Information Theory for Wireless Communications, Part II:

Size: px
Start display at page:

Download "Information Theory for Wireless Communications, Part II:"

Transcription

1 Information Theory for Wireless Communications, Part II: Lecture 5: Multiuser Gaussian MIMO Multiple-Access Channel Instructor: Dr Saif K Mohammed Scribe: Johannes Lindblom In this lecture, we give the capacity region of the Gaussian multiuser multiple-input multiple-output MIMO multiple-access channel MAC We also give an algorithm for computing the maximum sumcapacity of the Gaussian MIMO MAC for the -user scenario I GENERAL SYSTEM MODEL The system under study is illustrated in Fig There are K multiple-antenna users that want to transmit data to a single receiver equipped with multiple antennas User k {,,K} has n k antennas and the receiver has n r antennas The channel between user k and the receiver is k C nr n k User k transmits a vector x k C n k The transmissions are concurrent and take place in the same band, so the signals will sum up at the receiver ence, the received signal is y = K k x k +z, k= where z C nr is the additive noise that we model as a zero-mean complex-symmetric Gaussian random vector with covariance I The transmitted vectors are subject to a power constraint Tr { E { }} { x k x k = E xk } P k II REVIEW OF TE CAPACITY REGION FOR TE SISO TWO-USER MAC We studied the two-user SISO MAC in [] and [] ere we revisit a few of these results Consider the input distribution px,x = px px This input distribution corresponds to independent encoding For a given input distribution, we can achieve the rate region R IX ;Y X, R IX ;Y X, R +R IX,X ;Y An example of this region is illustrated in Fig Note that IX,X ;Y = IX ;Y X +IX ;Y = IX ;Y X +IX ;Y The term IX ;Y is the mutual information we get when X is decoded treating X as noise interference The point A in Fig is the rate pair we achieve when we first decode user and then user This document is a property of Communication Systems Division, Department of Electrical Engineering, Linköping University, Sweden Copyright mus be obtained by writing to {saif,eriklarsson}@isyliuse prior to usage

2 User x n n r User k x k n k k y K User K x K n K Fig System model of the Gaussian multi-user MIMO MAC A R [bits/channel use] R [bits/channel use] Fig Achievable rate region of the SISO MAC for a given input distribution px,x = px px For the Gaussian case, we have the simplified signal model Y = X +X +Z with E{X k } P k and Z CN0, The best rate of user in the absence of user is R log + P In the same way, the best rate of user is R log + P Consider the case where the receiver first decodes user treating X as noise The new signal model is then Y = X + Z with Z X + Z If X CN0,P then Z CN0,P + and user can

3 3 achieve rate R log + P P + When X is decoded, the receiver subtracts it from the received signal and obtains the signal Now, user can achieve rate Note that R +R log +P +P / Y Y X = X +Z R IX ;Y = log + P III CAPACITY REGION FOR GAUSSIAN SIMO MAC ere, we consider the scenario of where n k =, k =,,K and n r > This setup is the single-input multiple-output SIMO MAC For the two-user case, the signal model for the SIMO MAC is Y = h X +h X +Z Let us assume that E{ X k } = Define = [h h ] The capacity region rate region of this system is given by R IX ;Y X = log + h P R IX ;Y X = log + h P R +R IX,X ;Y = max log 0 α k P k I + [ ] α 0 0 α 3 The rates and are the single-user rates To see how we get to 3, we consider a point-to-point single-user MIMO link Y = X +Z with X = [X,X ] T, K X E { XX }, and Z CN0, I The capacity of such channel is max log I + K X Tr{K X } P,K X 0 In our case, we restrict to the case where the encoding is independent, ie, the signals at the transmit antennas are independent This restriction gives us a diagonal covariance matrix K X Also, we have a per antenna power constraint Next we will show that in order to maximize 3, we must have α k = P k Due to the monotonicity of the logarithm, maximize 3 is equivalent to maximizing I + [ ] α 0 0 α = I + [ ] h { } [α h α h ] h = I +AB = I +BA = I + [ ] h h [α h α h ] = I + [ α h α h h ] α h h α h = log + α h + α h α α h N h 0 = log + α h + α h + α α h h h h 4

