COLUMN VECTORS a=[1;2;3] b. a(1) = first.entry of a

Size: px
Start display at page:

Download "COLUMN VECTORS a=[1;2;3] b. a(1) = first.entry of a"

Transcription

1 Lecture 2 vectors and matrices ROW VECTORS Enter the following in SciLab: [1,2,3] scilab notation for row vectors [8]==8 a=[2 3 4] separate entries with spaces or commas b=[10,10,10] a+b, b-a add, subtract the respective coordinates 2*a, a+1 scalar product and addition a**2, 2**a a*b wrong dimensions for matrix multiplication a.*b pointwise multiplication not matrix muliplication [a,b] a followed on the right by b., means continues on right. a(1) = first.entry of a first row a, second row b.; starts new row below. a(length(a)) = last entry of a [a;b] ; means starts new row below. a(1), a(2), a(3)... a(i)= ith entry of vector a. For the first time this semester, we are going to use a for loop. A for loop is a statement which allows the computer to execute repeatedly, for a given number of iterations, a sequence of instructions. for i=[3,1,5], disp(2*i), end In this example, the values of the entries of vector [3,1,5] will be consecutively assigned to the loop variable i. For each of these values, the machines displays (using the built-in function disp) the value 2*i. Once all the values have been assigned, the loop stops. As a result, we obtain the output : 6 =2*i for i=3 2 =2*i for i=1 10 =2*i for i=5 1 COLUMN VECTORS a=[1;2;3] b b=b transpose a+b, b-a, a.*b operations are performed component wise [a,b] column a followed on the left by column b [a;b] append b below a. OPERATIONS ON VECTORS sum(a) sum of entries,sum( [4,3,2] ) = 9 prod(a) product of entries, prod( [4,3,2] ) = 24 max(a) largest entry max( [4,3,2] ) = 4 min(a) smallest entry min( [4,3,2] ) = 2 length(a) number of entries in the vector, length( [4,3,2] )=3 not the geometric length or magnitude of the vector! PROGRESSIONS [0,1,5] row vector [0;1;5] column vector [0:1:5] start with 0, step size 1, end with 5 0:2:8 step size 2, [ ] may be omitted. [1:.1:2] step size.1 0:5 abreviation for [0:1:5] [5:-1:1] Open SciNotes. Reminder: All classwork and homework Scilab code lines including testing lines are to be entered in SciNotes (not in Scilab). c2.1 Select File/New. File/Save as c2.1 Copy/paste the template lines to SciNotes. Fill in the 3 blanks. Write as a progression ([n:s:m]) the vector:[2.0,1.9,1.8,..,0.0]] (should be 9 symbols with n + s + m = 1.9). //c2.1(1) [ : : ]

2 DOT (INNER) PRODUCT [a,b,c].[a,b,c ]= a*a +b*b +c*c = the dot product. The above formula only works for vectors of length 3. The dot-product function (built into Matlab but not Scilab) must work for vectors of any length. We have to define it. function P = dot product(a,b) //Type in SciNotes P = sum(a.*b) //3 function lines dot product([1,2],[3,4]) //2 testing lines dot product([1,2,3],[4,5,6]) //Answers: 11, 32. Scilab (Matlab) has lots of built-in functions. When asked to write a function, you are to write your own. Do not use a built-in function which does the same thing. This week, use only the functions provided in this lecture. e2.1 Write a function H(a) for the sum of the cubes of the components of a vector a, i.e., a a a 3 n. Test it on input provided by the user (see lecture 1). function x=h(a) x=sum(a**3) a=input( Enter a vector. > ) disp(h(a)) MAGNITUDE (GEOMETRIC LENGTH) a 2 + b 2 + c 2 This formula only for vectors of length 3. Let s write a function which works for vectors of any length. c2.2 File/Save as c2.2. Copy/paste the commented template lines to SciNotes. Define a function mag(a) which calculates the geometric length of the vector a (a can be any vector of any length). After the function, write lines which get a vector a from the user and display mag(a). //c2.2 mag(a)=geometric length of a. //Test on user input: a = input( Enter a vector. > ) NOTATION. In Matlab we often write a1 or a 1 for a 1. Variable names may include characters, numbers or underscores. MATRICES AND MATRIX MULTIPLICATION Enter in SciLab: a=[1 2; 3 4] b=[1,1;1,1] 2*b,a+b, a-b, a.*b, a*b [n,m]=size(a) n= number of rows m= number columns Matrix ( multiplication: ) ( ) ( ) a11 a 12 b11 b 12 a11 b = 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 a 22 b 21 b 22 a 21 b 11 + a 22 b 21 a 21 b 21 + a 22 b 22 The entry c ij in the ith row and jth column of the product is the dot product of the ith row of the first matrix and the jth column of the second matrix. 2

