QMCDB:! A Living Database to Accelerate Worldwide Development & Usage of Quantum Monte Carlo Methods! Elif Ertekin, Ray Plante, Lucas K. Wagner!

Size: px
Start display at page:

Download "QMCDB:! A Living Database to Accelerate Worldwide Development & Usage of Quantum Monte Carlo Methods! Elif Ertekin, Ray Plante, Lucas K. Wagner!"

Transcription

1 QMCDB:! A Living Database to Accelerate Worldwide Development & Usage of Quantum Monte Carlo Methods! Elif Ertekin, Ray Plante, Lucas K. Wagner!

2 ional materials: g materials with fied properties! to know: where do t the atoms to get d effect? And can t the atoms there?! Photovoltaic cells in Urba Case study of chalcopyrite material CuInSe 2 y case,! to predict ity!

3 perconductivity d magnetism strange antum effects see day to day!

4 ! tum mechanics: wave ion! re is probability density! ematically we want to fferential operator!

5 unction! position! article unction! try! ment! high dimensional partial differential equation!! on t know an efficient and exact way to solve for t

6 le high dimensionality.! ad of worrying about points, worry about nce.!

7 trons, 300 K is cold! ns spend almost all their time in the lowest energy o ground state! nto a stochastic process! y of walkers <-> wave n value!

8 a constrained optimization!! etric state lies below in the spectrum, must projec antisymmetric state.! /noise goes to zero.! pts to get around this only work in very specific.! must approximate!

9 ! ne approximation to many body S.E. solutions! Energy obtained is an u bound to exact ground Can vary input wave fu to get best upper boun

10 ample 1! Sample 2! Sample 3! ample 4! Sample 5! Sample 6!

11 Density functional theory! Ca2CuO2C Slater determinant! Variational Monte Carlo! qwalk.org! Slater-Jastrow! Fixed node diffusion Monte Carlo!

12 rformance on Blue Water arallel efficiency1.25

13

14 roximation! Controlled! Description! Assessment method! udopotential! No! Replace the core electrons with an effective potential! lization! No! Approximate the diffusion Monte Carlo projector in the presence of a nonlocal potential! al! No! Fix the zeros of the trial wave function when performing diffusion Monte Carlo! Vary within the space of reasonable potentials! Vary trial function and projector approximations! Vary the trial wave function, apply variational theorem.! estep! Yes! Approximate diffusion Monte Carlo projector! Reduce time step until quantities are converged.! e size! Yes! Finite size cells with periodic boundary conditions! Increase the supercell size and average over twisted boundary conditions! gy differences are tiny compared to total energy. ulations are tedious, but now thanks to Blue Wate d by human time rather than computer!

15 antum nte rlo ta se input: allographic! mation file (CIF)! WORKFLOW FOR AUTOMATED MATERIALS CALCULATIONS Generate standard input for DFT/! QMC code! DFT/QMC simulations on HPC Platform (Blue Waters)! Gather provenance & results, generate! database entry! - Run ID! - Method Details! - Algorithm! - Software Package! - Convergence parameters! - Basis, Pseudopotential! - Total Energy! - Other calculated properties (i.e. band structure for DFT)! J Bri In collaboration with the National Data Service at the National Center for

16 First implementation! Testing! Hackathon! b.com/qwalk!

17 Bri d best dal surface! Check trial function basis! erate a bunch of data for ysis! out QMCDB (FeSe): 1.5 years! QMCDB (FeTe): 3 months!

18 abase of energies, all systematic! ws comparison of energies -> formation energy! essary to figure out if we can make a new materia

19 ganese Oxide Zinc Selenide Zinc Oxid Gap (ev) ty sion py nt ents 3.9 ± ap) 4.53(0.14) re: Kolorenc & Mitas Gaps are within few tenths of an ev on very challenging Some gaps may be over-eskmated. Finite size effects for excited states?

