (a) on which people differ (b) that is explained by unknown variables (c) that cannot be defined (d) that is influenced by observed variables

More information

CONFIRMATORY FACTOR ANALYSIS

CONFIRMATORY FACTOR ANALYSIS 1 CONFIRMATORY FACTOR ANALYSIS The purpose of confirmatory factor analysis (CFA) is to explain the pattern of associations among a set of observed variables in terms of a smaller number of underlying latent

More information

Chapter 3: Testing alternative models of data

Chapter 3: Testing alternative models of data Chapter 3: Testing alternative models of data William Revelle Northwestern University Prepared as part of course on latent variable analysis (Psychology 454) and as a supplement to the Short Guide to R

More information

Principles of factor analysis. Roger Watson

Principles of factor analysis. Roger Watson Principles of factor analysis Roger Watson Factor analysis Factor analysis Factor analysis Factor analysis is a multivariate statistical method for reducing large numbers of variables to fewer underlying

More information

An Introduction to Path Analysis

An Introduction to Path Analysis An Introduction to Path Analysis PRE 905: Multivariate Analysis Lecture 10: April 15, 2014 PRE 905: Lecture 10 Path Analysis Today s Lecture Path analysis starting with multivariate regression then arriving

More information

Psychology 454: Latent Variable Modeling How do you know if a model works?

Psychology 454: Latent Variable Modeling How do you know if a model works? Psychology 454: Latent Variable Modeling How do you know if a model works? William Revelle Department of Psychology Northwestern University Evanston, Illinois USA November, 2012 1 / 18 Outline 1 Goodness

More information

Introduction to Factor Analysis

Introduction to Factor Analysis to Factor Analysis Lecture 11 November 2, 2005 Multivariate Analysis Lecture #11-11/2/2005 Slide 1 of 58 Today s Lecture Factor Analysis. Today s Lecture Exploratory factor analysis (EFA). Confirmatory

More information

Evaluation of structural equation models. Hans Baumgartner Penn State University

Evaluation of structural equation models. Hans Baumgartner Penn State University Evaluation of structural equation models Hans Baumgartner Penn State University Issues related to the initial specification of theoretical models of interest Model specification: Measurement model: EFA

More information

An Introduction to Mplus and Path Analysis

An Introduction to Mplus and Path Analysis An Introduction to Mplus and Path Analysis PSYC 943: Fundamentals of Multivariate Modeling Lecture 10: October 30, 2013 PSYC 943: Lecture 10 Today s Lecture Path analysis starting with multivariate regression

More information

Manual Of The Program FACTOR. v Windows XP/Vista/W7/W8. Dr. Urbano Lorezo-Seva & Dr. Pere Joan Ferrando

Manual Of The Program FACTOR. v Windows XP/Vista/W7/W8. Dr. Urbano Lorezo-Seva & Dr. Pere Joan Ferrando Manual Of The Program FACTOR v.9.20 Windows XP/Vista/W7/W8 Dr. Urbano Lorezo-Seva & Dr. Pere Joan Ferrando urbano.lorenzo@urv.cat perejoan.ferrando@urv.cat Departament de Psicologia Universitat Rovira

More information

Principal Components. Summary. Sample StatFolio: pca.sgp

Principal Components. Summary. Sample StatFolio: pca.sgp Principal Components Summary... 1 Statistical Model... 4 Analysis Summary... 5 Analysis Options... 7 Scree Plot... 8 Component Weights... 9 D and 3D Component Plots... 10 Data Table... 11 D and 3D Component

More information

Factor Analysis. Qian-Li Xue

Factor Analysis. Qian-Li Xue Factor Analysis Qian-Li Xue Biostatistics Program Harvard Catalyst The Harvard Clinical & Translational Science Center Short course, October 7, 06 Well-used latent variable models Latent variable scale

More information

Factor Analysis. Summary. Sample StatFolio: factor analysis.sgp

Factor Analysis. Summary. Sample StatFolio: factor analysis.sgp Factor Analysis Summary... 1 Data Input... 3 Statistical Model... 4 Analysis Summary... 5 Analysis Options... 7 Scree Plot... 9 Extraction Statistics... 10 Rotation Statistics... 11 D and 3D Scatterplots...