3 a=[1 2;3 5] a(1,2),a(2,1) a(i,j) = entry in ith row, jth column a(2,2)=4 changes a(2,2) to 4 a,a(:,:) a,a(:,1),a(:,2) a(:,j)=all rows of jth column=jth column a,a(1,:),a(2,:) a(i,:)=all columns of ith row=ith row a a(1,2)=10 a(:,2)=[9;9] a(1,:)=[0,0] b [b,[0;0]] appends new column on left [b;[0,0]] appends new row below z=b saves b to z b(1,:)= b(1,:)+2 b=z recovers b from z b(:,1)= b(:,1)-2 What does this do? IDENTITY MATRIX, MATRIX INVERSES b=ones(1,3) b=0*b b=ones(3,1) b=8*b I=eye(2,2) I is the 2x2 identity matrix 1 is the identity for multiplication of numbers: 1x = x1 = x. I=eyes(n) is the identity for matrix multiplication: if A is n n then Ia=aI=a. a, I*a, a*i x 1 is the inverse operation of multiplication of numbers: xx 1 = x 1 x = 1. The notation is the same for matrices. inv(a) is the inverse of the matrice a. a=[1,2;3,4] inv(a) a*inv(a),inv(a)*a e2.3 Write a function J(a) which adds a row of 8 s above the matrix a and then adds a column of 9 s on the right. Test it on [1 2; 3 4] and on [1 2 3; 4 5 6; 7 8 9]. function a=j(a) [n,m]=size(a) // n= number of rows, m= number columns a=[8*ones(1,m);a] a=[a,9*ones(n+1,1)] b=[1,2; 3,4],J(b) J([1,2,3; 4,5,6; 7,8,9]) c2.3 Select File/New in SciNotes. File/Save as c2.3. Paste template. Together, one step-and-test at a time. Suppose a is a matrix with 2 or more rows. Write a function K(a) which adds 1 to a s bottom right entry. Then negates (that is to say multiply by -1) a s next-to-the-last row. Then appends a column of 0 s to the right. Test it on [1,2; 3,4],[1,1,1,1; 2,2,2,2; 3,3,3,3]. //c2.2 Function K(a) adds one to bottom right entry. // Negates next-to-last row. Appends a column of 0s on the // right. // Test on [1,2; 3,4;5,6] and on [1,1,1,1;2,2,2,2;3,3,3,3] // Answers: [1,2,0;-3,-4,0;5,7,0], // [1,1,1,1,0;-2,-2,-2,-2,0;3,3,3,4,0] 3

4 SOLVING SIMULTANEOUS EQUATIONS In mathematics, solving a linear system of equations can be performed by computing the so-called reduced row echelon form of the augmented matrix corresponding to the system. e2.4 Solve 2x + 4y = 2 x + 3y = 3 Corresponding ( augmented ) matrix a = We perform operations on the rows of the matrix a to compute its reduced row echelon form: all zero rows are at the bottom of the matrix, the the leading coefficient of a non-zero row appears to the right of the leading coefficient of the row above it, all the entries in a column below a leading entry are zeroes. The solution of the system is deduced from the last column of the reduded row echelon form of the a. In scilab enter [2,4,2;1,3,3] rref(a) Solution x = 3 y = 3 Corresponding ( augmented ) matrix a = [ ] We obtain rref(a)= which means x + 2y = = 0 Hence x = 3 2y where y is arbitrary (it can be any number). c2.4 Select File/New, File/Save as c2.4 Solve x 16y + 4z = 50 x + 12y + 2z = 30 2x 4y + 6z = 80 Enter the augmented matrix line and the rref line in SciNotes. After //, hand-write the answer to two decimals places. //c2.4 Two SciNote lines, plus comment. Dont copy answers from //SciLab. // x=0, y=... c2.5 Select File/New, File/Save as c2.5 Solve x 16y + 4z = 50 x + 12y + 2z = 30 x + 68y z = 0 Enter the augmented matrix line and the rref line in SciNotes. //c2.5 Two SciNote lines, plus comment. Dont copy answers from //SciLab. // x=1.48, y=... e2.5 Solve 2x + 4y = 6 x + 2y = 3 a=[2,4,6; 1,2,3] rref(a). In scilab enter 4