4 4 Since h h h h 0 equality only if h and h are colinear, we maximize 4 for αk = P k, k =, ence, we can write 3 as R +R log I + [ ] P 0 0 P It is clear that also this capacity region is a pentagon similar to that in Fig At the corner point A, we have the rate pair R = log +P h I +P h h h 5 R = log + P h 6 We achieve this point by first decoding user, treating user as noise The components of the noise vector h X +Z is spatially correlated with covariance P h h +I So, we prewhiten the received signal, ie, Ỹ = h h + I / Y = h h + I / h }{{} h X +h h + I / h X +Z }{{} Z Since Z CN0,I, the rate of user is log +P h = log +P h I+P h h h Once user is decoded, the term is subtracted from the received signal and user is decoded, and it can achieve the rate R = log +P h / A Degrees of Freedom We study the behavior of the rates 5 and 6 when P,P First, we note that R lim = P log P Second, we have R { } lim = Matrix inversion lemma P,P log P = lim P,P { } = P log log P = lim P + P log P log h + P h h /P + h h h h h = To conclude, for the two-user SIMO MAC, we achieve two degrees of freedom This is a gain over the SISO MAC, where we achieved only a single degree of freedom B Orthogonal Transmission Scheme Consider the scenario where the transmissions of users and are divided in time or frequency in such way that they do not interfere with each other at the receiver That is, user uses the channel for a fraction α of the time During that time it transmits using power P /α in order to use power P in average For the remaining fraction α of the time, user transmits using power P / α For this scheme, the achievable rates are R = αlog + P P R = αlog αn + 0 α

5 5 for the SISO MAC and R = αlog + P h α R = αlog + P h α for the SIMO MACBy varying α from 0 to, we get the boundaries of the achievable rate regions As illustrated in Fig 3, we see that the orthogonal transmission scheme is suboptimal owever, for the SISO MAC, the orthogonal scheme achieves the sum-capacity [3, Exercise 04] SISO MAC, P = P = = SIMO MAC, P = P = = h = h = R [bits/channel use] R [bits/channel use] R [bits/channel use] R [bits/channel use] Fig 3 Illustration of the optimality of orthogonal transmission schemes The solid line is the boundary of the capacity region whereas the dashed line is the boundary of the region that is achievable by orthogonal transmission IV TWO-USER GAUSSIAN MIMO-MAC Now, we extend the model to the scenario of multiple antennas at transmitters and receiver We focus on the two-user case For a given pair of transmit covariance matrices K,K, we have the achievable rate region R log I + K, 7 R log I + K, 8 R +R log I + [ ] [ ][ ] K K We also have the power constraints Tr{K k } P k, k =, The reason for why the joint covariance matrix in 9 is block-diagonal is that the encoding of the users messages is independent Note that the pair of covariance matrices K,K that maximizes 7 and 8 does not maximize 9 in general To find the capacity region, we have to take the union over all pair of feasible transmit covariance matrices This also implies that the capacity region of the Gaussian MIMO MAC is not a pentagon

6 6 Next, we will focus on the sum-capacity and we will introduce the so-called iterative water-filling algorithm to solve max log Tr{K } P k,k k 0 I + K N + K 0 In the remainder of this section, we assume that = First, we start with a feasible pair of transmit covariance matrices K 0,K 0 for which we achieve the rate CK 0,K 0 = log K 0 +I + K 0 0 Compare this to the point-to-point scenarioy = X +W, where the noise vectorw has the covariance K 0 W I+ K 0 The mutual information is then log K 0 W + K K 0 log W ence, we can write 0 as CK 0,K0 = IK = K 0 +log K 0 IK = K +log K 0 where K = argmax Tr{K } P,K 0 W I 0 K W X ;Y K 0 We solve this using the same water-filling algorithm as we use for the point-to-point MIMO channel Now, for the pair K,K 0, we have the capacity CK,K 0 = log K 0 +I + K Next, we maximize with respect to K, and so on until convergence We see that we have an improvement of the sum-rate in each iteration Since the sum-capacity is bounded, the iterative water-filling algorithm A pair K,K is a optimal solution if K = argmax log K +I + K Tr{K } P,K 0 and vice versa for K In Fig 4, we illustrate the capacity region for the two-user Gaussian MIMO MAC with [ ] [ i i i 00+58i =, i i = i i and P = P = = As we can see, the region does not have the shape of a pentagon W ], REFERENCES [] Q Ngo, Information Theory for Wireless Communications: Part I, Lecture : Single-antenna multi-user uplink channels achievable rate region [] Information Theory for Wireless Communications: Part I, Lecture 3: Single-antenna multi-user uplink channels capacity region and converse [3] D Tse and P Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 008

7 7 3 5 R [bits/channel use] R [bits/channel use] 3 35 Fig 4 Illustration of the two-user Gaussian MIMO MAC capacity region The square marks the sum-capacity point

