MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Size: px
Start display at page:

Download "MASSACHUSETTS INSTITUTE OF TECHNOLOGY"

Transcription

1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.73 Quantum Mechanic I Fall, 00 Profeor Robert W. Field FINAL EXAMINATION DUE: December 11, 00 at 11:00AM. Thi i an open book, open note, open computer, unlimited time exam. You may talk to each other to clarify what the quetion mean, but not how to anwer them. You may alo contact me and I will attempt to give you explicit help (including ome direct intruction about how to olve a problem). Name: GRADING: I. II. III. TOTAL:

2 5.73 Final Exam Page 1 I. Aufbau for Adult. Look at page 31-9 of the lecture note. Now conider the following problem of pectrum identification and prediction. A. You have an aborption pectrum and you do not know whether it come from atomic C, N, or O. You do not have acce to a table of energy level or aigned pectral line. What are the feature in the pectrum that would enable you to concluively identify the carrier of the pectrum? Here are the rule: a. The atom tart out in it ground electronic tate. You cannot rely on any tate being initially populated other than the lowet L S J tate predicted by Hund rule. b. The election rule for electronic tranition are l = ±1. Thi i conitent with L = 0, ±1, S = 0, J = 0, ±1. An off-diagonal matrix element of H SO between ame-configuration, ame-j, L = 0, ±1, S = 0, ±1 tate could make weakly obervable certain S 0 tranition. The intenity borrowed by a nominally forbidden tranition i directly related to level hift of both the borrowing and lending tate. c. The nuclear pin of 1 C, 14 N, 16 O are I = 0, 1, and 0 repectively. You can ue the preence or abence of hyperfine tructure to make aignment, but you mut make ome prediction about the qualitative nature of the hf. d. You can ue the Zeeman ect in a variety of way to identify the tate involved in a tranition. If you do o, you mut calculate g- value. e. The Landé interval rule hould prove very helpful. If you ue it, you hould calculate the relative intenitie of tranition to different J component of an S 0, L 0 multiplet tate. The tranition intenitie come from the form of the tranition operator a a 1-electron operator, T (1) [r] where r i the electron coordinate. Thi ha l = ±1 election rule. Z-polarized light excite m l = 0 tranition. You hould anwer thi quetion by identifying the unique pectrocopic ignature of each atom. I am looking for quality (very pecific diagnotic) rather than quantity (vague, qualitative tatement).

3 5.73 Final Exam Page B. Ioelectronic and iovalent comparion. The energy level diagram for two atom with the ame number of valence electron will reemble each other, but the cale parameter [ε nl, F k, G k, ζ nl ] will be ytematically and predictably different. (i) How would the pectra of C, N, and O compare. Make plauible argument about how each of the cale parameter would change. (ii) How would the pectra of Si, P, and S compare to the pectra of C, N, and O, repectively? Again, be a pecific (and ingeniou) a you can about how you expect all of the cale parameter to change. C. A tranition from the N atom ground tate to one of the 4 P tate belonging to either the p 4 or the p 3 configuration i excited. (i) (ii) How would you be able to tell which configuration the 4 P tate belong to? The tranition i excited with a 1f light pule. There will be quantum beat in the fluorecence. Be a pecific a you can be about the fine tructure (J = 5/, 3/, 1/) and hyperfine tructure ( F= J I) contribution to the quantum beat pectrum. Be a pecific a you can be about frequency ratio and the relative intenitie of the variou beat note.

4 5.73 Final Exam Page 3 II. Effective Core Potential (Peudopotential) It i often ueful to implify a many-electron problem to a one-electron problem. The active electron move in the emi-empirically defined ective potential of the ioncore. In thi problem you will ue a one-dimenional ordinary differential equation olver (Dave Lahr MATLAB handout) to define Z (r) for the Ca 1 S and Ca 4 S ion uing the experimentally known quantum defect for the n, np, and nd Rydberg erie of Ca and the 4nl 1 L (l=0, 1, ) Rydberg erie of Ca. The radial Schrodinger equation, expreed in atomic unit i du E V() r dr ur () = rrr () ( 1) u = 0 r ll E i the binding energy of the electron (the zero of energy i et at the ionization threhold) Vr () = Z ()/ r r V () r = V() r l ( ) r ll 1 where, for Ca, br Z () r = 18( 1 ar) e, a 0 and b 0 which ha the required limiting behavior Z Z ( 0) = 0 ( ) =. The b parameter determine the overall ize of the Ca ion-core and the a parameter permit Z ( r) to exhibit ome remnant of hell tructure. Initially, you hould et a = 0 and vary b to obtain a V l (r) that give the correct (i.e. empirically determined) quantum defect for the Ca n Rydberg erie. Then you will adjut a and b to match the quantum defect for the Ca np and Ca nd Rydberg erie