20 able to compute highly accurate reference data f ials more systematically and with much less huma than before.! enabling scientific understanding of how electro ct in materials, and how that results in the propert e.!! aterials database of properties calculated using

21 Related Works! shua A. Schiller, Lucas K. Wagner, Elif Ertekin, "Phase Stability operties of Manganese Oxide Polymorphs: Assessment and Ins m Diffusion Monte Carlo", Phys. Rev. B 92, (2015) I: /PhysRevB ! ehyung Yu, Lucas K. Wagner, Elif Ertekin, "Towards a systemat sessment of errors in diffusion Monte Carlo calculations of miconductors: case study of zinc selenide and zinc oxide", J. C ys (2015) DOI: / ! ehyung Yu, Lucas K. Wagner, Elif Ertekin, Quantum Monte Car ulations of nitrogen defects in zinc oxide, manuscript submitte r publication.! shua A. Schiller, Ray Plante, Lucas K. Wagner, Elif Ertekin, uantum Monte Carlo Database and Autogen: a shared commun ol for many-body statistical simulations of materials, manuscrip eparation! ehyung Yu, Elif Ertekin, Exciton binding energy of two-dimensi

22 ut in large proposal that uses these ideas! e to resolve many body quantum problems (at le

23 NSF Graduate research fellowships! Josh Schiller Brian Bu

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects Quantum Monte Carlo Benchmarks Density Functionals: Si Defects K P Driver, W D Parker, R G Hennig, J W Wilkins (OSU) C J Umrigar (Cornell), R Martin, E Batista, B Uberuaga (LANL), J Heyd, G Scuseria (Rice)

More information

Computational Exploration of Unconventional Superconductors Using Quantum Monte Carlo. Project PI: Lucas K. Wagner

Computational Exploration of Unconventional Superconductors Using Quantum Monte Carlo. Project PI: Lucas K. Wagner Computational Exploration of Unconventional Superconductors Using Quantum Monte Carlo Project PI: Lucas K. Wagner La2-xSrxCuO4 (LSCO) crystal structure CuO2 plane LaO spacer Peter Wahl. Nature Physics

More information

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Understanding of correlated materials is mostly phenomenological FN- DMC

More information

Quantum Monte Carlo methods

Quantum Monte Carlo methods Quantum Monte Carlo methods Lubos Mitas North Carolina State University Urbana, August 2006 Lubos_Mitas@ncsu.edu H= 1 2 i i 2 i, I Z I r ii i j 1 r ij E ion ion H r 1, r 2,... =E r 1, r 2,... - ground

More information

Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: case study of zinc selenide and zinc oxide

Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: case study of zinc selenide and zinc oxide Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: case study of zinc selenide and zinc oxide Jaehyung Yu 1, Lucas K. Wagner 2, and Elif Ertekin 1,3 1 Department

More information

Theoretical study of electronic and atomic structures of (MnO)n

Theoretical study of electronic and atomic structures of (MnO)n Theoretical study of electronic and atomic structures of (MnO)n Hiori Kino, a Lucas K. Wagner b and Lubos Mitas c a National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

More information

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus Supporting Information for: The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus L. Shulenburger, A.D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, Sandia National Laboratories, Albuquerque,

More information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2. Quantum Monte Carlo Simulations of a Single Iron Impurity in MgO Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2 1 Department of Earth & Planetary Science University of California, Berkeley

More information

New applications of Diffusion Quantum Monte Carlo

New applications of Diffusion Quantum Monte Carlo New applications of Diffusion Quantum Monte Carlo Paul R. C. Kent (ORNL) Graphite: P. Ganesh, J. Kim, C. Park, M. Yoon, F. A. Reboredo (ORNL) Platinum: W. Parker, A. Benali, N. Romero (ANL), J. Greeley

More information

A data-centered approach to understanding quantum behaviors in materials

A data-centered approach to understanding quantum behaviors in materials A data-centered approach to understanding quantum behaviors in materials Lucas K. Wagner Department of Physics Institute for Condensed Matter Theory National Center for Supercomputing Applications University

More information

From real materials to model Hamiltonians with density matrix downfolding

From real materials to model Hamiltonians with density matrix downfolding From real materials to model Hamiltonians with density matrix downfolding (Converting a many-electron problem to a fewer-electron one) Hitesh J. Changlani Florida State University Based on HJC, H. Zheng,

More information

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node approximations Cody Melton, M. Chandler Bennett, L. Mitas, with A. Ambrosetti, F. Pederiva North Carolina State

More information

Variational Monte Carlo Optimization and Excited States

Variational Monte Carlo Optimization and Excited States Variational Monte Carlo Optimization and Excited States Eric Neuscamman August 9, 2018 motivation charge transfer core spectroscopy double excitations the menu aperitif: number counting Jastrows main course:

More information

An Overview of Quantum Monte Carlo Methods. David M. Ceperley

An Overview of Quantum Monte Carlo Methods. David M. Ceperley An Overview of Quantum Monte Carlo Methods David M. Ceperley Department of Physics and National Center for Supercomputing Applications University of Illinois Urbana-Champaign Urbana, Illinois 61801 In

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Formally simple -- a framework for going beyond DFT? Random walks in non-orthogonal Slater determinant

More information

Quantum Monte Carlo tutorial. Lucas K. Wagner Dept. of Physics; University of Illinois at Urbana-Champaign

Quantum Monte Carlo tutorial. Lucas K. Wagner Dept. of Physics; University of Illinois at Urbana-Champaign Quantum Monte Carlo tutorial Lucas K. Wagner Dept. of Physics; University of Illinois at Urbana-Champaign QMC: what is it good for? Theoretical gap (ev) 5 4 3 2 1 FN-DMC DFT(PBE) VO 2 (monoclinic) La 2

More information

Accurate barrier heights using diffusion Monte Carlo

Accurate barrier heights using diffusion Monte Carlo Accurate barrier heights using diffusion Monte Carlo Kittithat Krongchon, Brian Busemeyer, and Lucas K. Wagner Department of Physics, University of Illinois at Urbana-Champaign (Dated: March 9, 217) Fixed

More information

Ab-initio molecular dynamics for High pressure Hydrogen

Ab-initio molecular dynamics for High pressure Hydrogen Ab-initio molecular dynamics for High pressure Hydrogen Claudio Attaccalite Institut d'electronique, Microélectronique et Nanotechnologie (IEMN), Lille Outline A brief introduction to Quantum Monte Carlo

More information

QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters

QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters Idoia G. de Gurtubay TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay. Quantum

More information

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen ! Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen WHO DID THE WORK? Miguel Morales, Livermore Carlo Pierleoni: L Aquila, Italy Jeff McMahon

More information

Summary of the new Modelling Vocabulary

Summary of the new Modelling Vocabulary Summary of the new Modelling Vocabulary These two pages attempts to summarise in a concise manner the Modelling Vocabulary. What are Models? What are Simulations? Materials Models consist of Physics or

More information

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules M. Marchi 1,2, S. Azadi 2, M. Casula 3, S. Sorella 1,2 1 DEMOCRITOS, National Simulation Center, 34014,

More information

All-Electron Path Integral Monte Carlo (PIMC) Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas

All-Electron Path Integral Monte Carlo (PIMC) Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas All-Electron Path Integral Monte Carlo (PIMC) Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas Kevin Driver and Burkhard Militzer Department of Earth and Planetary Science University

More information

The search for the nodes of the fermionic ground state

The search for the nodes of the fermionic ground state The search for the nodes of the fermionic ground state ψ ( R) = 0 + - + - - + - + Some believe that unicorns are just shy and difficult to find. However, most people believe blue ones do not exist. We

More information

arxiv: v1 [cond-mat.mtrl-sci] 21 Dec 2007

arxiv: v1 [cond-mat.mtrl-sci] 21 Dec 2007 Quantum Monte Carlo calculations of structural properties of FeO under pressure Jindřich Kolorenč and Lubos Mitas Department of Physics and CHiPS, North Carolina State University, Raleigh, North Carolina

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Introduction of XPS Absolute binding energies of core states Applications to silicene

Introduction of XPS Absolute binding energies of core states Applications to silicene Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicene arxiv:1607.05544 arxiv:1610.03131 Taisuke Ozaki and Chi-Cheng

More information

Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods

Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods Physics Procedia 3 (2010) 1437 1441 www.elsevier.com/locate/procedia Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods Jindřich Kolorenč a and Lubos Mitas a a Department

More information

Integrating CML, FoX, Avogadro, NWChem, and EMSLHub to develop a computational chemistry knowledge and discovery base

Integrating CML, FoX, Avogadro, NWChem, and EMSLHub to develop a computational chemistry knowledge and discovery base Integrating CML, FoX, Avogadro, NWChem, and EMSLHub to develop a computational chemistry knowledge and discovery base Wibe A. de Jong, David M. Brown, Andrew Walker, Marcus D. Hanwell Data is key to scientific