Information Theory for Wireless Communications. Lecture 10 Discrete Memoryless Multiple Access Channel (DM-MAC): The Converse Theorem

Information Theory for Wireless Communications. Lecture 10 Discrete Memoryless Multiple Access Channel (DM-MAC): The Converse Theorem Information Theory for Wireless Communications. Lecture 0 Discrete Memoryless Multiple Access Channel (DM-MAC: The Converse Theorem Instructor: Dr. Saif Khan Mohammed Scribe: Antonios Pitarokoilis I. THE

More information

ELG7177: MIMO Comunications. Lecture 8

ELG7177: MIMO Comunications. Lecture 8 ELG7177: MIMO Comunications Lecture 8 Dr. Sergey Loyka EECS, University of Ottawa S. Loyka Lecture 8, ELG7177: MIMO Comunications 1 / 32 Multi-User Systems Can multiple antennas offer advantages for multi-user

More information

Simultaneous SDR Optimality via a Joint Matrix Decomp.

Simultaneous SDR Optimality via a Joint Matrix Decomp. Simultaneous SDR Optimality via a Joint Matrix Decomposition Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv Uni. May 26, 2011 Model: Source Multicasting over MIMO Channels z 1 H 1 y 1 Rx1 ŝ 1 s

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

Competition and Cooperation in Multiuser Communication Environments

Competition and Cooperation in Multiuser Communication Environments Competition and Cooperation in Multiuser Communication Environments Wei Yu Electrical Engineering Department Stanford University April, 2002 Wei Yu, Stanford University Introduction A multiuser communication

More information

On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation

On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation Mehdi Ashraphijuo, Vaneet Aggarwal and Xiaodong Wang 1 arxiv:1308.3310v1 [cs.it] 15 Aug 2013

More information

Lecture 1: The Multiple Access Channel. Copyright G. Caire 12

Lecture 1: The Multiple Access Channel. Copyright G. Caire 12 Lecture 1: The Multiple Access Channel Copyright G. Caire 12 Outline Two-user MAC. The Gaussian case. The K-user case. Polymatroid structure and resource allocation problems. Copyright G. Caire 13 Two-user

More information

Mathematical methods in communication June 16th, Lecture 12

Mathematical methods in communication June 16th, Lecture 12 2- Mathematical methods in communication June 6th, 20 Lecture 2 Lecturer: Haim Permuter Scribe: Eynan Maydan and Asaf Aharon I. MIMO - MULTIPLE INPUT MULTIPLE OUTPUT MIMO is the use of multiple antennas

More information

On Gaussian MIMO Broadcast Channels with Common and Private Messages

On Gaussian MIMO Broadcast Channels with Common and Private Messages On Gaussian MIMO Broadcast Channels with Common and Private Messages Ersen Ekrem Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 20742 ersen@umd.edu

More information

IN this paper, we show that the scalar Gaussian multiple-access

IN this paper, we show that the scalar Gaussian multiple-access 768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 5, MAY 2004 On the Duality of Gaussian Multiple-Access and Broadcast Channels Nihar Jindal, Student Member, IEEE, Sriram Vishwanath, and Andrea

More information

A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels

A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels A Proof of the Converse for the Capacity of Gaussian MIMO Broadcast Channels Mehdi Mohseni Department of Electrical Engineering Stanford University Stanford, CA 94305, USA Email: mmohseni@stanford.edu

More information

Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels

Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels 2658 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 49, NO 10, OCTOBER 2003 Duality, Achievable Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels Sriram Vishwanath, Student Member, IEEE, Nihar

More information

On Network Interference Management

On Network Interference Management On Network Interference Management Aleksandar Jovičić, Hua Wang and Pramod Viswanath March 3, 2008 Abstract We study two building-block models of interference-limited wireless networks, motivated by the

More information

Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers

Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers Johannes Lindblom, Eleftherios Karipidis and Erik G. Larsson Linköping

More information

On Capacity Under Received-Signal Constraints

On Capacity Under Received-Signal Constraints On Capacity Under Received-Signal Constraints Michael Gastpar Dept. of EECS, University of California, Berkeley, CA 9470-770 gastpar@berkeley.edu Abstract In a world where different systems have to share

More information

Physical-Layer MIMO Relaying

Physical-Layer MIMO Relaying Model Gaussian SISO MIMO Gauss.-BC General. Physical-Layer MIMO Relaying Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University August 5, 2011 Model Gaussian

More information

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland Morning Session Capacity-based Power Control Şennur Ulukuş Department of Electrical and Computer Engineering University of Maryland So Far, We Learned... Power control with SIR-based QoS guarantees Suitable