5 HOMEWORK 2 DUE BEFORE FRIDAY JANUARY 30TH s CLASS h2.1(3), h2.2(3), h2.3(3) to: gautier@math.hawaii.edu subject line: 190 h2(9) h2.1(3). The distance between 2 vectors [a 1,..., a n ] and [b 1,..., b n ] is given by (a 1 b 1 ) (a n b n ) 2. Write a Scilab function for the distance D=distance(a,b) between vectors a and b. Use it to find the distance between [1,2] and [3,3] and the distance between [1,2,3] and [3,3,3]. Your function must work for vectors of any length, it may not use See example e2.1 above. Don t send answers. Try entering the formula one step-and-test at a time. // h2.1(3)function D = distance(a,b) // Distance between [1,2],[3,3] and between // [1,2,3],[3,3,3], 3 function lines, 2 test lines. // Answers: , h2.2(3) In SciNotes, write a Scilab function F(a) which, on a matrix a, appends a row of 0 s to the bottom of a and then appends a column of 3 s on the right of the resulting matrix. Hint: 8*ones(r,1) is a column of r 8 s (see example e2.3). Test it on [1,2,3; 4,5,6] and on [1,2; 3,4; 5,6 ]. Your function must work for any matrix of any size. / h2.2(3) Function F(a) // appends a row of 0s at the bottom of a, // then appends a column of 3 s on the right. // Test on [1,2,3; 4,5,6]. //Answer: [1,2,3,3; 4,5,6,3; 0,0,0,3] // Test on [1,2; 3,4; 5,6]. //Answer: [1,2,3; 3,4,3; 5,6,3; 0,0,3] h2.3(3) In SciNotes, write a Scilab function G(a) which, on a matrix a, multiplies the first column by 10, then subtracts 100 from the last row. Hint: n=length(a(:,1))= index of the last row. (see example e2.3). Test it on [1,2,3; 4,5,6;] and on [1,2; 3,4; 5,6]. Your function must work for any matrix of any size. // h2.2(3) Function G(a) // multiplies first column by 10 then // then subtracts 100 from the last row // Test on [1,2,3; 4,5,6]. //Answer: [10,2,3; -60,-95,-94] // Test on [1,2; 3,4; 5,6]. //Answer: [10,2; 30,4; -50,-94] 5

MATH.2720 Introduction to Programming with MATLAB Vector and Matrix Algebra

MATH.2720 Introduction to Programming with MATLAB Vector and Matrix Algebra MATH.2720 Introduction to Programming with MATLAB Vector and Matrix Algebra A. Vectors A vector is a quantity that has both magnitude and direction, like velocity. The location of a vector is irrelevant;

More information

Math 414 Lecture 1. Reading assignment: Text: Pages 1-29 and Scilab Users Guide: Sections 1-3.

Math 414 Lecture 1. Reading assignment: Text: Pages 1-29 and Scilab Users Guide: Sections 1-3. Math 414 Lecture 1 Homework assignments are always due at the beginning of the next lecture. Operations Research studies linear programming and associated algorithms. Businesses use it to find resource

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra /34

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra /34 Linear Algebra /34 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct axes)

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33 Linear Algebra 1/33 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation.