More information

ALMA: All-scale predictive design of heat management material structures

ALMA: All-scale predictive design of heat management material structures ALMA: All-scale predictive design of heat management material structures Version Date: 2015.11.13. Last updated 2015.12.02 Purpose of this document: Definition of a data organisation that is applicable

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

The QMC Petascale Project

The QMC Petascale Project The QMC Petascale Project Richard G. Hennig What will a petascale computer look like? What are the limitations of current QMC algorithms for petascale computers? How can Quantum Monte Carlo algorithms

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Quantum Monte Carlo backflow calculations of benzene dimers

Quantum Monte Carlo backflow calculations of benzene dimers Quantum Monte Carlo backflow calculations of benzene dimers Kathleen Schwarz*, Cyrus Umrigar**, Richard Hennig*** *Cornell University Department of Chemistry, **Cornell University Department of Physics,

More information

arxiv: v1 [cond-mat.str-el] 18 Jul 2007

arxiv: v1 [cond-mat.str-el] 18 Jul 2007 arxiv:0707.2704v1 [cond-mat.str-el] 18 Jul 2007 Determination of the Mott insulating transition by the multi-reference density functional theory 1. Introduction K. Kusakabe Graduate School of Engineering

More information

Quantum Monte Carlo for Transition Metal Systems: Method Developments and Applications. Lucas K. Wagner

Quantum Monte Carlo for Transition Metal Systems: Method Developments and Applications. Lucas K. Wagner ABSTRACT WAGNER, LUCAS K. Quantum Monte Carlo for Transition Metal Systems: Method Developments and Applications. (Under the direction of Professor Lubos Mitas). Quantum Monte Carlo (QMC) is a powerful

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

Orbital-dependent backflow transformations in quantum Monte Carlo

Orbital-dependent backflow transformations in quantum Monte Carlo transformations in quantum Monte Carlo P. Seth, P. López Ríos, and R. J. Needs TCM group, Cavendish Laboratory, University of Cambridge 5 December 2012 VMC and DMC Optimization Wave functions Variational

More information

Molecular and Electronic Dynamics Using the OpenAtom Software

Molecular and Electronic Dynamics Using the OpenAtom Software Molecular and Electronic Dynamics Using the OpenAtom Software Sohrab Ismail-Beigi (Yale Applied Physics) Subhasish Mandal (Yale), Minjung Kim (Yale), Raghavendra Kanakagiri (UIUC), Kavitha Chandrasekar

More information

First- principles studies of spin-crossover molecules

First- principles studies of spin-crossover molecules Vallico di Sotto, 30 th July 2012 First- principles studies of spin-crossover molecules Andrea Droghetti and Stefano Sanvito School of Physics and CRANN, Trinity College Dublin Dario Alfe' London Centre

More information

Quantum Monte Carlo methods: recent developments and applications

Quantum Monte Carlo methods: recent developments and applications Quantum Monte Carlo methods: recent developments and applications Lucas Wagner, Michal Bajdich, Gabriel Drobny Zack Helms, Lubos Mitas North Carolina State University in collab. with Jeffrey Grossman,

More information

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited. Progress Report to the Office of Naval Research

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited. Progress Report to the Office of Naval Research Progress Report to the Office of Naval Research Grant No. N00014-02-1-0735 Period: September 15. 2004 - May 31, 2005 Program Manager: Dr. Morely Stone Theoretical Analysis of Conductance of Molecular Junctions

More information

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli Electron Emission from Diamondoids: a DMC Study Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli October 18, 2005 1 Semiconductor Nanoparticles for Optoelectronic Devices (I) The

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

arxiv: v1 [cond-mat.mes-hall] 15 Aug 2014

arxiv: v1 [cond-mat.mes-hall] 15 Aug 2014 The potential applications of phosphorene as anode arxiv:1408.3488v1 [cond-mat.mes-hall] 15 Aug 2014 materials in Li-ion batteries Shijun Zhao,, and Wei Kang, HEDPS, Center for Applied Physics and Technology,

More information

Data Mining with the PDF-4 Databases. FeO Non-stoichiometric Oxides

Data Mining with the PDF-4 Databases. FeO Non-stoichiometric Oxides Data Mining with the PDF-4 Databases FeO Non-stoichiometric Oxides This is one of three example-based tutorials for using the data mining capabilities of the PDF-4+ database and it covers the following

More information

COMPUTATIONAL PHYSICS. Research: multi-tools to study physical and chemical properties of materials at different time and length scales.