5 5.73 Final Exam Page 4 Eau (..) 1 / hc= R = ( cm ) 4R ECa ( nl) hc= ± n µ p µ = µ = d µ = ( ) l For the Ca 4nl 1 L Rydberg erie, the ective potential of the Ca 4 S ion-core could be parametrized a where V () r = Z ()/ r r l ( 1) r ll cr Z () r = Z () r ( e 1) Z ( 0) = 0 Z ( ) = 1 Thi form for Z ( r ) treat the ect of the 4 electron a imply additive to the ective potential of Ca. The c parameter will be much maller than the b parameter, becaue the 4 orbital will be much larger than the Ca ion-core. Once you have optimally decribed Z ( r ) by fitting to the Ca nl Rydberg quantum defect, you hould adjut c to fit the Ca 4nl 1 L quantum defect. µ =. 931 µ = p d µ = ( 1 4 l ) = ECa n L hc 1R ( n µ ) l Here i the procedure that I propoe you follow. Ue the MATLAB ODE olver upplied by Dave Lahr (and you MAY collaborate with each other in making thi work). A. Chooe an initial value for the b parameter and et a = 0. You hould chooe b large enough o that Z ( r ) i between and 3 at r = m, which i the official ionic-radiu of Ca. Solve the 1-particle radial Schrödinger equation for Ca 8. The boundary condition are u l (0) = 0 and u l ( ) = 0. You are looking for an l = 0 eigentate

6 5.73 Final Exam Page 5 with even internal node. Once you find the 8 eigentate, you need to adjut b o that the eigenenergy i E 8/ hc = 4R/ 8 µ = cm [ ] = ( ) cm 1. 1 Thi i an iterative proce. Once you have found a atifactory value for b, repeat the iterative proce tarting with a = 1. When you are done you will have two pair of a,b value that give the correct energy for the Ca 8 tate. Then ue the two pair of a,b value to compute the energy of the Ca 8p tate (ix internal node). Both of the calculated energie are likely to be lightly incorrect. Devie (and explain) an iterative trategy o that you can find a pair of a,b value that give the correct energy for both Ca 8 and Ca 8p. [ ] E 8p = 4R8 µ p. Now your Z ( r) function hould be pretty cloe to perfect. Tet thi by computing the energy of the Ca 8d tate (5 internal node). [ ] E 8d = 4R8 µ d. B. (Optional). Now that you have determined an empirically optimized Z () r for Ca, determine for Ca 4nl (l = 0,1, and ). Optimize the c parameter in ( ) cr Z () r = Z () r e 1 to obtain the correct energy for the Ca 48 1 S tate, ( ) = R µ 1 ECa 48 S hc ± 8 µ = [ ] Once you have done thi, check thi Z ( r ) to ee how well the Ca 48p 1P and 48d 1 D tate are predicted. If the reult for 48p and 48d are unatifactory, ugget a plauible reaon for the dicrepancy.

7 5.73 Final Exam Page 6 Cloing comment: Thi ective core potential method could be ued to find the energie of the outide-core electronic tate of a charged metal olid phere, a charged metal hollow phere, or a charged quantum dot.