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation. 2.1 Matrices Reminder: A matrix with m rows and n columns has size m x n. (This is also sometimes referred to as the order of the matrix.) The entry in the ith row and jth column of a matrix A is denoted

More information

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1 Linear equations We now switch gears to discuss the topic of solving linear equations, and more interestingly, systems

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Worksheet 3: Matrix-Vector Products ( 1.3)

Worksheet 3: Matrix-Vector Products ( 1.3) Problem 1: Vectors and Matrices. Worksheet : Matrix-Vector Products ( 1.) (c)015 UM Math Dept licensed under a Creative Commons By-NC-SA.0 International License. Let us TEMPORARILY think of a vector as

More information

5.1 Introduction to Matrices

5.1 Introduction to Matrices 5.1 Introduction to Matrices Reminder: A matrix with m rows and n columns has size m x n. (This is also sometimes referred to as the order of the matrix.) The entry in the ith row and jth column of a matrix

More information

Lecture 3 Linear Algebra Background

Lecture 3 Linear Algebra Background Lecture 3 Linear Algebra Background Dan Sheldon September 17, 2012 Motivation Preview of next class: y (1) w 0 + w 1 x (1) 1 + w 2 x (1) 2 +... + w d x (1) d y (2) w 0 + w 1 x (2) 1 + w 2 x (2) 2 +...

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

1300 Linear Algebra and Vector Geometry Week 2: Jan , Gauss-Jordan, homogeneous matrices, intro matrix arithmetic

1300 Linear Algebra and Vector Geometry Week 2: Jan , Gauss-Jordan, homogeneous matrices, intro matrix arithmetic 1300 Linear Algebra and Vector Geometry Week 2: Jan 14 18 1.2, 1.3... Gauss-Jordan, homogeneous matrices, intro matrix arithmetic R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca Winter 2019 What

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

MATRICES AND MATRIX OPERATIONS

MATRICES AND MATRIX OPERATIONS SIZE OF THE MATRIX is defined by number of rows and columns in the matrix. For the matrix that have m rows and n columns we say the size of the matrix is m x n. If matrix have the same number of rows (n)

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33 Chapter 5: Matrices Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018 1 / 33 In this chapter Matrices were first introduced in the Chinese Nine Chapters on the Mathematical

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

TOPIC 2 Computer application for manipulating matrix using MATLAB

TOPIC 2 Computer application for manipulating matrix using MATLAB YOGYAKARTA STATE UNIVERSITY MATHEMATICS AND NATURAL SCIENCES FACULTY MATHEMATICS EDUCATION STUDY PROGRAM TOPIC 2 Computer application for manipulating matrix using MATLAB Definition of Matrices in MATLAB

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

CITS2401 Computer Analysis & Visualisation

CITS2401 Computer Analysis & Visualisation FACULTY OF ENGINEERING, COMPUTING AND MATHEMATICS CITS2401 Computer Analysis & Visualisation SCHOOL OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING Topic 7 Matrix Algebra Material from MATLAB for Engineers,

More information

Lecture 2 Systems of Linear Equations and Matrices, Continued

Lecture 2 Systems of Linear Equations and Matrices, Continued Lecture 2 Systems of Linear Equations and Matrices, Continued Math 19620 Outline of Lecture Algorithm for putting a matrix in row reduced echelon form - i.e. Gauss-Jordan Elimination Number of Solutions

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Introduction: linear equations Read 1.1 (in the text that is!) Go to course, class webpages.

More information

CITS2401 Computer Analysis & Visualisation

CITS2401 Computer Analysis & Visualisation FACULTY OF ENGINEERING, COMPUTING AND MATHEMATICS CITS2401 Computer Analysis & Visualisation SCHOOL OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING Topic 7 Matrix Algebra Material from MATLAB for Engineers,

More information

Two matrices of the same size are added by adding their corresponding entries =.

Two matrices of the same size are added by adding their corresponding entries =. 2 Matrix algebra 2.1 Addition and scalar multiplication Two matrices of the same size are added by adding their corresponding entries. For instance, 1 2 3 2 5 6 3 7 9 +. 4 0 9 4 1 3 0 1 6 Addition of two

More information

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions Math 308 Midterm Answers and Comments July 18, 2011 Part A. Short answer questions (1) Compute the determinant of the matrix a 3 3 1 1 2. 1 a 3 The determinant is 2a 2 12. Comments: Everyone seemed to

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.4 Solving Systems of Linear Equations 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.4. Solving Systems of Linear Equations Note. We give an algorithm for solving a system of linear equations (called