COMPUTATIONAL PHYSICS. Research: multi-tools to study physical and chemical properties of materials at different time and length scales. COMPUTATIONAL PHYSICS Aniket Bhattacharya 1 GS + 1UGS Archana Dubey - Abdelkader Kara 1 UGS Talat Rahman 7 GS + 1 REU + 5.2 PostDocs Patrick Schelling 2 GS + 1UGS + 3 REU Sergey Stolbov 1GS ~ 30 papers

More information

Bayero Journal of Pure and Applied Sciences, 3(1): Received: September, 2009 Accepted: May, 2010

Bayero Journal of Pure and Applied Sciences, 3(1): Received: September, 2009 Accepted: May, 2010 Bajopas Volume 3 Number June Bayero Journal of Pure and Applied Sciences, 3(: - 7 Received: September, 9 Accepted: May, VARIAIONAL QUANUM MON CARLO CALCULAION OF H GROUND SA NRG OF HDROGN MOLCUL Suleiman,

More information

Superconductivity and spin excitations in orbitally ordered FeSe

Superconductivity and spin excitations in orbitally ordered FeSe Superconductivity and spin excitations in orbitally ordered FeSe Andreas Kreisel, Brian M. Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peter J. Hirschfeld Department

More information

Intermission: Let s review the essentials of the Helium Atom

Intermission: Let s review the essentials of the Helium Atom PHYS3022 Applied Quantum Mechanics Problem Set 4 Due Date: 6 March 2018 (Tuesday) T+2 = 8 March 2018 All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the

More information

Fixed-Node quantum Monte Carlo for Chemistry

Fixed-Node quantum Monte Carlo for Chemistry Fixed-Node quantum Monte Carlo for Chemistry Michel Caffarel Lab. Physique et Chimie Quantiques, CNRS-IRSAMC, Université de Toulouse e-mail : caffarel@irsamc.ups-tlse.fr. p.1/29 The N-body problem of Chemistry

More information

Quantum Monte Carlo with

Quantum Monte Carlo with Quantum Monte Carlo with QuantumField Monte Carlo Interactions with Chiral Effective Theory Chiral Effective Field Theory Interactions From matter to nuclei Alexandros Gezerlis ECT*-EMMI Workshop Neutron-Rich

More information

Nature of the Metalization Transition in Solid Hydrogen

Nature of the Metalization Transition in Solid Hydrogen Nature of the Metalization Transition in Solid Hydrogen Sam Azadi Department of Physics, Imperial College London, Thomas oung Centre and London Centre for Nanotechnology, London SW7 2AZ, United Kingdom

More information

Electronic-structure calculations at macroscopic scales

Electronic-structure calculations at macroscopic scales Electronic-structure calculations at macroscopic scales M. Ortiz California Institute of Technology In collaboration with: K. Bhattacharya, V. Gavini (Caltech), J. Knap (LLNL) BAMC, Bristol, March, 2007

More information

Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations

Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations C. Melton, M.C. Bennett, L. Mitas with A. Ambrosetti, F. Pederiva North Carolina State University

More information

Spin-crossover molecules: puzzling systems for electronic structure methods. Andrea Droghetti School of Physics and CRANN, Trinity College Dublin

Spin-crossover molecules: puzzling systems for electronic structure methods. Andrea Droghetti School of Physics and CRANN, Trinity College Dublin Spin-crossover molecules: puzzling systems for electronic structure methods Andrea Droghetti School of Physics and CRANN, Trinity College Dublin Introduction Introduction Can we read a molecule spin? Can

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Observations on variational and projector Monte Carlo Methods

Observations on variational and projector Monte Carlo Methods Observations on variational and projector Monte Carlo Methods C. J. Umrigar Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA (Dated: September 29, 2015) Variational

More information

Electronic configurations, Auf-bau principle, Pauli principle, Hunds rule 1. Which of the following statements in relation to the hydrogen atom is correct? 1) 3s and 3p orbitals are of lower energy than

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Activitydevelop Educator Version BU IL D A MAGNETO METER How can

More information

BU IL D A SO L AR ECL IPSE

BU IL D A SO L AR ECL IPSE Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Activitydevelop Family Version BU IL D A SO L AR ECL IPSE VIEW ER

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se)

Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se) Materials and Methods: SUPPLEMENTARY INFORMATION Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se) All the crystals, with nominal composition FeTe0.5Se0.5, used in

More information

QuantumATK Platform for Universities & Government Labs

QuantumATK Platform for Universities & Government Labs QuantumATK Platform for Universities & Government Labs QuantumATK is a complete and fully integrated software suite for atomic-scale modeling for academic research, professionally engineered using state-of-the-art

More information

Is the homogeneous electron gas homogeneous?