More information

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM)

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM) SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Introduction to Structural Equation Modeling (SEM) SEM is a family of statistical techniques which builds upon multiple regression,

More information

Inference using structural equations with latent variables

Inference using structural equations with latent variables This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

FACTOR ANALYSIS AND MULTIDIMENSIONAL SCALING

FACTOR ANALYSIS AND MULTIDIMENSIONAL SCALING FACTOR ANALYSIS AND MULTIDIMENSIONAL SCALING Vishwanath Mantha Department for Electrical and Computer Engineering Mississippi State University, Mississippi State, MS 39762 mantha@isip.msstate.edu ABSTRACT

More information

sempower Manual Morten Moshagen

sempower Manual Morten Moshagen sempower Manual Morten Moshagen 2018-03-22 Power Analysis for Structural Equation Models Contact: morten.moshagen@uni-ulm.de Introduction sempower provides a collection of functions to perform power analyses

More information

Intermediate Social Statistics

Intermediate Social Statistics Intermediate Social Statistics Lecture 5. Factor Analysis Tom A.B. Snijders University of Oxford January, 2008 c Tom A.B. Snijders (University of Oxford) Intermediate Social Statistics January, 2008 1

More information

Evaluating the Sensitivity of Goodness-of-Fit Indices to Data Perturbation: An Integrated MC-SGR Approach

Evaluating the Sensitivity of Goodness-of-Fit Indices to Data Perturbation: An Integrated MC-SGR Approach Evaluating the Sensitivity of Goodness-of-Fit Indices to Data Perturbation: An Integrated MC-SGR Approach Massimiliano Pastore 1 and Luigi Lombardi 2 1 Department of Psychology University of Cagliari Via

More information

Compiled by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Developmentand Continuing Education Faculty of Educational Studies

Compiled by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Developmentand Continuing Education Faculty of Educational Studies Compiled by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Developmentand Continuing Education Faculty of Educational Studies Universiti Putra Malaysia Serdang Structural Equation Modeling

More information

AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE

AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE AN INTRODUCTION TO STRUCTURAL EQUATION MODELING WITH AN APPLICATION TO THE BLOGOSPHERE Dr. James (Jim) D. Doyle March 19, 2014 Structural equation modeling or SEM 1971-1980: 27 1981-1990: 118 1991-2000:

More information

Factor Analysis & Structural Equation Models. CS185 Human Computer Interaction

Factor Analysis & Structural Equation Models. CS185 Human Computer Interaction Factor Analysis & Structural Equation Models CS185 Human Computer Interaction MoodPlay Recommender (Andjelkovic et al, UMAP 2016) Online system available here: http://ugallery.pythonanywhere.com/ 2 3 Structural

More information

Chapter 8. Models with Structural and Measurement Components. Overview. Characteristics of SR models. Analysis of SR models. Estimation of SR models

Chapter 8. Models with Structural and Measurement Components. Overview. Characteristics of SR models. Analysis of SR models. Estimation of SR models Chapter 8 Models with Structural and Measurement Components Good people are good because they've come to wisdom through failure. Overview William Saroyan Characteristics of SR models Estimation of SR models

More information

Chapter 5. Introduction to Path Analysis. Overview. Correlation and causation. Specification of path models. Types of path models

Chapter 5. Introduction to Path Analysis. Overview. Correlation and causation. Specification of path models. Types of path models Chapter 5 Introduction to Path Analysis Put simply, the basic dilemma in all sciences is that of how much to oversimplify reality. Overview H. M. Blalock Correlation and causation Specification of path