8 5.73 Final Exam Page 7 III. Wavepacket Dynamic in Atomic Rydberg-Land. I am going to lead you through a implified verion of the experiment decribed in the attached paper, Nonexponential Decay of Autoionizing Shock Wave Packet by Thoma and Jone [Phy. Rev. Let. 83, 516 (1999)]. The purpoe of thi problem i to develop the dual kill of decribing the evolution of Ψ(t) a a pecific linear combination of eigentate and of decribing the time dependent picture of wavepacket in motion. The relevant energy level tructure of Ca and Ca i ummarized in the level diagram: 4dm d 7470 cm cm Ca 4p P 1 1/,3/ 318nm [Ca 4d 4p] (femtoecond excitation) 4pmd cm cm 1 Ca 3d D 3/,5/ 393nm [Ca 4p 4] (femtoecond excitation) cm cm 1 Ca 4 S 4 nd 1 D (4 < n < 33) 393nm (nanoecond excitation) 365 cm 1 4 4p 1 P 1 43nm (nanoecond excitation) 0 cm 1 Two nanoecond laer are ued to populate one of everal 4nd 1 D eigentate, where 4 < n < 33. A femtoecond laer pule (393nm) excite the 4 electron to the 4p orbital. The frequency of thi tranition i expected to be very cloe to that of the Ca 4p P 3/ 4 S excitation ( cm 1 or 393nm). The pectral width of the 00f pule i ufficiently narrow that 4p P 1/ S 1/ i not excited. The excitation probability (becaue of n 3 -caling) for the Rydberg electron i negligibly mall. The

9 5.73 Final Exam Page 8 hort pule excitation tranfer the nd eigentate from Ca 4nd to Ca 4pnd where it i not an eigentate. Thu Ψ(0) i a uperpoition of quai-eigentate Ψ( 0) = cm 4p md. m Thee are quai-eigentate becaue they can decay by autoionization into the continua of Ca 4 εl (l = odd) and Ca 3d ε l (l = odd) via matrix element of 1/r 1. The energie of thee 4pmd quai-eigentate can be taken to be given by a implified Rydberg formula (neglecting quantum defect): E 4pmd = E( Ca 4p P3 / ) hc R/ m. For pecificity, let 3 m 37 (ix tate) and let C m be 6 1/ for all ix m value. The 00f 393 nm PUMP pule launche a wavepacket that, at t = 0, i identical to the nd orbital in the 4nd initial eigentate. The outer lobe of thi wavefunction i located near (but not at) the outer turning point of the 4pmd quai-eigentate. The wavepacket will evolve in a way that you will need to figure out. The ocillation period i called the Kepler period. Note that if you chooe wavefunction phae o that the innermot lobe i alway poitive, the outermot lobe will exhibit a phae that ocillate with principal quantum number, in thi cae ( 1) m. A. For the 3 m 37 wavepacket, what i the Kepler period, T k? At different time during a Kepler period the way in which the wavepacket created by the 393nm 00f PUMP pule i affected by the 318nm 00f PROBE pule change. The PROBE pule act on the inner (4p) electron. The 4d 4p tranition amplitude from all of the quai-eigentate component are in phae when the wavepacket ha returned to it original form at t = 0, T k, T k and motly out-of-phae at t = T k (, 3T k /, ). B. For the 3 m 37 wavepacket at t = T k /, decribe the time-dependent amplitude of each of the quai-eigentate m-component in Ψ(T k /). Be explicit about the phae of the innermot and outermot lobe of each m-component. When the initially created wavepacket i at it t = 0, T k, T k form, it rate of autoionization into the Ca 4 εl (l = odd) and Ca 3d ε l (l = odd) continua will be different from when it i at it t = T k /, form. Figure of the attached paper ugget that the autoionization rate i minimized at t = 0, T k, T k and reache one or two maxima during each Kepler period. The autoionization i due to matrix element of 1/r 1. The inner part of the md Rydberg orbital i mot important in determining the magnitude (caling a m 3/ ) of 4pmd1/ r 3dε l and 4pmd1/ r 4εl matrix element. 1 1

10 5.73 Final Exam Page 9 C. Explain the ocillation in the autoionization rate of the 4pmd wavepacket. I will be very impreed by an explanation that account for the two maxima in the autoionization rate during each Kepler period. The 318nm 00f PROBE pule excite 4d m d 4p md [via Ca 4d 4p]. [The quantum defect for the 4dm d and 4pmd quai-eigentate are lightly different.] Thi new wavepacket alo autoionize. The autoionization ignal due to the PUMP alone and the PUMP PROBE are ditinguihed via the kinetic energy of the ejected electron. So the ytematically time-delayed PROBE pule i capable of ampling the population in the PUMP-produced Ψ(t), with approximately 400f time reolution. If there were no autoionization from the PUMP-produced wavepacket, there might till be a delay-time dependence of the PROBE-induced excitation probability. D. Derive an expreion for the delay-dependent PROBE excitation rate. Explain your aumption in deciding whether the excitation rate i maximal at t = 0, T k, T k or at t = T k /, 3T k /, or independent of t. Thi i related to your anwer to part B.