More information

Linear Algebra Homework and Study Guide

Linear Algebra Homework and Study Guide Linear Algebra Homework and Study Guide Phil R. Smith, Ph.D. February 28, 20 Homework Problem Sets Organized by Learning Outcomes Test I: Systems of Linear Equations; Matrices Lesson. Give examples of

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman Math 0 Spring 05 Midterm 03/04/5 Lecturer: Jesse Gell-Redman Time Limit: 50 minutes Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 5 problems. Check to see if

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

Matrix Dimensions(orders)

Matrix Dimensions(orders) Definition of Matrix A matrix is a collection of numbers arranged into a fixed number of rows and columns. Usually the numbers are real numbers. In general, matrices can contain complex numbers but we

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Matrix Inversion Algorithm One payoff from this theorem: It gives us a way to invert matrices.

More information

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued Definition The process of solving a system of linear equations by converting the system to an augmented matrix is called Gaussian Elimination. The general strategy is as follows: Convert the system of

More information

Mathematics 13: Lecture 10

Mathematics 13: Lecture 10 Mathematics 13: Lecture 10 Matrices Dan Sloughter Furman University January 25, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture 10 January 25, 2008 1 / 19 Matrices Recall: A matrix is a

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v 1,, v p } in n is said to be linearly independent if the vector equation x x x

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

SECTION 2: VECTORS AND MATRICES. ENGR 112 Introduction to Engineering Computing

SECTION 2: VECTORS AND MATRICES. ENGR 112 Introduction to Engineering Computing SECTION 2: VECTORS AND MATRICES ENGR 112 Introduction to Engineering Computing 2 Vectors and Matrices The MAT in MATLAB 3 MATLAB The MATrix (not MAThematics) LABoratory MATLAB assumes all numeric variables

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional)

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional) Section 2.4 Section Summary Sequences. o Examples: Geometric Progression, Arithmetic Progression Recurrence Relations o Example: Fibonacci Sequence Summations Special Integer Sequences (optional) Sequences

More information

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1 Theorem: Let A n n Then A 1 exists if and only if det A 0 proof: We already know that A 1 exists if and only if the reduced row echelon form of A is the identity matrix Now, consider reducing A to its

More information

The Gauss-Jordan Elimination Algorithm

The Gauss-Jordan Elimination Algorithm The Gauss-Jordan Elimination Algorithm Solving Systems of Real Linear Equations A. Havens Department of Mathematics University of Massachusetts, Amherst January 24, 2018 Outline 1 Definitions Echelon Forms

More information

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

Introduction. Vectors and Matrices. Vectors [1] Vectors [2] Introduction Vectors and Matrices Dr. TGI Fernando 1 2 Data is frequently arranged in arrays, that is, sets whose elements are indexed by one or more subscripts. Vector - one dimensional array Matrix -

More information

Lecture 3: Matrix and Matrix Operations

Lecture 3: Matrix and Matrix Operations Lecture 3: Matrix and Matrix Operations Representation, row vector, column vector, element of a matrix. Examples of matrix representations Tables and spreadsheets Scalar-Matrix operation: Scaling a matrix

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 5 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 5 1 / 12 Systems of linear equations Geometrically, we are quite used to the fact

More information

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA

CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA CMU CS 462/662 (INTRO TO COMPUTER GRAPHICS) HOMEWORK 0.0 MATH REVIEW/PREVIEW LINEAR ALGEBRA Andrew ID: ljelenak August 25, 2018 This assignment reviews basic mathematical tools you will use throughout

More information

Exercise Sketch these lines and find their intersection.

Exercise Sketch these lines and find their intersection. These are brief notes for the lecture on Friday August 21, 2009: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct. 1. Solving systems of linear

More information

Section 12.4 Algebra of Matrices

Section 12.4 Algebra of Matrices 244 Section 2.4 Algebra of Matrices Before we can discuss Matrix Algebra, we need to have a clear idea what it means to say that two matrices are equal. Let's start a definition. Equal Matrices Two matrices

More information

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Question 1 If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Quang T. Bach Math 18 October 18, 2017 1 / 17 Question 2 1 2 Let A = 3 4 1 2 3

More information

freqs(a)=[2,3,1,1] since 0 occurs 2 times, 1 occurs three times,... If a=[5,1,1,0,1,5] then values(a)=[0,1,5] and freqs(a)=[1,3,2].