More information

FIT CRITERIA PERFORMANCE AND PARAMETER ESTIMATE BIAS IN LATENT GROWTH MODELS WITH SMALL SAMPLES

FIT CRITERIA PERFORMANCE AND PARAMETER ESTIMATE BIAS IN LATENT GROWTH MODELS WITH SMALL SAMPLES FIT CRITERIA PERFORMANCE AND PARAMETER ESTIMATE BIAS IN LATENT GROWTH MODELS WITH SMALL SAMPLES Daniel M. McNeish Measurement, Statistics, and Evaluation University of Maryland, College Park Background

More information

Arturo, GARCÍA-SANTILLÁN. 1. Introduction

Arturo, GARCÍA-SANTILLÁN. 1. Introduction EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 10, No. 2, 2017, 167-198 ISSN 1307-5543 www.ejpam.com Published by New York Business Global Measuring set latent variables that explain attitude toward

More information

Factor Analysis. -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD

Factor Analysis. -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD Factor Analysis -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 From PCA to factor analysis Remember: PCA tries to estimate a transformation of the data such that: 1. The maximum amount

More information

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data. Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

More information

Chapter 4: Factor Analysis

Chapter 4: Factor Analysis Chapter 4: Factor Analysis In many studies, we may not be able to measure directly the variables of interest. We can merely collect data on other variables which may be related to the variables of interest.

More information

What is Structural Equation Modelling?

What is Structural Equation Modelling? methods@manchester What is Structural Equation Modelling? Nick Shryane Institute for Social Change University of Manchester 1 Topics Where SEM fits in the families of statistical models Causality SEM is

More information

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9 The Common Factor Model Measurement Methods Lecture 15 Chapter 9 Today s Class Common Factor Model Multiple factors with a single test ML Estimation Methods New fit indices because of ML Estimation method

More information

Introduction to Confirmatory Factor Analysis

Introduction to Confirmatory Factor Analysis Introduction to Confirmatory Factor Analysis In Exploratory FA, the analyst has no strong prior notion of the structure of the factor solution the goal is to infer factor structure from the patterns of

More information

TAMS39 Lecture 10 Principal Component Analysis Factor Analysis

TAMS39 Lecture 10 Principal Component Analysis Factor Analysis TAMS39 Lecture 10 Principal Component Analysis Factor Analysis Martin Singull Department of Mathematics Mathematical Statistics Linköping University, Sweden Content - Lecture Principal component analysis

More information

Multiple Group CFA Invariance Example (data from Brown Chapter 7) using MLR Mplus 7.4: Major Depression Criteria across Men and Women (n = 345 each)

Multiple Group CFA Invariance Example (data from Brown Chapter 7) using MLR Mplus 7.4: Major Depression Criteria across Men and Women (n = 345 each) Multiple Group CFA Invariance Example (data from Brown Chapter 7) using MLR Mplus 7.4: Major Depression Criteria across Men and Women (n = 345 each) 9 items rated by clinicians on a scale of 0 to 8 (0

More information

Psychology 454: Latent Variable Modeling How do you know if a model works?

Psychology 454: Latent Variable Modeling How do you know if a model works? Psychology 454: Latent Variable Modeling How do you know if a model works? William Revelle Department of Psychology Northwestern University Evanston, Illinois USA October, 2017 1 / 33 Outline Goodness

More information

6348 Final, Fall 14. Closed book, closed notes, no electronic devices. Points (out of 200) in parentheses.

6348 Final, Fall 14. Closed book, closed notes, no electronic devices. Points (out of 200) in parentheses. 6348 Final, Fall 14. Closed book, closed notes, no electronic devices. Points (out of 200) in parentheses. 0 11 1 1.(5) Give the result of the following matrix multiplication: 1 10 1 Solution: 0 1 1 2