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL =

μ + = σ = D 4 σ = D 3 σ = σ = All units in parts (a) and (b) are in V. (1) x chart: Center = μ = 0.75 UCL = Our online Tutor are available 4*7 to provide Help with Proce control ytem Homework/Aignment or a long term Graduate/Undergraduate Proce control ytem Project. Our Tutor being experienced and proficient

More information

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.: MATEMATIK Datum: 20-08-25 Tid: eftermiddag GU, Chalmer Hjälpmedel: inga A.Heintz Telefonvakt: Ander Martinon Tel.: 073-07926. Löningar till tenta i ODE och matematik modellering, MMG5, MVE6. Define what

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

2 States of a System. 2.1 States / Configurations 2.2 Probabilities of States. 2.3 Counting States 2.4 Entropy of an ideal gas

2 States of a System. 2.1 States / Configurations 2.2 Probabilities of States. 2.3 Counting States 2.4 Entropy of an ideal gas 2 State of a Sytem Motly chap 1 and 2 of Kittel &Kroemer 2.1 State / Configuration 2.2 Probabilitie of State Fundamental aumption Entropy 2.3 Counting State 2.4 Entropy of an ideal ga Phyic 112 (S2012)

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

9 Lorentz Invariant phase-space

9 Lorentz Invariant phase-space 9 Lorentz Invariant phae-space 9. Cro-ection The cattering amplitude M q,q 2,out p, p 2,in i the amplitude for a tate p, p 2 to make a tranition into the tate q,q 2. The tranition probability i the quare

More information

The Hand of God, Building the Universe and Multiverse

The Hand of God, Building the Universe and Multiverse 1.0 Abtract What i the mathematical bai for the contruction of the univere? Thi paper intend to how a tart of how the univere i contructed. It alo anwer the quetion, did the hand of God build the univere?

More information

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor Lecture 5: Overflow from lat lecture: Ewald contruction and Brillouin zone Structure factor Review Conider direct lattice defined by vector R = u 1 a 1 + u 2 a 2 + u 3 a 3 where u 1, u 2, u 3 are integer

More information

Symmetry Lecture 9. 1 Gellmann-Nishijima relation

Symmetry Lecture 9. 1 Gellmann-Nishijima relation Symmetry Lecture 9 1 Gellmann-Nihijima relation In the lat lecture we found that the Gell-mann and Nihijima relation related Baryon number, charge, and the third component of iopin. Q = [(1/2)B + T 3 ]

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Chapter 1 Basic Description of Laser Diode Dynamics by Spatially Averaged Rate Equations: Conditions of Validity

Chapter 1 Basic Description of Laser Diode Dynamics by Spatially Averaged Rate Equations: Conditions of Validity Chapter 1 Baic Decription of Laer Diode Dynamic by Spatially Averaged Rate Equation: Condition of Validity A laer diode i a device in which an electric current input i converted to an output of photon.

More information

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004 18.997 Topic in Combinatorial Optimization April 29th, 2004 Lecture 21 Lecturer: Michel X. Goeman Scribe: Mohammad Mahdian 1 The Lovaz plitting-off lemma Lovaz plitting-off lemma tate the following. Theorem

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

Part of Special Issue on Semiconductor Spintronics

Part of Special Issue on Semiconductor Spintronics Phy. Statu Solidi B 251, No. 9, 1892 1911 (2014) / DOI 10.1002/pb.201350235 Part of Special Iue on Semiconductor Spintronic Spin mode locking in quantum dot reviited phyica p www.p-b.com tatu olidi baic

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

Sampling and the Discrete Fourier Transform

Sampling and the Discrete Fourier Transform Sampling and the Dicrete Fourier Tranform Sampling Method Sampling i mot commonly done with two device, the ample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquire a CT ignal at

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar DECOUPLING CONTROL M. Fikar Department of Proce Control, Faculty of Chemical and Food Technology, Slovak Univerity of Technology in Bratilava, Radlinkého 9, SK-812 37 Bratilava, Slovakia Keyword: Decoupling:

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory. Homework #0 Solutions on Review of Signals and Systems Material Spring 4 EE 445S Real-Time Digital Signal Proceing Laboratory Prof. Evan Homework # Solution on Review of Signal and Sytem Material Problem.. Continuou-Time Sinuoidal Generation. In practice, we cannot