Is the homogeneous electron gas homogeneous? Is the homogeneous electron gas homogeneous? Electron gas (jellium): simplest way to view a metal homogeneous and normal Hartree-Fock: simplest method for many-electron systems a single Slater determinant

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

Van der Waals Interactions Between Thin Metallic Wires and Layers

Van der Waals Interactions Between Thin Metallic Wires and Layers Van der Waals Interactions Between Thin Metallic Wires and Layers N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Quantum Monte

More information

Nodal surfaces and interdimensional degeneracies

Nodal surfaces and interdimensional degeneracies THE JOURNAL OF CHEMICAL PHYSICS 142, 214112 (2015) Nodal surfaces and interdimensional degeneracies Pierre-François Loos 1,a) and Dario Bressanini 2,b) 1 Research School of Chemistry, Australian National

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Pseudopotentials: design, testing, typical errors

Pseudopotentials: design, testing, typical errors Pseudopotentials: design, testing, typical errors Kevin F. Garrity Part 3 National Institute of Standards and Technology (NIST) Uncertainty Quantification in Materials Modeling 2015 Testing Basis Sets

More information

E Update: Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering

E Update: Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering E05-017 Update: Measurement of Two-Photon Exchange in Unpolarized Elastic Electron-Proton Scattering Part of the ROSEN07 Collaboration P. Solvignon, M. Johnson, J. Arrington, R. E. Segel, et al Rosenbluth

More information

A DIVISION OF ULVAC-PHI

A DIVISION OF ULVAC-PHI A DIVISION OF ULVAC-PHI X-ray photoelectron spectroscopy (XPS/ESCA) is the most widely used surface analysis technique and has many well established industrial and research applications. XPS provides

More information

Supplementary Information: Lifetime measurements well below the diffraction limit

Supplementary Information: Lifetime measurements well below the diffraction limit Supplementary Information: Lifetime measurements well below the diffraction limit S. Meuret, L. H. G. Tizei, T.Auzelle, B. Daudin, B. Gayral and M. Kociak 1 High Angle Annular Dark Field acquired during

More information

7. Quantum Monte Carlo (QMC)

7. Quantum Monte Carlo (QMC) Molecular Simulations with Chemical and Biological Applications (Part I) 7. Quantum Monte Carlo (QMC) Dr. Mar(n Steinhauser 1 HS 2014 Molecular Simula(ons with Chemical and Biological Applica(ons 1 Introduc5on

More information

Diffusion Monte Carlo

Diffusion Monte Carlo Diffusion Monte Carlo Notes for Boulder Summer School 2010 Bryan Clark July 22, 2010 Diffusion Monte Carlo The big idea: VMC is a useful technique, but often we want to sample observables of the true ground

More information

When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany

When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany QMC@TTI, Apuan Alps, Jul 29, 2013 When (2 + 2) 4 or Van der Waals Interactions in Complex (and Simple)

More information

Simulations of Li ion diffusion in the electrolyte material Li 3 PO 4

Simulations of Li ion diffusion in the electrolyte material Li 3 PO 4 Simulations of Li ion diffusion in the electrolyte material Li 3 PO 4 a, b N. A. W. Holzwarth Wake Forest University, Winston-Salem, NC, USA Motivation Calculational methods Diffusion in crystalline material

More information

Many-body electronic structure theory: Is Quantum Monte-Carlo affordable for molecular crystals?

