Polar Covalent Bonds; Acids and Bases

Size: px
Start display at page:

Download "Polar Covalent Bonds; Acids and Bases"

Transcription

1 2 Polar Covalent Bonds; Acids and Bases پیوندهای کوواالنسی قطبی اسیدها و بازها Dr Morteza Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran Based on McMurry s Organic Chemistry, 7 th edition

2 چرا این فصل Description of basic ways chemists account for chemical reactivity. ت صیف شی ای ت یادی ج ت دسک واکنش پذیزی شیویایی Establish foundation for understanding specific reactions discussed in subsequent chapters. شال د دسک واکنشهای ههن ه سد تحث دس فصل ای آی ذ 2

3 2.1 Polar Covalent Bonds: Electronegativity Covalent bonds can have ionic character These are polar covalent bonds Bonding electrons attracted more strongly by one atom than by the other Electron distribution between atoms is not symmetrical 3

4 Bond Polarity and Electronegativity Electronegativity (EN): intrinsic ability of an atom to attract the shared electrons in a covalent bond الکتزونگاتیوی جزب تشای اتن یک راتی ت ا ایی :(EN) الکتش ای است. ک اال سی پی ذ یک دس هشتشک Differences in EN produce bond polarity 4

5 The Periodic Table and Electronegativity F is most electronegative (EN = 4.0), Cs is least (EN = 0.7) Metals on left side of periodic table attract electrons weakly, lower EN Halogens and other reactive nonmetals on right side of periodic table attract electrons strongly, higher electronegativities EN of C = 2.5 5

6 Bond Polarity and Inductive Effect قطبش پیوند و اثر القایی Nonpolar Covalent Bonds: atoms with similar EN Polar Covalent Bonds: Difference in EN of atoms < 2 Ionic Bonds: Difference in EN > 2 C H bonds, relatively nonpolar C-O, C-X bonds (more electronegative elements) are polar Bonding electrons toward electronegative atom C acquires partial positive charge, + Electronegative atom acquires partial negative charge, - Inductive effect: shifting of electrons in a bond in response to EN of nearby atoms اثز القایی: هجا س است. ا تقال الکتش ى ای یک پی ذ دس اثش الکتش گاتی ی اتن ای 6

7 Electrostatic Potential Maps نقشه پتانسیل الکترواستاتیکی Electrostatic potential maps show calculated charge distributions Colors indicate electronrich (red) and electronpoor (blue) regions Arrows indicate direction of bond polarity 7

8 2.2 Polar Covalent Bonds: گشتاور دوقطبی Dipole Moments Molecules as a whole are often polar from vector summation of individual bond polarities and lone-pair contributions ه لک ل ای آلی اغلة ت اسط حاصل جوع تشداسی قطثیت یکایک پی ذ ا ست ذ. قطثی ت ا الکتش ای جفت Strongly polar substances soluble in polar solvents like water; nonpolar substances are insoluble in water. ه اد قطثی هعو ال دس حالل ای قطثی هثل آب حل هی ش ذ اها ه اد غیش قطثی دس آب ا حالل اپزیش ذ. 8

9 شبیه شبیه را در خود حل می کند Like dissolves Like

10 Dipole moment ( ) - Net molecular polarity, due to difference in summed charges گشتاور دوقطبی ( ) حاصل جوع تاس ا است قطثیت خالص ه لک لی اشی اص تفا ت دس - magnitude of charge Q at end of molecular dipole times distance r between charges - ت ص ست ا ذاص تاس Q دس یک سش د قطثی ه لک لی ضشتذس فاصل r تیي تاس است: = Q r, in debyes دتای (D), ) 1 D = coulomb meter ( 10

11 the unit charge on an electron is C. Thus, if one positive charge and one negative charge are separated by 100 pm (a bit less than the length of a typical covalent bond), the dipole moment is C m, or 4.80 D. 11

12 Dipole Moments in Water and Ammonia Large dipole moments EN of O and N > H Both O and N have lone-pair electrons oriented away from all nuclei 12

13 Absence of Dipole Moments In symmetrical molecules, the dipole moments of each bond has one in the opposite direction The effects of the local dipoles cancel each other 13