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

arxiv: v2 [nucl-th] 3 May 2018

arxiv: v2 [nucl-th] 3 May 2018 DAMTP-207-44 An Alpha Particle Model for Carbon-2 J. I. Rawlinon arxiv:72.05658v2 [nucl-th] 3 May 208 Department of Applied Mathematic and Theoretical Phyic, Univerity of Cambridge, Wilberforce Road, Cambridge

More information

Convex Hulls of Curves Sam Burton

Convex Hulls of Curves Sam Burton Convex Hull of Curve Sam Burton 1 Introduction Thi paper will primarily be concerned with determining the face of convex hull of curve of the form C = {(t, t a, t b ) t [ 1, 1]}, a < b N in R 3. We hall

More information

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall Beyond Significance Teting ( nd Edition), Rex B. Kline Suggeted Anwer To Exercie Chapter. The tatitic meaure variability among core at the cae level. In a normal ditribution, about 68% of the core fall

More information

The statistical properties of the primordial fluctuations

The statistical properties of the primordial fluctuations The tatitical propertie of the primordial fluctuation Lecturer: Prof. Paolo Creminelli Trancriber: Alexander Chen July 5, 0 Content Lecture Lecture 4 3 Lecture 3 6 Primordial Fluctuation Lecture Lecture

More information

Application of NMR Techniques to the Structural Determination of Caryophyllene Oxide (Unknown #92)

Application of NMR Techniques to the Structural Determination of Caryophyllene Oxide (Unknown #92) Application of NMR Technique to the Structural Determination of Caryophyllene xide (Unknown #92) C22 (Photo courtey of Dr. Kazuo Yamaaki, irohima Univerity) Chritopher J. Morten & Brian A. Sparling 5.4

More information

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1 Homework #7 Solution Aignment:. through.6 Bergen & Vittal. M Solution: Modified Equation.6 becaue gen. peed not fed back * M (.0rad / MW ec)(00mw) rad /ec peed ( ) (60) 9.55r. p. m. 3600 ( 9.55) 3590.45r.

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis Advanced Digital ignal Proceing Prof. Nizamettin AYDIN naydin@yildiz.edu.tr Time-Frequency Analyi http://www.yildiz.edu.tr/~naydin 2 tationary/nontationary ignal Time-Frequency Analyi Fourier Tranform

More information

1. The F-test for Equality of Two Variances

1. The F-test for Equality of Two Variances . The F-tet for Equality of Two Variance Previouly we've learned how to tet whether two population mean are equal, uing data from two independent ample. We can alo tet whether two population variance are

More information

Clustering Methods without Given Number of Clusters

Clustering Methods without Given Number of Clusters Clutering Method without Given Number of Cluter Peng Xu, Fei Liu Introduction A we now, mean method i a very effective algorithm of clutering. It mot powerful feature i the calability and implicity. However,

More information

FOURIER-BASED METHODS FOR THE SPECTRAL ANALYSIS OF MUSICAL SOUNDS. Sylvain Marchand

FOURIER-BASED METHODS FOR THE SPECTRAL ANALYSIS OF MUSICAL SOUNDS. Sylvain Marchand FOUIE-BAS METHOS FO THE SPECTAL ANALYSIS OF MUSICAL SOUNS Sylvain Marchand Univerity of Bret, Lab-STICC CNS UM 628, 292 Bret, Brittany, France ABSTACT When dealing with muical ound, the hort-time Fourier

More information

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability 5/7/2007 11_2 tability 1/2 112 tability eading Aignment: pp 542-548 A gain element i an active device One potential problem with every active circuit i it tability HO: TABIITY Jim tile The Univ of Kana

More information

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time EE 477 Digital Signal Proceing 4 Sampling; Dicrete-Time Sampling a Continuou Signal Obtain a equence of ignal ample uing a periodic intantaneou ampler: x [ n] = x( nt ) Often plot dicrete ignal a dot or

More information

AP Physics Quantum Wrap Up

AP Physics Quantum Wrap Up AP Phyic Quantum Wrap Up Not too many equation in thi unit. Jut a few. Here they be: E hf pc Kmax hf Thi i the equation for the energy of a photon. The hf part ha to do with Planck contant and frequency.