More information

Structural Equation Modeling

Structural Equation Modeling CHAPTER 23 Structural Equation Modeling JODIE B. ULLMAN AND PETER M. BENTLER A FOUR-STAGE GENERAL PROCESS OF MODELING 663 MODEL ESTIMATION TECHNIQUES AND TEST STATISTICS 667 MODEL EVALUATION 671 MODEL

More information

E X P L O R E R. R e l e a s e A Program for Common Factor Analysis and Related Models for Data Analysis

E X P L O R E R. R e l e a s e A Program for Common Factor Analysis and Related Models for Data Analysis E X P L O R E R R e l e a s e 3. 2 A Program for Common Factor Analysis and Related Models for Data Analysis Copyright (c) 1990-2011, J. S. Fleming, PhD Date and Time : 23-Sep-2011, 13:59:56 Number of

More information

Introduction to Structural Equation Modeling with Latent Variables

Introduction to Structural Equation Modeling with Latent Variables SAS/STAT 9.2 User s Guide Introduction to Structural Equation Modeling with Latent Variables (Book Excerpt) SAS Documentation This document is an individual chapter from SAS/STAT 9.2 User s Guide. The

More information

The Role of Leader Motivating Language in Employee Absenteeism (Mayfield: 2009)

The Role of Leader Motivating Language in Employee Absenteeism (Mayfield: 2009) DATE: 12/15/2009 TIME: 5:50 Page 1 LISREL 8.80 (STUDENT EDITION) BY Karl G. J reskog & Dag S rbom This program is published exclusively by Scientific Software International, Inc. 7383 N. Lincoln Avenue,

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

DATE: 9/ L I S R E L 8.80

DATE: 9/ L I S R E L 8.80 98 LAMPIRAN 3 STRUCTURAL EQUATION MODEL ONE CONGINERIC Use of this program is subject to the terms specified in the Convention. Universal Copyright 9/2017 DATE: 9/ TIME: 20:22 Website: www.ssicentral.com

More information

SRMR in Mplus. Tihomir Asparouhov and Bengt Muthén. May 2, 2018

SRMR in Mplus. Tihomir Asparouhov and Bengt Muthén. May 2, 2018 SRMR in Mplus Tihomir Asparouhov and Bengt Muthén May 2, 2018 1 Introduction In this note we describe the Mplus implementation of the SRMR standardized root mean squared residual) fit index for the models

More information

Structural Equation Modelling

Structural Equation Modelling Slide Email: jkanglim@unimelb.edu.au Office: Room 0 Redmond Barry Building Website: http://jeromyanglim.googlepages.com/ Appointments: For appointments regarding course or with the application of statistics

More information

Model Estimation Example

Model Estimation Example Ronald H. Heck 1 EDEP 606: Multivariate Methods (S2013) April 7, 2013 Model Estimation Example As we have moved through the course this semester, we have encountered the concept of model estimation. Discussions

More information

Condition 9 and 10 Tests of Model Confirmation with SEM Techniques

Condition 9 and 10 Tests of Model Confirmation with SEM Techniques Condition 9 and 10 Tests of Model Confirmation with SEM Techniques Dr. Larry J. Williams CARMA Director Donald and Shirley Clifton Chair of Survey Science Professor of Management University of Nebraska

More information

Estimation of Curvilinear Effects in SEM. Rex B. Kline, September 2009

Estimation of Curvilinear Effects in SEM. Rex B. Kline, September 2009 Estimation of Curvilinear Effects in SEM Supplement to Principles and Practice of Structural Equation Modeling (3rd ed.) Rex B. Kline, September 009 Curvlinear Effects of Observed Variables Consider the

More information

Can Variances of Latent Variables be Scaled in Such a Way That They Correspond to Eigenvalues?