14 )بار قراردادی( 2.3 Formal Charges Sometimes it is necessary to have structures with formal charges on individual atoms We compare the bonding of the atom in the molecule to the valence electron structure If the atom has one more electron in the molecule, it is shown with a - charge If the atom has one less electron, it is shown with a + charge Neutral molecules with both a + and a - are dipolar 14

15 Building Lewis (ELECTRON DOT) Structures of Molecules Example: HCN Step 1. Count the total number of valence electrons H has 1 C has 4 N has = Total of 10 Step 2. Place one e - pair between each BONDED atom _ H C N We have 10-4 = 6 e - left All atoms must have an octet or duet _ 15

16 Step 3. Add remaining electrons to terminal atoms first Add 6 electrons in pairs to give the N an octet. _ H C N Step 4. Add any electrons left over to central atom We have none left! _ Step 5. Check for an acceptable Lewis Structure Do all atoms have an octet? IN THIS CASE 16

17 Step 5. Check for an acceptable Lewis Structure bring electron pairs from outer N atom to form shared pairs to give C its octet!!! H C N Still no octet on C Do it again!!!! _ H C = N H C N three electron pairs between the C and N... 17

18 H C N H C N Another possible structure is. H N C How can we choose? FORMAL CHARGE 18

19 All possible Lewis structures with stable electronic configurations for HCN and HNC. H C N H N C Formal charge = #valence electrons _ { #unshared } electrons Calculate formal charge for this one _ { 1/2#shared } electrons H C N FC on C = /2 (8) = 0 FC on N = /2 (6) = 0 Hydrogen is zero 19

20 All possible Lewis structures with stable electronic configurations for HCN and HNC. H C N H N C WE CHOOSE THE STRUCTURE WITH THE FORMAL CHARGES CLOSEST TO ZERO AND ANY NEGATIVE FORMAL CHARGES ON THE MOST ELECTRONEGATIVE ELEMENTS 20

21 Formal Charge for Dimethyl Sulfoxide Atomic sulfur has 6 valence electrons. Dimethyl suloxide sulfur has only 5. Oxygen atom in DMSO has gained electron and has (-) charge. It has lost an electron and has positive charge. 21

22 22

23 2.4 Resonance Some molecules are have structures that cannot be shown with a single representation In these cases we draw structures that contribute to the final structure but which differ in the position of the bond(s) or lone pair(s) Such a structure is delocalized and is represented by resonance forms The resonance forms are connected by a doubleheaded arrow 23

24 هیبرید رزونانسی Resonance Hybrids A structure with resonance forms does not alternate between the forms یک ساختاس تا فزم های رسونانسی دس سفت تشگشت یست ک صها ی ت شکل یک فشم صها ی ت شکل فشم دیگش دسآیذ. Instead, it is a hybrid of the two resonance forms, so the structure is called a resonance hybrid تلک یثشیذی اص د فشم سص ا سی است ک هیبزید رسونانسی اهیذ هی ش د. 24

25 سرافه یا شتزگاوپلنگ 25

26 For example, benzene (C 6 H 6 ) has two resonance forms with alternating double and single bonds In the resonance hybrid, the actual structure, all its C-C bonds are equivalent, midway between double and single 26

27 2.5 Rules for Resonance Forms Individual resonance forms are imaginary - the real structure is a hybrid (only by knowing the contributors can you visualize the actual structure) ای فشم سص ا سی خیالی ست ذ اقعی Resonance forms differ only in the placement of their or nonbonding electrons فشم ای الکتش ای سص ا سی فقط اپی ذی تفا ت اص لحاظ داس ذ استقشاس هحل الکتش ای یا 27

28 28

29 قواعد فرم های رزونانسی - بقیه -2.5 Different resonance forms of a substance don t have to be equivalent سص ا سی ای فشم یک هختلف تشکیة حتوا تاش ذ اسص ن ثایذ 29

30 قواعد فرم های رزونانسی - بقیه -2.5 فشم آ ا Resonance forms must be valid Lewis structures: the octet rule applies ای سص ا سی هعتثش تاشذ وا ذ تایذ ساختاس ای دس شتایی قاعذ ل ئیس: The resonance hybrid is more stable than any individual resonance form would be یثشیذ سص ا سی پایذاستش اص ش یک اص فشم ای سص ا سی است شچ تعذاد فشم ای سص ا سی تیشتش تاشذ تشکیة پایذاستش است. 30