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.014.108 Supplementary Information "Spin angular momentum and tunable polarization in high harmonic generation" Avner Fleicher, Ofer Kfir, Tzvi Dikin, Pavel Sidorenko, and Oren Cohen

More information

At the end of this lesson, the students should be able to understand:

At the end of this lesson, the students should be able to understand: Intructional Objective: At the end of thi leon, the tudent hould be able to undertand: Baic failure mechanim of riveted joint. Concept of deign of a riveted joint. 1. Strength of riveted joint: Strength

More information

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD S.P. Teeuwen, I. Erlich U. Bachmann Univerity of Duiburg, Germany Department of Electrical Power Sytem

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

Approximating discrete probability distributions with Bayesian networks

Approximating discrete probability distributions with Bayesian networks Approximating dicrete probability ditribution with Bayeian network Jon Williamon Department of Philoophy King College, Str and, London, WC2R 2LS, UK Abtract I generalie the argument of [Chow & Liu 1968]

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronic ircuit Frequency epone hapter 7 A. Kruger Frequency epone- ee page 4-5 of the Prologue in the text Important eview co Thi lead to the concept of phaor we encountered in ircuit In Linear

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

Theoretical Computer Science. Optimal algorithms for online scheduling with bounded rearrangement at the end

Theoretical Computer Science. Optimal algorithms for online scheduling with bounded rearrangement at the end Theoretical Computer Science 4 (0) 669 678 Content lit available at SciVere ScienceDirect Theoretical Computer Science journal homepage: www.elevier.com/locate/tc Optimal algorithm for online cheduling

More information

Singular perturbation theory

Singular perturbation theory Singular perturbation theory Marc R. Rouel June 21, 2004 1 Introduction When we apply the teady-tate approximation (SSA) in chemical kinetic, we typically argue that ome of the intermediate are highly

More information

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex oment of nertia of an Equilateral Triangle with Pivot at one Vertex There are two wa (at leat) to derive the expreion f an equilateral triangle that i rotated about one vertex, and ll how ou both here.

More information

Asymptotics of ABC. Paul Fearnhead 1, Correspondence: Abstract

Asymptotics of ABC. Paul Fearnhead 1, Correspondence: Abstract Aymptotic of ABC Paul Fearnhead 1, 1 Department of Mathematic and Statitic, Lancater Univerity Correpondence: p.fearnhead@lancater.ac.uk arxiv:1706.07712v1 [tat.me] 23 Jun 2017 Abtract Thi document i due

More information

Estimating floor acceleration in nonlinear multi-story moment-resisting frames

Estimating floor acceleration in nonlinear multi-story moment-resisting frames Etimating floor acceleration in nonlinear multi-tory moment-reiting frame R. Karami Mohammadi Aitant Profeor, Civil Engineering Department, K.N.Tooi Univerity M. Mohammadi M.Sc. Student, Civil Engineering

More information

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell Lecture 15 - Current Puzzle... Suppoe an infinite grounded conducting plane lie at z = 0. charge q i located at a height h above the conducting plane. Show in three different way that the potential below

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

Lecture 3 Basic radiometric quantities.

Lecture 3 Basic radiometric quantities. Lecture 3 Baic radiometric quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation.. Baic introduction to electromagnetic field: Definition,

More information

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9 Even Odd Symmetry Lecture 9 1 Parity The normal mode of a tring have either even or odd ymmetry. Thi alo occur for tationary tate in Quantum Mechanic. The tranformation i called partiy. We previouly found

More information

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems A Contraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuit and Sytem Lubomir Kolev and Simona Filipova-Petrakieva Abtract The paper addree the tability margin aement

More information

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK ppendix 5 Scientific Notation It i difficult to work with very large or very mall number when they are written in common decimal notation. Uually it i poible to accommodate uch number by changing the SI

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 Reading Assignment: Bernath Chapter 5 MASSACHUSETTS INSTITUTE O TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring 994 Problem Set # The following handouts also contain useful information: C &

More information

Sociology 376 Exam 1 Spring 2011 Prof Montgomery

Sociology 376 Exam 1 Spring 2011 Prof Montgomery Sociology 76 Exam Spring Prof Montgomery Anwer all quetion. 6 point poible. You may be time-contrained, o pleae allocate your time carefully. [HINT: Somewhere on thi exam, it may be ueful to know that