More information

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels

Dirty Paper Coding vs. TDMA for MIMO Broadcast Channels TO APPEAR IEEE INTERNATIONAL CONFERENCE ON COUNICATIONS, JUNE 004 1 Dirty Paper Coding vs. TDA for IO Broadcast Channels Nihar Jindal & Andrea Goldsmith Dept. of Electrical Engineering, Stanford University

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages

Degrees of Freedom Region of the Gaussian MIMO Broadcast Channel with Common and Private Messages Degrees of Freedom Region of the Gaussian MIMO Broadcast hannel with ommon and Private Messages Ersen Ekrem Sennur Ulukus Department of Electrical and omputer Engineering University of Maryland, ollege

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters

Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters Optimum Power Allocation in Fading MIMO Multiple Access Channels with Partial CSI at the Transmitters Alkan Soysal Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland,

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Optimal Power Allocation for Parallel Gaussian Broadcast Channels with Independent and Common Information

Optimal Power Allocation for Parallel Gaussian Broadcast Channels with Independent and Common Information SUBMIED O IEEE INERNAIONAL SYMPOSIUM ON INFORMAION HEORY, DE. 23 1 Optimal Power Allocation for Parallel Gaussian Broadcast hannels with Independent and ommon Information Nihar Jindal and Andrea Goldsmith

More information

Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel

Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel Jun Chen Dept. of Electrical and Computer Engr. McMaster University Hamilton, Ontario, Canada Chao Tian AT&T Labs-Research 80 Park

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Appendix B Information theory from first principles

Appendix B Information theory from first principles Appendix B Information theory from first principles This appendix discusses the information theory behind the capacity expressions used in the book. Section 8.3.4 is the only part of the book that supposes

More information

Space-Time Coding for Multi-Antenna Systems

Space-Time Coding for Multi-Antenna Systems Space-Time Coding for Multi-Antenna Systems ECE 559VV Class Project Sreekanth Annapureddy vannapu2@uiuc.edu Dec 3rd 2007 MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures

More information

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong Multi-User Gain Maximum Eigenmode Beamforming, and IDMA Peng Wang and Li Ping City University of Hong Kong 1 Contents Introduction Multi-user gain (MUG) Maximum eigenmode beamforming (MEB) MEB performance

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University luca.sanguinetti@iet.unipi.it April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 /

More information

Optimal Sequences, Power Control and User Capacity of Synchronous CDMA Systems with Linear MMSE Multiuser Receivers

Optimal Sequences, Power Control and User Capacity of Synchronous CDMA Systems with Linear MMSE Multiuser Receivers Optimal Sequences, Power Control and User Capacity of Synchronous CDMA Systems with Linear MMSE Multiuser Receivers Pramod Viswanath, Venkat Anantharam and David.C. Tse {pvi, ananth, dtse}@eecs.berkeley.edu

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY Uplink Downlink Duality Via Minimax Duality. Wei Yu, Member, IEEE (1) (2)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY Uplink Downlink Duality Via Minimax Duality. Wei Yu, Member, IEEE (1) (2) IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 2, FEBRUARY 2006 361 Uplink Downlink Duality Via Minimax Duality Wei Yu, Member, IEEE Abstract The sum capacity of a Gaussian vector broadcast channel

More information

Under sum power constraint, the capacity of MIMO channels

Under sum power constraint, the capacity of MIMO channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 6, NO 9, SEPTEMBER 22 242 Iterative Mode-Dropping for the Sum Capacity of MIMO-MAC with Per-Antenna Power Constraint Yang Zhu and Mai Vu Abstract We propose an

More information

Approximate Capacity of Fast Fading Interference Channels with no CSIT

Approximate Capacity of Fast Fading Interference Channels with no CSIT Approximate Capacity of Fast Fading Interference Channels with no CSIT Joyson Sebastian, Can Karakus, Suhas Diggavi Abstract We develop a characterization of fading models, which assigns a number called

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1 Fading : Theoretical Foundations of Wireless Communications 1 Thursday, May 3, 2018 9:30-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 23 Overview

More information

Achievable Outage Rate Regions for the MISO Interference Channel

Achievable Outage Rate Regions for the MISO Interference Channel Achievable Outage Rate Regions for the MISO Interference Channel Johannes Lindblom, Eleftherios Karipidis and Erik G. Larsson Linköping University Post Print N.B.: When citing this work, cite the original

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Theoretical Foundations of Wireless Communications 1 Wednesday, May 11, 2016 9:00-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 1 Overview

More information

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT Network Modulation: Transmission Technique for MIMO Networks Anatoly Khina Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT ACC Workshop, Feder Family Award

More information

When does vectored Multiple Access Channels (MAC) optimal power allocation converge to an FDMA solution?