Can Variances of Latent Variables be Scaled in Such a Way That They Correspond to Eigenvalues? International Journal of Statistics and Probability; Vol. 6, No. 6; November 07 ISSN 97-703 E-ISSN 97-7040 Published by Canadian Center of Science and Education Can Variances of Latent Variables be Scaled

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

CHAPTER 4 THE COMMON FACTOR MODEL IN THE SAMPLE. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum

CHAPTER 4 THE COMMON FACTOR MODEL IN THE SAMPLE. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum CHAPTER 4 THE COMMON FACTOR MODEL IN THE SAMPLE From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum 1997 65 CHAPTER 4 THE COMMON FACTOR MODEL IN THE SAMPLE 4.0. Introduction In Chapter

More information

Introduction to Structural Equation Modeling: Issues and Practical Considerations

Introduction to Structural Equation Modeling: Issues and Practical Considerations An NCME Instructional Module on Introduction to Structural Equation Modeling: Issues and Practical Considerations Pui-Wa Lei and Qiong Wu, The Pennsylvania State University Structural equation modeling

More information

Regularized Common Factor Analysis

Regularized Common Factor Analysis New Trends in Psychometrics 1 Regularized Common Factor Analysis Sunho Jung 1 and Yoshio Takane 1 (1) Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada

More information

Retained-Components Factor Transformation: Factor Loadings and Factor Score Predictors in the Column Space of Retained Components

Retained-Components Factor Transformation: Factor Loadings and Factor Score Predictors in the Column Space of Retained Components Journal of Modern Applied Statistical Methods Volume 13 Issue 2 Article 6 11-2014 Retained-Components Factor Transformation: Factor Loadings and Factor Score Predictors in the Column Space of Retained

More information

Supplementary materials for: Exploratory Structural Equation Modeling

Supplementary materials for: Exploratory Structural Equation Modeling Supplementary materials for: Exploratory Structural Equation Modeling To appear in Hancock, G. R., & Mueller, R. O. (Eds.). (2013). Structural equation modeling: A second course (2nd ed.). Charlotte, NC:

More information

Multivariate Statistics

Multivariate Statistics Multivariate Statistics Chapter 4: Factor analysis Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Course 2017/2018 Master in Mathematical Engineering Pedro

More information

Principal Components Analysis using R Francis Huang / November 2, 2016

Principal Components Analysis using R Francis Huang / November 2, 2016 Principal Components Analysis using R Francis Huang / huangf@missouri.edu November 2, 2016 Principal components analysis (PCA) is a convenient way to reduce high dimensional data into a smaller number

More information

Logistic Regression: Regression with a Binary Dependent Variable

Logistic Regression: Regression with a Binary Dependent Variable Logistic Regression: Regression with a Binary Dependent Variable LEARNING OBJECTIVES Upon completing this chapter, you should be able to do the following: State the circumstances under which logistic regression

More information

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM Lecture 9 SEM, Statistical Modeling, AI, and Data Mining I. Terminology of SEM Related Concepts: Causal Modeling Path Analysis Structural Equation Modeling Latent variables (Factors measurable, but thru

More information

Phenotypic factor analysis

Phenotypic factor analysis 1 Phenotypic factor analysis Conor V. Dolan & Michel Nivard VU, Amsterdam Boulder Workshop - March 2018 2 Phenotypic factor analysis A statistical technique to investigate the dimensionality of correlated

More information

A Cautionary Note on the Use of LISREL s Automatic Start Values in Confirmatory Factor Analysis Studies R. L. Brown University of Wisconsin

A Cautionary Note on the Use of LISREL s Automatic Start Values in Confirmatory Factor Analysis Studies R. L. Brown University of Wisconsin A Cautionary Note on the Use of LISREL s Automatic Start Values in Confirmatory Factor Analysis Studies R. L. Brown University of Wisconsin The accuracy of parameter estimates provided by the major computer

More information

Principal Components Analysis and Exploratory Factor Analysis

Principal Components Analysis and Exploratory Factor Analysis Principal Components Analysis and Exploratory Factor Analysis PRE 905: Multivariate Analysis Lecture 12: May 6, 2014 PRE 905: PCA and EFA (with CFA) Today s Class Advanced matrix operations Principal Components