More information

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum Mechanic Ocillation Torion pendulum LD Phyic Leaflet P.5.. Free rotational ocillation Meauring with a hand-held top-clock Object of the experiment g Meauring the amplitude of rotational ocillation a function

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

ME2142/ME2142E Feedback Control Systems

ME2142/ME2142E Feedback Control Systems Root Locu Analyi Root Locu Analyi Conider the cloed-loop ytem R + E - G C B H The tranient repone, and tability, of the cloed-loop ytem i determined by the value of the root of the characteritic equation

More information

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011 NCAAPMT Calculu Challenge 011 01 Challenge #3 Due: October 6, 011 A Model of Traffic Flow Everyone ha at ome time been on a multi-lane highway and encountered road contruction that required the traffic

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang Proceeding of the 2008 Winter Simulation Conference S. J. Maon, R. R. Hill, L. Mönch, O. Roe, T. Jefferon, J. W. Fowler ed. ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION Xiaoqun Wang

More information

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing.

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing. SAMPLING Sampling i the acquiition of a continuou ignal at dicrete time interval and i a fundamental concept in real-time ignal proceing. he actual ampling operation can alo be defined by the figure belo

More information

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources Senor and Simulation Note Note 50 Augut 005 Tuning of High-Power Antenna Reonance by Appropriately Reactive Source Carl E. Baum Univerity of New Mexico Department of Electrical and Computer Engineering

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

Reflection and transmission of obliquely incident graphene plasmons by discontinuities in

Reflection and transmission of obliquely incident graphene plasmons by discontinuities in Home Search Collection Journal About Contact u My IOPcience Reflection and tranmiion of obliquely incident graphene plamon by dicontinuitie in urface conductivity: obervation of the Brewter-like effect

More information

Lecture 7: Testing Distributions

Lecture 7: Testing Distributions CSE 5: Sublinear (and Streaming) Algorithm Spring 014 Lecture 7: Teting Ditribution April 1, 014 Lecturer: Paul Beame Scribe: Paul Beame 1 Teting Uniformity of Ditribution We return today to property teting

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Jump condition at the boundary between a porous catalyst and a homogeneous fluid

Jump condition at the boundary between a porous catalyst and a homogeneous fluid From the SelectedWork of Francico J. Valde-Parada 2005 Jump condition at the boundary between a porou catalyt and a homogeneou fluid Francico J. Valde-Parada J. Alberto Ochoa-Tapia Available at: http://work.bepre.com/francico_j_valde_parada/12/

More information

BASIC INDUCTION MOTOR CONCEPTS

BASIC INDUCTION MOTOR CONCEPTS INDUCTION MOTOS An induction motor ha the ame phyical tator a a ynchronou machine, with a different rotor contruction. There are two different type of induction motor rotor which can be placed inide the

More information

Modified long wavelength approximation for the optical response of a graded index. plasmonic nanoparticle. Republic of China OR , U. S. A.

Modified long wavelength approximation for the optical response of a graded index. plasmonic nanoparticle. Republic of China OR , U. S. A. Modified long wavelength approximation for the optical repone of a graded index plamonic nanoparticle H. Y. Chung 1*, P. T. Leung 2,3# and D. P. Tai 1 1 Department of Phyic, National Taiwan Univerity,

More information

Determination of the local contrast of interference fringe patterns using continuous wavelet transform

Determination of the local contrast of interference fringe patterns using continuous wavelet transform Determination of the local contrat of interference fringe pattern uing continuou wavelet tranform Jong Kwang Hyok, Kim Chol Su Intitute of Optic, Department of Phyic, Kim Il Sung Univerity, Pyongyang,

More information

GNSS Solutions: What is the carrier phase measurement? How is it generated in GNSS receivers? Simply put, the carrier phase

GNSS Solutions: What is the carrier phase measurement? How is it generated in GNSS receivers? Simply put, the carrier phase GNSS Solution: Carrier phae and it meaurement for GNSS GNSS Solution i a regular column featuring quetion and anwer about technical apect of GNSS. Reader are invited to end their quetion to the columnit,

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Flat Paband/Stopband Filter T j T j Lowpa Bandpa T j T j Highpa Bandreject Review from Lat