freqs(a)=[2,3,1,1] since 0 occurs 2 times, 1 occurs three times,... If a=[5,1,1,0,1,5] then values(a)=[0,1,5] and freqs(a)=[1,3,2]. 190 Lecture 7 Formatted matrix printing Open Lecture 7. Open Scilab/SciNotes. Recall, the function values(a) lists the values of vector a in increasing order without repetition. Hence if a=[1,1,2,3,0,0,1],

More information

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero. Finite Mathematics Chapter 2 Section 2.1 Systems of Linear Equations: An Introduction Systems of Equations Recall that a system of two linear equations in two variables may be written in the general form

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

--------------------------------------------------------------------------------------------- Math 6023 Topics: Design and Graph Theory ---------------------------------------------------------------------------------------------

More information

Getting Started with Communications Engineering. Rows first, columns second. Remember that. R then C. 1

Getting Started with Communications Engineering. Rows first, columns second. Remember that. R then C. 1 1 Rows first, columns second. Remember that. R then C. 1 A matrix is a set of real or complex numbers arranged in a rectangular array. They can be any size and shape (provided they are rectangular). A

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

Math 416, Spring 2010 Matrix multiplication; subspaces February 2, 2010 MATRIX MULTIPLICATION; SUBSPACES. 1. Announcements

Math 416, Spring 2010 Matrix multiplication; subspaces February 2, 2010 MATRIX MULTIPLICATION; SUBSPACES. 1. Announcements Math 416, Spring 010 Matrix multiplication; subspaces February, 010 MATRIX MULTIPLICATION; SUBSPACES 1 Announcements Office hours on Wednesday are cancelled because Andy will be out of town If you email

More information

Chapter 2. Matrix Arithmetic. Chapter 2

Chapter 2. Matrix Arithmetic. Chapter 2 Matrix Arithmetic Matrix Addition and Subtraction Addition and subtraction act element-wise on matrices. In order for the addition/subtraction (A B) to be possible, the two matrices A and B must have the

More information

MTH 102A - Linear Algebra II Semester

MTH 102A - Linear Algebra II Semester MTH 0A - Linear Algebra - 05-6-II Semester Arbind Kumar Lal P Field A field F is a set from which we choose our coefficients and scalars Expected properties are ) a+b and a b should be defined in it )

More information

x + 2y + 3z = 8 x + 3y = 7 x + 2z = 3

x + 2y + 3z = 8 x + 3y = 7 x + 2z = 3 Chapter 2: Solving Linear Equations 23 Elimination Using Matrices As we saw in the presentation, we can use elimination to make a system of linear equations into an upper triangular system that is easy

More information

A primer on matrices

A primer on matrices A primer on matrices Stephen Boyd August 4, 2007 These notes describe the notation of matrices, the mechanics of matrix manipulation, and how to use matrices to formulate and solve sets of simultaneous

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Math 0 Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination and substitution

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

Numerical Methods Lecture 2 Simultaneous Equations

Numerical Methods Lecture 2 Simultaneous Equations CGN 42 - Computer Methods Numerical Methods Lecture 2 Simultaneous Equations Topics: matrix operations solving systems of equations Matrix operations: Adding / subtracting Transpose Multiplication Adding

More information

Basic Linear Algebra in MATLAB

Basic Linear Algebra in MATLAB Basic Linear Algebra in MATLAB 9.29 Optional Lecture 2 In the last optional lecture we learned the the basic type in MATLAB is a matrix of double precision floating point numbers. You learned a number

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2 We will learn how to use a matrix to solve a system of equations. College algebra Class notes Matrices and Systems of Equations (section 6.) Recall, we solved the system below in a previous section. Here,

More information

Last Time. x + 3y = 6 x + 2y = 1. x + 3y = 6 y = 1. 2x + 4y = 8 x 2y = 1. x + 3y = 6 2x y = 7. Lecture 2

Last Time. x + 3y = 6 x + 2y = 1. x + 3y = 6 y = 1. 2x + 4y = 8 x 2y = 1. x + 3y = 6 2x y = 7. Lecture 2 January 9 Last Time 1. Last time we ended with saying that the following four systems are equivalent in the sense that we can move from one system to the other by a special move we discussed. (a) (b) (c)

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a Practice Exercises for Exam Exam will be on Monday, September 8, 7. The syllabus for Exam consists of Sections One.I, One.III, Two.I, and Two.II. You should know the main definitions, results and computational

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Linear Algebra Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc.