31 Curved Arrows and Resonance Forms We can imagine that electrons move in pairs to convert from one resonance form to another A curved arrow shows that a pair of electrons moves from the atom or bond at the tail of the arrow to the atom or bond at the head of the arrow 31

32 2.6 Drawing Resonance Forms Any three-atom grouping with a multiple bond has two resonance forms ش گش س تایی اص اتن ای داسای یک پی ذ د گا د فشم سص ا سی داسد 32

33 Different Atoms in Resonance Forms Sometimes resonance forms involve different atom types as well as locations The resulting resonance hybrid has properties associated with both types of contributors The types may contribute unequally The enolate derived from acetone is a good illustration, with delocalization between carbon and oxygen 33

34 2,4-Pentanedione The anion derived from 2,4-pentanedione Lone pair of electrons and a formal negative charge on the central carbon atom, next to a C=O bond on the left and on the right Three resonance structures result 34

35 2.7 Acids and Bases: The Brønsted Lowry Definition The terms acid and base can have different meanings in different contexts»تاصاسیذ«دس صهی ای هختلف هعا ی هتفا تی داس ذ. The idea that acids are solutions containing a lot of H + and bases are solutions containing a lot of OH - is not very useful in organic chemistry Instead, Brønsted Lowry theory defines acids and bases by their role in reactions that transfer protons (H + ) between donors and acceptors نظزیه اسید و باس بزونستد-لوری: تیاى قش اسیذ تاص دس اک ش ا تقال پش ت ى تیي پزیش ذ د ذ ) + (H 35

36 Brønsted Acids and Bases Brønsted-Lowry is usually shortened to Brønsted A Brønsted acid is a substance that donates a hydrogen ion (H + ) A Brønsted base is a substance that accepts the H + proton is a synonym for (H + ) - loss of an electron from H leaving the bare nucleus a proton»پش ت ى«هتشادف تا ) + H) است تا حزف یک الکتش ى اص H فقط ست یذس طى ( یع ی پش ت ى( تاقی هی ها ذ. 36

37 The Reaction of Acid with Base Hydronium ion (H 3 O + ), product when base H 2 O gains a proton HCl donates a proton to water molecule, yielding hydronium ion (H 3 O + ) [conjugate acid] and Cl [conjugate base] The reverse is also a Brønsted acid base reaction of the conjugate acid and conjugate base 37

38 2.8 Acid and Base Strength The equilibrium constant (K eq ) for the reaction of an acid (HA) with water to form hydronium ion and the conjugate base (A - ) is a measure related to the strength of the acid Stronger acids have larger K eq Note that brackets [ ] indicate concentration, moles per liter, M. 38

39 K a the Acidity Constant ثابت قدرت اسیدی The concentration of water as a solvent does not change significantly when it is protonated The molecular weight of H 2 O is 18 and one liter weighs 1000 grams, so the concentration is ~ 55.4 M at 25 The acidity constant, K a for HA K eq times 55.6 M (leaving [water] out of the expression) K a ranges from for the strongest acids to very small values (10-60 ) for the weakest 39

40 pk a the Acid Strength Scale pk a = -log K a The free energy in an equilibrium is related to log of K eq (DG = -RT log K eq ) A smaller value of pk a indicates a stronger acid and is proportional to the energy difference between products and reactants The pk a of water is ثاتت حاصلضشب ی ی آب 40

41 41

42 2.9 Predicting Acid Base Reactions from pk a Values pk a values are related as logarithms to equilibrium constants Useful for predicting whether a given acid-base reaction will take place The difference in two pk a values is the log of the ratio of equilibrium constants, and can be used to calculate the extent of transfer The stronger base holds the proton more tightly 42

43 43

44 2.10 Organic Acids and Organic Bases Organic Acids: - characterized by the presence of positively polarized hydrogen atom تا اتن یذس طى قطثیذ هثثت )ت س گ آتی( هشخص هی ش ذ - 44

45 Organic Acids Those that lose a proton from O H, such as methanol and acetic acid Those that lose a proton from C H, usually from a carbon atom next to a C=O double bond (O=C C H) 45

46 Organic Bases Have an atom with a lone pair of electrons that can bond to H + داسای یک اتن تشکیل پی ذ تا س گ قشهض( )ت سا داسد الکتش ى جفت داسای ت ا ایی ک اپی ذی Nitrogen-containing compounds derived from ammonia are the most common organic bases Oxygen-containing compounds can react as bases when with a strong acid or as acids with strong bases H + 46