More information

Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat

Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat Online Appendix for Managerial Attention and Worker Performance by Marina Halac and Andrea Prat Thi Online Appendix contain the proof of our reult for the undicounted limit dicued in Section 2 of the paper,

More information

Noise Effects on Two Excitable Systems: Semiconductor Laser and Neuron Network Oscillations

Noise Effects on Two Excitable Systems: Semiconductor Laser and Neuron Network Oscillations Noie Effect on Two Excitable Sytem: Semiconductor Laer and Neuron Network Ocillation Athena Pan, Wei-Mien Mendy Hu Department of Phyic, Univerity of California, San Diego I. Introduction An excitable ytem

More information

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi International Journal of Innovative Computing, Information Control ICIC International c 206 ISSN 349-498 Volume 2, Number 2, April 206 pp. 357 370 THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

Annex-A: RTTOV9 Cloud validation

Annex-A: RTTOV9 Cloud validation RTTOV-91 Science and Validation Plan Annex-A: RTTOV9 Cloud validation Author O Embury C J Merchant The Univerity of Edinburgh Intitute for Atmo. & Environ. Science Crew Building King Building Edinburgh

More information

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow Green-Kubo formula with ymmetrized correlation function for quantum ytem in teady tate: the hear vicoity of a fluid in a teady hear flow Hirohi Matuoa Department of Phyic, Illinoi State Univerity, Normal,

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder Cloed-loop buck converter example: Section 9.5.4 In ECEN 5797, we ued the CCM mall ignal model to

More information

Tarzan s Dilemma for Elliptic and Cycloidal Motion

Tarzan s Dilemma for Elliptic and Cycloidal Motion Tarzan Dilemma or Elliptic and Cycloidal Motion Yuji Kajiyama National Intitute o Technology, Yuge College, Shimo-Yuge 000, Yuge, Kamijima, Ehime, 794-593, Japan kajiyama@gen.yuge.ac.jp btract-in thi paper,

More information

What is automatic control all about? Welcome to Automatic Control III!! "Automatic control is the art of getting things to behave as you want.

What is automatic control all about? Welcome to Automatic Control III!! Automatic control is the art of getting things to behave as you want. What i automatic control all about? Welcome to Automatic Control III!! Lecture Introduction and linear ytem theory Thoma Schön Diviion of Sytem and Control Department of Information Technology Uppala Univerity.

More information

INFRARED CONTINENTAL SURFACE EMISSIVITY SPECTRA AND SKIN TEMPERATURE RETRIEVED FROM IASI OBSERVATIONS

INFRARED CONTINENTAL SURFACE EMISSIVITY SPECTRA AND SKIN TEMPERATURE RETRIEVED FROM IASI OBSERVATIONS INFRARED CONINENAL SURFACE EMISSIVIY SPECRA AND SKIN EMPERAURE RERIEVED FROM IASI OSERVAIONS V. Capelle E. Péquignot 2 A. Chédin N. A. Scott. LMD CNRS/IPSL Ecole Polytechnique Palaieau France http://ara.lmd.polytechnique.fr

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

Stable Soliton Propagation in a System with Spectral Filtering and Nonlinear Gain

Stable Soliton Propagation in a System with Spectral Filtering and Nonlinear Gain  Fiber and Integrated Optic, 19:31] 41, 000 Copyright Q 000 Taylor & Franci 0146-8030 r00 $1.00 q.00 Stable Soliton Propagation in a Sytem with Spectral Filtering and Nonlinear Gain  MARIO F. S. FERREIRA

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

Lecture 6: Resonance II. Announcements

Lecture 6: Resonance II. Announcements EES 5 Spring 4, Lecture 6 Lecture 6: Reonance II EES 5 Spring 4, Lecture 6 Announcement The lab tart thi week You mut how up for lab to tay enrolled in the coure. The firt lab i available on the web ite,

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Deign and Analyi of Algorithm April 29, 2015 Maachuett Intitute of Technology 6.046J/18.410J Prof. Erik Demaine, Srini Devada, and Nancy Lynch Problem Set 8 Solution Problem Set 8 Solution Thi problem

More information

Properties of Z-transform Transform 1 Linearity a

Properties of Z-transform Transform 1 Linearity a Midterm 3 (Fall 6 of EEG:. Thi midterm conit of eight ingle-ided page. The firt three page contain variou table followed by FOUR eam quetion and one etra workheet. You can tear out any page but make ure

More information