When does vectored Multiple Access Channels (MAC) optimal power allocation converge to an FDMA solution? When does vectored Multiple Access Channels MAC optimal power allocation converge to an FDMA solution? Vincent Le Nir, Marc Moonen, Jan Verlinden, Mamoun Guenach Abstract Vectored Multiple Access Channels

More information

Multi-User Communication: Capacity, Duality, and Cooperation. Nihar Jindal Stanford University Dept. of Electrical Engineering

Multi-User Communication: Capacity, Duality, and Cooperation. Nihar Jindal Stanford University Dept. of Electrical Engineering Multi-User Communication: Capacity, Duality, and Cooperation Niar Jindal Stanford University Dept. of Electrical Engineering February 3, 004 Wireless Communication Vision Cellular Networks Wireless LAN

More information

Samah A. M. Ghanem, Member, IEEE, Abstract

Samah A. M. Ghanem, Member, IEEE, Abstract Multiple Access Gaussian Channels with Arbitrary Inputs: Optimal Precoding and Power Allocation Samah A. M. Ghanem, Member, IEEE, arxiv:4.0446v2 cs.it] 6 Nov 204 Abstract In this paper, we derive new closed-form

More information

On the Duality between Multiple-Access Codes and Computation Codes

On the Duality between Multiple-Access Codes and Computation Codes On the Duality between Multiple-Access Codes and Computation Codes Jingge Zhu University of California, Berkeley jingge.zhu@berkeley.edu Sung Hoon Lim KIOST shlim@kiost.ac.kr Michael Gastpar EPFL michael.gastpar@epfl.ch

More information

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Pritam Mukherjee Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 074 pritamm@umd.edu

More information

NOMA: Principles and Recent Results

NOMA: Principles and Recent Results NOMA: Principles and Recent Results Jinho Choi School of EECS GIST September 2017 (VTC-Fall 2017) 1 / 46 Abstract: Non-orthogonal multiple access (NOMA) becomes a key technology in 5G as it can improve

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

K User Interference Channel with Backhaul

K User Interference Channel with Backhaul 1 K User Interference Channel with Backhaul Cooperation: DoF vs. Backhaul Load Trade Off Borna Kananian,, Mohammad A. Maddah-Ali,, Babak H. Khalaj, Department of Electrical Engineering, Sharif University

More information

Approximately achieving the feedback interference channel capacity with point-to-point codes

Approximately achieving the feedback interference channel capacity with point-to-point codes Approximately achieving the feedback interference channel capacity with point-to-point codes Joyson Sebastian*, Can Karakus*, Suhas Diggavi* Abstract Superposition codes with rate-splitting have been used

More information

Cooperative Interference Alignment for the Multiple Access Channel

Cooperative Interference Alignment for the Multiple Access Channel 1 Cooperative Interference Alignment for the Multiple Access Channel Theodoros Tsiligkaridis, Member, IEEE Abstract Interference alignment (IA) has emerged as a promising technique for the interference

More information

Practical Interference Alignment and Cancellation for MIMO Underlay Cognitive Radio Networks with Multiple Secondary Users

Practical Interference Alignment and Cancellation for MIMO Underlay Cognitive Radio Networks with Multiple Secondary Users Practical Interference Alignment and Cancellation for MIMO Underlay Cognitive Radio Networks with Multiple Secondary Users Tianyi Xu Dept. Electrical & Computer Engineering University of Delaware Newark,

More information

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results Information Theory Lecture 10 Network Information Theory (CT15); a focus on channel capacity results The (two-user) multiple access channel (15.3) The (two-user) broadcast channel (15.6) The relay channel

More information

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung Dr.-Ing. Carsten Bockelmann Institute for Telecommunications and High-Frequency Techniques Department of Communications

More information

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ELEC E7210: Communication Theory. Lecture 10: MIMO systems ELEC E7210: Communication Theory Lecture 10: MIMO systems Matrix Definitions, Operations, and Properties (1) NxM matrix a rectangular array of elements a A. an 11 1....... a a 1M. NM B D C E ermitian transpose

More information

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels

On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels On the Optimality of Multiuser Zero-Forcing Precoding in MIMO Broadcast Channels Saeed Kaviani and Witold A. Krzymień University of Alberta / TRLabs, Edmonton, Alberta, Canada T6G 2V4 E-mail: {saeed,wa}@ece.ualberta.ca