47 2.11 Acids and Bases: The Lewis Definition Lewis acids are electron pair acceptors and Lewis bases are electron pair donors Brønsted acids are not Lewis acids because they cannot accept an electron pair directly (only a proton would be a Lewis acid) The Lewis definition leads to a general description of many reaction patterns but there is no scale of strengths as in the Brønsted definition of pk a 47

48 Lewis Acids and the Curved Arrow اسیدهای لوئیس و شیوه استفاده از پیکان خمیده Formalism The Lewis definition of acidity includes metal cations, such as Mg 2+ They accept a pair of electrons when they form a bond to a base Group 3A elements, such as BF 3 and AlCl 3, are Lewis acids because they have unfilled valence orbitals and can accept electron pairs from Lewis bases Transition-metal compounds, such as TiCl 4, FeCl 3, ZnCl 2, and SnCl 4, are Lewis acids Organic compounds that undergo addition reactions with Lewis bases (discussed later) are called electrophiles and therefore Lewis Acids The combination of a Lewis acid and a Lewis base can shown with a curved arrow from base to acid 48

49 Illustration of Curved Arrows in Following Lewis Acid-Base Reactions 49

50 50

51 Lewis Bases Lewis bases can accept protons as well as Lewis acids, therefore the definition encompasses that for Brønsted bases تاص ای ل ئیس داسای یک جفت الکتش ى اپی ذی تشای تشکیل پی ذ تا یک اسیذ ل ئیس ست ذ تعزیفی شبیه به باسهای بزونستد یع ی آب تا د جفت الکتش ى اپی ذی تش س ی اتن اکسیظى تا دادى یک جفت + H تشکیل ی ى یذس ین H قش تاص ل ئیس سا داسد. 3 O + الکتش ى ت 51

52 Lewis Bases Most oxygen- and nitrogen-containing organic compounds are Lewis bases because they have lone pairs of electrons Some compounds can act as both acids and bases, depending on the reaction 52

53 2.12 Molecular Models Organic chemistry is 3-D space Molecular shape is critical in determining the chemistry a compound undergoes in the lab, and in living organisms Space-filling models Ball-and stick models مدل گوی و میله مدل فضا پرکن 53

54 2.13 Noncovalent Interactions برهم کنش های غیر کوواالنسی Several types: - Dipole-dipole forces نیزوهای دوقطبی دوقطبی نیزوهای پزاکنش - Dispersion forces پیوندهای هیدروژنی - Hydrogen bonds 54

55 Dipole-Dipole نیروهای دوقطبی دوقطبی Occur between polar molecules as a result of electrostatic interactions among dipoles Forces can be attractive of repulsive depending on orientation of the molecules 55

56 نیروهای پراکنش Dispersion Forces Occur between all neighboring molecules and arise because the electron distribution within molecules that are constantly changing دس تیي توام ه لک ل ای وسای الکتش ای یک ه لک ل است هتغیش ت صیع اص اشی داسد ج د 56

57 Hydrogen Bond Forces Most important noncovalent interaction in biological molecules Forces are result of attractive interaction between a hydrogen bonded to an electronegative O or N atom and an unshared electron pair on another O or N atom 57

58 58

59 Summary Organic molecules often have polar covalent bonds as a result of unsymmetrical electron sharing caused by differences in the electronegativity of atoms The polarity of a molecule is measured by its dipole moment,. (+) and ( ) indicate formal charges on atoms in molecules to keep track of valence electrons around an atom Some substances must be shown as a resonance hybrid of two or more resonance forms that differ by the location of electrons. A Brønsted( Lowry) acid donates a proton A Brønsted( Lowry) base accepts a proton The strength Brønsted acid is related to the -1 times the logarithm of the acidity constant, pka. Weaker acids have higher pka s 59

60 Summary (cont d( A Lewis acid has an empty orbital that can accept an electron pair A Lewis base can donate an unshared electron pair In condensed structures C-C and C-H are implied Skeletal structures show bonds and not C or H (C is shown as a junction of two lines) other atoms are shown Molecular models are useful for representing structures for study Noncovalent interactions have several types: dipole-dipole, dispersion, and hydrogen bond forces 60

2. Polar Covalent Bonds: Acids and Bases

2. Polar Covalent Bonds: Acids and Bases 2. Polar Covalent Bonds: Acids and Bases Based on McMurry s Organic Chemistry, 6 th edition, Chapter 2 2003 Ronald Kluger Department of Chemistry University of Toronto 2.1 Polar Covalent Bonds: Electronegativity!