Many-body electronic structure theory: Is Quantum Monte-Carlo affordable for molecular crystals? Many-body electronic structure theory: Is Quantum Monte-Carlo affordable for molecular crystals? Gerit Brandenburg 23 rd of November 2017 CHEMISTRY DEPARTMENT, UNIVERSITY OF TURIN,

More information

DATA ANALYTICS IN NANOMATERIALS DISCOVERY

DATA ANALYTICS IN NANOMATERIALS DISCOVERY DATA ANALYTICS IN NANOMATERIALS DISCOVERY Michael Fernandez OCE-Postdoctoral Fellow September 2016 www.data61.csiro.au Materials Discovery Process Materials Genome Project Integrating computational methods

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook

Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook Core level binding energies in solids from first-principles Introduction of XPS Absolute binding energies of core states Applications to silicone Outlook TO and C.-C. Lee, Phys. Rev. Lett. 118, 026401

More information

Pseudopotential Theory of Semiconductor Quantum Dots

Pseudopotential Theory of Semiconductor Quantum Dots phys. stat. sol. (b) 224, No. 3, 727 734 (2001) Pseudopotential Theory of Semiconductor Quantum Dots Alex Zunger National Renewable Energy Laboratory, Golden, CO 80401, USA (Received July 31, 2000; accepted

More information

Simulations in Radiation Therapy

Simulations in Radiation Therapy Simulations in Radiation Therapy D. Sarrut Directeur de recherche CNRS Université de Lyon, France CREATIS-CNRS ; IPNL-CNRS ; Centre Léon Bérard Numerical simulations and random processes treat cancer 2

More information

OECD QSAR Toolbox v.4.1. Tutorial on how to predict Skin sensitization potential taking into account alert performance

OECD QSAR Toolbox v.4.1. Tutorial on how to predict Skin sensitization potential taking into account alert performance OECD QSAR Toolbox v.4.1 Tutorial on how to predict Skin sensitization potential taking into account alert performance Outlook Background Objectives Specific Aims Read across and analogue approach The exercise

More information

Quantum Monte Carlo. QMC methods in the continuum

Quantum Monte Carlo. QMC methods in the continuum Quantum Monte Carlo Premise: need to use simulation techniques to solve manybody quantum problems just as you need them classically. Both the wavefunction and expectation values are determined by the simulations.

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Methods of Fermion Monte Carlo

Methods of Fermion Monte Carlo Methods of Fermion Monte Carlo Malvin H. Kalos kalos@llnl.gov Institute for Nuclear Theory University of Washington Seattle, USA July, 2013 LLNL-PRES-XXXXXX This work was performed under the auspices of

More information

arxiv: v1 [cond-mat.quant-gas] 9 May 2011

arxiv: v1 [cond-mat.quant-gas] 9 May 2011 Atomic Fermi gas at the unitary limit by quantum Monte Carlo methods: Effects of the interaction range Xin Li, Jindřich Kolorenč,,2 and Lubos Mitas Department of Physics, North Carolina State University,

More information

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Julien Toulouse, Cyrus Umrigar, Roland Assaraf Cornell Theory Center, Cornell University, Ithaca, New York, USA. Laboratoire

More information

Binding energy of 2D materials using Quantum Monte Carlo

Binding energy of 2D materials using Quantum Monte Carlo Quantum Monte Carlo in the Apuan Alps IX International Workshop, 26th July to 2nd August 2014 The Apuan Alps Centre for Physics @ TTI, Vallico Sotto, Tuscany, Italy Binding energy of 2D materials using

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

Quantum Monte Carlo Calculations of Point Defects in Alumina

Quantum Monte Carlo Calculations of Point Defects in Alumina Quantum Monte Carlo Calculations of Nicholas Hine Condensed Matter Theory Group Imperial College London Sunday 22nd July 2007 Dramatis Personae Collaborators Matthew Foulkes Mike Finnis Kilian Frensch

More information

Handout 13 Interpreting your results. What to make of your atomic coordinates, bond distances and angles

Handout 13 Interpreting your results. What to make of your atomic coordinates, bond distances and angles Handout 13 Interpreting your results What to make of your atomic coordinates, bond distances and angles 1 What to make of the outcome of your refinement There are several ways of judging whether the outcome

More information

Quantum Monte Carlo calculations of the structural properties and the B1-B2 phase transition of MgO

Quantum Monte Carlo calculations of the structural properties and the B1-B2 phase transition of MgO Quantum Monte Carlo calculations of the structural properties and the B1-B2 phase transition of MgO D. Alfè, 1,2 M. Alfredsson, 1 J. Brodholt, 1 M. J. Gillan, 2 M. D. Towler, 3 and R. J. Needs 3 1 Department

More information