More information

On the Rate Duality of MIMO Interference Channel and its Application to Sum Rate Maximization

On the Rate Duality of MIMO Interference Channel and its Application to Sum Rate Maximization On the Rate Duality of MIMO Interference Channel and its Application to Sum Rate Maximization An Liu 1, Youjian Liu 2, Haige Xiang 1 and Wu Luo 1 1 State Key Laboratory of Advanced Optical Communication

More information

The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR

The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR 1 Stefano Rini, Daniela Tuninetti and Natasha Devroye srini2, danielat, devroye @ece.uic.edu University of Illinois at Chicago Abstract

More information

An Uplink-Downlink Duality for Cloud Radio Access Network

An Uplink-Downlink Duality for Cloud Radio Access Network An Uplin-Downlin Duality for Cloud Radio Access Networ Liang Liu, Prati Patil, and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto, ON, 5S 3G4, Canada Emails: lianguotliu@utorontoca,

More information

POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS

POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS R. Cendrillon, O. Rousseaux and M. Moonen SCD/ESAT, Katholiee Universiteit Leuven, Belgium {raphael.cendrillon, olivier.rousseaux, marc.moonen}@esat.uleuven.ac.be

More information

Lecture 5: Channel Capacity. Copyright G. Caire (Sample Lectures) 122

Lecture 5: Channel Capacity. Copyright G. Caire (Sample Lectures) 122 Lecture 5: Channel Capacity Copyright G. Caire (Sample Lectures) 122 M Definitions and Problem Setup 2 X n Y n Encoder p(y x) Decoder ˆM Message Channel Estimate Definition 11. Discrete Memoryless Channel

More information

On the Capacity Region of the Gaussian Z-channel

On the Capacity Region of the Gaussian Z-channel On the Capacity Region of the Gaussian Z-channel Nan Liu Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 74 nkancy@eng.umd.edu ulukus@eng.umd.edu

More information

Optimal Power Control in Decentralized Gaussian Multiple Access Channels

Optimal Power Control in Decentralized Gaussian Multiple Access Channels 1 Optimal Power Control in Decentralized Gaussian Multiple Access Channels Kamal Singh Department of Electrical Engineering Indian Institute of Technology Bombay. arxiv:1711.08272v1 [eess.sp] 21 Nov 2017

More information

Error Exponent Region for Gaussian Broadcast Channels

Error Exponent Region for Gaussian Broadcast Channels Error Exponent Region for Gaussian Broadcast Channels Lihua Weng, S. Sandeep Pradhan, and Achilleas Anastasopoulos Electrical Engineering and Computer Science Dept. University of Michigan, Ann Arbor, MI

More information

On the Capacity of the Multiple Antenna Broadcast Channel

On the Capacity of the Multiple Antenna Broadcast Channel DIMACS Series in Discrete Mathematics and Theoretical Computer Science On the Capacity of the Multiple Antenna Broadcast Channel David Tse and Pramod Viswanath Abstract. The capacity region of the multiple

More information

Interference Channel aided by an Infrastructure Relay

Interference Channel aided by an Infrastructure Relay Interference Channel aided by an Infrastructure Relay Onur Sahin, Osvaldo Simeone, and Elza Erkip *Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Department

More information

Incremental Coding over MIMO Channels

Incremental Coding over MIMO Channels Model Rateless SISO MIMO Applications Summary Incremental Coding over MIMO Channels Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University Gregory W. Wornell,

More information

DETECTION AND MITIGATION OF JAMMING ATTACKS IN MASSIVE MIMO SYSTEMS USING RANDOM MATRIX THEORY

DETECTION AND MITIGATION OF JAMMING ATTACKS IN MASSIVE MIMO SYSTEMS USING RANDOM MATRIX THEORY DETECTION AND MITIGATION OF JAMMING ATTACKS IN MASSIVE MIMO SYSTEMS USING RANDOM MATRIX THEORY Julia Vinogradova, Emil Björnson and Erik G Larsson The self-archived postprint version of this conference

More information

Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters 1

Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters 1 2005 Conference on Information Sciences and Systems, The Johns Hopkins University, March 6 8, 2005 Transmit Directions and Optimality of Beamforming in MIMO-MAC with Partial CSI at the Transmitters Alkan

More information

Lecture 4 Channel Coding

Lecture 4 Channel Coding Capacity and the Weak Converse Lecture 4 Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 15, 2014 1 / 16 I-Hsiang Wang NIT Lecture 4 Capacity