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc. 2 Matrix Algebra 2.1 MATRIX OPERATIONS MATRIX OPERATIONS m n If A is an matrixthat is, a matrix with m rows and n columnsthen the scalar entry in the ith row and jth column of A is denoted by a ij and

More information

1 Last time: linear systems and row operations

1 Last time: linear systems and row operations 1 Last time: linear systems and row operations Here s what we did last time: a system of linear equations or linear system is a list of equations a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

More information

Math 140, c Benjamin Aurispa. 2.1 Matrices

Math 140, c Benjamin Aurispa. 2.1 Matrices 2.1 Matrices Reminder: A matrix with m rows and n columns has size m x n. (This is also sometimes referred to as the order of the matrix.) The entry in the ith row and jth column of a matrix A is denoted

More information

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants THE ALGEBRA OF DETERMINANTS 1. Determinants We have already defined the determinant of a 2 2 matrix: det = ad bc. We ve also seen that it s handy for determining when a matrix is invertible, and when it

More information

Math 103, Summer 2006 Determinants July 25, 2006 DETERMINANTS. 1. Some Motivation

Math 103, Summer 2006 Determinants July 25, 2006 DETERMINANTS. 1. Some Motivation DETERMINANTS 1. Some Motivation Today we re going to be talking about erminants. We ll see the definition in a minute, but before we get into ails I just want to give you an idea of why we care about erminants.

More information

36 What is Linear Algebra?

36 What is Linear Algebra? 36 What is Linear Algebra? The authors of this textbook think that solving linear systems of equations is a big motivation for studying linear algebra This is certainly a very respectable opinion as systems

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

Row Reduced Echelon Form

Row Reduced Echelon Form Math 40 Row Reduced Echelon Form Solving systems of linear equations lies at the heart of linear algebra. In high school we learn to solve systems in or variables using elimination and substitution of

More information

February 20 Math 3260 sec. 56 Spring 2018

February 20 Math 3260 sec. 56 Spring 2018 February 20 Math 3260 sec. 56 Spring 2018 Section 2.2: Inverse of a Matrix Consider the scalar equation ax = b. Provided a 0, we can solve this explicity x = a 1 b where a 1 is the unique number such that

More information

Math 309 Notes and Homework for Days 4-6

Math 309 Notes and Homework for Days 4-6 Math 309 Notes and Homework for Days 4-6 Day 4 Read Section 1.2 and the notes below. The following is the main definition of the course. Definition. A vector space is a set V (whose elements are called

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 15 From equations to matrices For example, if we consider

More information

And, even if it is square, we may not be able to use EROs to get to the identity matrix. Consider

And, even if it is square, we may not be able to use EROs to get to the identity matrix. Consider .2. Echelon Form and Reduced Row Echelon Form In this section, we address what we are trying to achieve by doing EROs. We are trying to turn any linear system into a simpler one. But what does simpler

More information

Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise:

Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise: Math 2270-004 Week 5 notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Section. Solution of Linear Systems by Gauss-Jordan Method A matrix is an ordered rectangular array of numbers, letters, symbols or algebraic expressions. A matrix with m rows and n columns has size or

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II MAC 1140 Module 10 System of Equations and Inequalities II Learning Objectives Upon completing this module, you should be able to 1. represent systems of linear equations with matrices. 2. transform a

More information

Solutions to Math 51 Midterm 1 July 6, 2016

Solutions to Math 51 Midterm 1 July 6, 2016 Solutions to Math 5 Midterm July 6, 26. (a) (6 points) Find an equation (of the form ax + by + cz = d) for the plane P in R 3 passing through the points (, 2, ), (2,, ), and (,, ). We first compute two

More information

Honors Advanced Mathematics Determinants page 1

Honors Advanced Mathematics Determinants page 1 Determinants page 1 Determinants For every square matrix A, there is a number called the determinant of the matrix, denoted as det(a) or A. Sometimes the bars are written just around the numbers of the

More information