More information

Misspecification in Nonrecursive SEMs 1. Nonrecursive Latent Variable Models under Misspecification

Misspecification in Nonrecursive SEMs 1. Nonrecursive Latent Variable Models under Misspecification Misspecification in Nonrecursive SEMs 1 Nonrecursive Latent Variable Models under Misspecification Misspecification in Nonrecursive SEMs 2 Abstract A problem central to structural equation modeling is

More information

Bootstrap Confidence Intervals for Ordinary Least Squares Factor Loadings and Correlations in Exploratory Factor Analysis

Bootstrap Confidence Intervals for Ordinary Least Squares Factor Loadings and Correlations in Exploratory Factor Analysis Multivariate Behavioral Research, 45:104 134, 2010 Copyright Taylor & Francis Group, LLC ISSN: 0027-3171 print/1532-7906 online DOI: 10.1080/00273170903504836 Bootstrap Confidence Intervals for Ordinary

More information

Latent Variable Analysis

Latent Variable Analysis Latent Variable Analysis Path Analysis Recap I. Path Diagram a. Exogeneous vs. Endogeneous Variables b. Dependent vs, Independent Variables c. Recursive vs. on-recursive Models II. Structural (Regression)

More information

UCLA STAT 233 Statistical Methods in Biomedical Imaging

UCLA STAT 233 Statistical Methods in Biomedical Imaging UCLA STAT 233 Statistical Methods in Biomedical Imaging Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology University of California, Los Angeles, Spring 2004 http://www.stat.ucla.edu/~dinov/

More information

Structural Equation Modeling

Structural Equation Modeling Chapter 11 Structural Equation Modeling Hans Baumgartner and Bert Weijters Hans Baumgartner, Smeal College of Business, The Pennsylvania State University, University Park, PA 16802, USA, E-mail: jxb14@psu.edu.

More information

Simple Linear Regression Estimation and Properties

Simple Linear Regression Estimation and Properties Simple Linear Regression Estimation and Properties Outline Review of the Reading Estimate parameters using OLS Other features of OLS Numerical Properties of OLS Assumptions of OLS Goodness of Fit Checking

More information

Essentials of Structural Equation Modeling

Essentials of Structural Equation Modeling University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Zea E-Books Zea E-Books 3-12-2018 Essentials of Structural Equation Modeling Mustafa Emre Civelek Istanbul Commerce University,

More information

Pelatihan Statistika. Jonathan Sarwono

Pelatihan Statistika. Jonathan Sarwono Pelatihan Statistika Jonathan Sarwono Model - Model Penelitian dalam Riset Lanjutan 1. Model Dasar Hubungan Antar Variabel 2. Model Dasa dalam Analisis Jalur 3. Model dalam Structural Equiation Modeling

More information

Regression Analysis: Basic Concepts

Regression Analysis: Basic Concepts The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

More information

Exploratory Factor Analysis: dimensionality and factor scores. Psychology 588: Covariance structure and factor models

Exploratory Factor Analysis: dimensionality and factor scores. Psychology 588: Covariance structure and factor models Exploratory Factor Analysis: dimensionality and factor scores Psychology 588: Covariance structure and factor models How many PCs to retain 2 Unlike confirmatory FA, the number of factors to extract is

More information

B. Weaver (18-Oct-2001) Factor analysis Chapter 7: Factor Analysis

B. Weaver (18-Oct-2001) Factor analysis Chapter 7: Factor Analysis B Weaver (18-Oct-2001) Factor analysis 1 Chapter 7: Factor Analysis 71 Introduction Factor analysis (FA) was developed by C Spearman It is a technique for examining the interrelationships in a set of variables

More information

Principal component analysis

Principal component analysis Principal component analysis Angela Montanari 1 Introduction Principal component analysis (PCA) is one of the most popular multivariate statistical methods. It was first introduced by Pearson (1901) and

More information