More information

Random Access Protocols for Massive MIMO

Random Access Protocols for Massive MIMO Random Access Protocols for Massive MIMO Elisabeth de Carvalho Jesper H. Sørensen Petar Popovski Aalborg University Denmark Emil Björnson Erik G. Larsson Linköping University Sweden 2016 Tyrrhenian International

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

Network Calculus. A General Framework for Interference Management and Resource Allocation. Martin Schubert

Network Calculus. A General Framework for Interference Management and Resource Allocation. Martin Schubert Network Calculus A General Framework for Interference Management and Resource Allocation Martin Schubert Fraunhofer Institute for Telecommunications HHI, Berlin, Germany Fraunhofer German-Sino Lab for

More information

WIRELESS networks with multiple users are interference-limited

WIRELESS networks with multiple users are interference-limited 4170 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014 On the Capacity and Degrees of Freedom Regions of Two-User MIMO Interference Channels With Limited Receiver Cooperation Mehdi Ashraphijuo,

More information

Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities Vincent Y. F. Tan Dept. of ECE and Dept. of Mathematics National University of Singapore (NUS) September 2014 Vincent Tan

More information

On the K-user Cognitive Interference Channel with Cumulative Message Sharing Sum-Capacity

On the K-user Cognitive Interference Channel with Cumulative Message Sharing Sum-Capacity 03 EEE nternational Symposium on nformation Theory On the K-user Cognitive nterference Channel with Cumulative Message Sharing Sum-Capacity Diana Maamari, Daniela Tuninetti and Natasha Devroye Department

More information

High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding vs. Linear Precoding

High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding vs. Linear Precoding High SNR Analysis for MIMO Broadcast Channels: Dirty Paper Coding vs. Linear Precoding arxiv:cs/062007v2 [cs.it] 9 Dec 2006 Juyul Lee and Nihar Jindal Department of Electrical and Computer Engineering

More information

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation Chongbin Xu, Peng Wang, Zhonghao Zhang, and Li Ping City University of Hong Kong 1 Outline Background Mutual Information

More information

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 10: Broadcast Channel and Superposition Coding Lecture 10: Broadcast Channel and Superposition Coding Scribed by: Zhe Yao 1 Broadcast channel M 0M 1M P{y 1 y x} M M 01 1 M M 0 The capacity of the broadcast channel depends only on the marginal conditional

More information

to reprint/republish this material for advertising or promotional purposes

to reprint/republish this material for advertising or promotional purposes c 8 IEEE Personal use of this material is permitted However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Minimax Duality for MIMO Interference Networks

Minimax Duality for MIMO Interference Networks information Article Minimax Duality for MIMO Interference Networks Andreas Dotzler *, Maximilian Riemensberger and Wolfgang Utschick Associate Institute for Signal Processing, Technische Universität München,

More information

Outage-Efficient Downlink Transmission Without Transmit Channel State Information

Outage-Efficient Downlink Transmission Without Transmit Channel State Information 1 Outage-Efficient Downlink Transmission Without Transmit Channel State Information Wenyi Zhang, Member, IEEE, Shivaprasad Kotagiri, Student Member, IEEE, and J. Nicholas Laneman, Senior Member, IEEE arxiv:0711.1573v1

More information

USING multiple antennas has been shown to increase the

USING multiple antennas has been shown to increase the IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 1, JANUARY 2007 11 A Comparison of Time-Sharing, DPC, and Beamforming for MIMO Broadcast Channels With Many Users Masoud Sharif, Member, IEEE, and Babak

More information

On the Duality of Gaussian Multiple-Access and Broadcast Channels

On the Duality of Gaussian Multiple-Access and Broadcast Channels On the Duality of Gaussian ultiple-access and Broadcast Channels Xiaowei Jin I. INTODUCTION Although T. Cover has been pointed out in [] that one would have expected a duality between the broadcast channel(bc)

More information

The Dirty MIMO Multiple-Access Channel

The Dirty MIMO Multiple-Access Channel The Dirty MIMO Multiple-Access Channel Anatoly Khina, Caltech Joint work with: Yuval Kochman, Hebrew University Uri Erez, Tel-Aviv University ISIT 2016 Barcelona, Catalonia, Spain July 12, 2016 Motivation:

More information

Parallel Additive Gaussian Channels

Parallel Additive Gaussian Channels Parallel Additive Gaussian Channels Let us assume that we have N parallel one-dimensional channels disturbed by noise sources with variances σ 2,,σ 2 N. N 0,σ 2 x x N N 0,σ 2 N y y N Energy Constraint:

More information

Vector Channel Capacity with Quantized Feedback

Vector Channel Capacity with Quantized Feedback Vector Channel Capacity with Quantized Feedback Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 9697-65 Email: syed@ece.uci.edu,

More information

MASSIVE MIMO BSs, which are equipped with hundreds. Large-Scale-Fading Decoding in Cellular Massive MIMO Systems with Spatially Correlated Channels

MASSIVE MIMO BSs, which are equipped with hundreds. Large-Scale-Fading Decoding in Cellular Massive MIMO Systems with Spatially Correlated Channels 1 Large-Scale-Fading Decoding in Cellular Massive MIMO Systems with Spatially Correlated Channels Trinh Van Chien, Student Member, IEEE, Christopher Mollén, Emil Björnson, Senior Member, IEEE arxiv:1807.08071v

More information

Capacity Bounds for Diamond Networks

Capacity Bounds for Diamond Networks Technische Universität München Capacity Bounds for Diamond Networks Gerhard Kramer (TUM) joint work with Shirin Saeedi Bidokhti (TUM & Stanford) DIMACS Workshop on Network Coding Rutgers University, NJ

More information

Weighted Sum Rate Optimization for Cognitive Radio MIMO Broadcast Channels

Weighted Sum Rate Optimization for Cognitive Radio MIMO Broadcast Channels IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (SUBMITTED) Weighted Sum Rate Optimization for Cognitive Radio MIMO Broadcast Channels Lan Zhang, Yan Xin, and Ying-Chang Liang Abstract In this paper, we consider

More information

Capacity of multiple-input multiple-output (MIMO) systems in wireless communications

Capacity of multiple-input multiple-output (MIMO) systems in wireless communications 15/11/02 Capacity of multiple-input multiple-output (MIMO) systems in wireless communications Bengt Holter Department of Telecommunications Norwegian University of Science and Technology 1 Outline 15/11/02

More information

LECTURE 18. Lecture outline Gaussian channels: parallel colored noise inter-symbol interference general case: multiple inputs and outputs

LECTURE 18. Lecture outline Gaussian channels: parallel colored noise inter-symbol interference general case: multiple inputs and outputs LECTURE 18 Last time: White Gaussian noise Bandlimited WGN Additive White Gaussian Noise (AWGN) channel Capacity of AWGN channel Application: DS-CDMA systems Spreading Coding theorem Lecture outline Gaussian

More information

Note that the new channel is noisier than the original two : and H(A I +A2-2A1A2) > H(A2) (why?). min(c,, C2 ) = min(1 - H(a t ), 1 - H(A 2 )).

Note that the new channel is noisier than the original two : and H(A I +A2-2A1A2) > H(A2) (why?). min(c,, C2 ) = min(1 - H(a t ), 1 - H(A 2 )). l I ~-16 / (a) (5 points) What is the capacity Cr of the channel X -> Y? What is C of the channel Y - Z? (b) (5 points) What is the capacity C 3 of the cascaded channel X -3 Z? (c) (5 points) A ow let.

More information

Lecture 5 Channel Coding over Continuous Channels

Lecture 5 Channel Coding over Continuous Channels Lecture 5 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 14, 2014 1 / 34 I-Hsiang Wang NIT Lecture 5 From

More information

National University of Singapore Department of Electrical & Computer Engineering. Examination for

National University of Singapore Department of Electrical & Computer Engineering. Examination for National University of Singapore Department of Electrical & Computer Engineering Examination for EE5139R Information Theory for Communication Systems (Semester I, 2014/15) November/December 2014 Time Allowed:

More information

Interactive Interference Alignment

Interactive Interference Alignment Interactive Interference Alignment Quan Geng, Sreeram annan, and Pramod Viswanath Coordinated Science Laboratory and Dept. of ECE University of Illinois, Urbana-Champaign, IL 61801 Email: {geng5, kannan1,

More information

Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback

Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback Achaleshwar Sahai Department of ECE, Rice University, Houston, TX 775. as27@rice.edu Vaneet Aggarwal Department of

More information

Interference Channels with Source Cooperation

Interference Channels with Source Cooperation Interference Channels with Source Cooperation arxiv:95.319v1 [cs.it] 19 May 29 Vinod Prabhakaran and Pramod Viswanath Coordinated Science Laboratory University of Illinois, Urbana-Champaign Urbana, IL

More information

ECE Information theory Final

ECE Information theory Final ECE 776 - Information theory Final Q1 (1 point) We would like to compress a Gaussian source with zero mean and variance 1 We consider two strategies In the first, we quantize with a step size so that the

More information