More information

Covalent bonds can have ionic character These are polar covalent bonds

Covalent bonds can have ionic character These are polar covalent bonds Polar Covalent Bonds: Electronegativity Covalent bonds can have ionic character These are polar covalent bonds Bonding electrons attracted more strongly by one atom than by the other Electron distribution

More information

Polar Covalent Bonds; Acids and Bases

Polar Covalent Bonds; Acids and Bases 2 Polar Covalent Bonds; Acids and Bases پیوندهای کوواالنسی قطبی اسیدها و بازها Based on McMurry s Organic Chemistry, 7 th edition چرا این فصل Description of basic ways chemists account for chemical reactivity.

More information

Why do I care, Dr. P?

Why do I care, Dr. P? Chapter 2- Polar Covalent Bonds; Acids and Bases Ashley Piekarski, Ph.D. Why do I care, Dr. P? In Chapter 1, we studied valence bond theory which uses hybrid orbitals to account for the observed shapes

More information

Ch 2 Polar Covalent Bonds

Ch 2 Polar Covalent Bonds h 2 Polar ovalent Bonds Two primary bond types: ovalent (shared e -1 s) and Ionic (transferred e -1 s) Ionic bonds can have covalent character, such as with Na:l. An e -1 pair on l -1 can fill the 3s orbital

More information

Ch.2 Polar Bonds and Their Consequences. 2.1 Polar Covalent Bonds and Electronegativity. polar covalent bonds: electron distribution is unsymmetrical

Ch.2 Polar Bonds and Their Consequences. 2.1 Polar Covalent Bonds and Electronegativity. polar covalent bonds: electron distribution is unsymmetrical 2.1 Polar ovalent Bonds and Electronegativity polar covalent bonds: electron distribution is unsymmetrical Ionic haracter δ+ δ- + - X Y X Y X Y symmetrical covalent bond polar covalent bond ionic bond

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline rganic Chemistry 9th Edition McMurry SLUTINS MANUAL Full clear download at: https://testbankreal.com/download/organic-chemistry-9th-edition-mcmurrysolutions-manual/ rganic Chemistry 9th Edition McMurry

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline Chapter 2 Polar Covalent Bonds; Acids and Bases Chapter utline I. Polar covalent bonds (Sections 2.1 2.3). A. Electronegativity (Section 2.1). 1. Although some bonds are totally ionic and some are totally

More information

Two atoms share electrons to make a covalent bond. The differenceof the electronegativites of those two atoms determines how polar that bond is.

Two atoms share electrons to make a covalent bond. The differenceof the electronegativites of those two atoms determines how polar that bond is. Chapter 2: Polar covalent bonds; Acids and bases The reactivity of organic compounds is often defined by the polarities of the covalent bonds in the molecule. Polar covalent bonds: an intermediate between

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Acids and Bases. Acids and Bases

Acids and Bases. Acids and Bases BrØnsted-Lowry A BrØnsted-Lowry acid is a proton donor. A BrØnsted-Lowry base is a proton acceptor. H + = proton BrØnsted-Lowry Some molecules contain both hydrogen atoms and lone pairs and thus, can act

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Organic Chemistry I Dr Alex Roche Organic chemistry is the chemistry of Carbon and its compounds. Organic molecules constitute the essence of life (fats, sugars, proteins, DNA), and also permeate our everyday

More information

1.10 Structural formulas

1.10 Structural formulas 1.10 Structural formulas It shows which atoms are bonded to which. There are two types of structural formulas, complete Lewis structures and condensed structural formulas. In addition, there are several

More information

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles CHEMICAL BONDS Chemical Bonds: Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles Lewis Theory of Bonding: Electrons play a fundamental role

More information

Chapter 2: Acids and Bases

Chapter 2: Acids and Bases 1. Which of the following statements is a correct definition for a Brønsted-Lowry acid? A) Proton acceptor C) Electron pair acceptor B) Electron pair donor D) Proton donor 2. Which of the following statements

More information

What Is Organic Chemistry?

What Is Organic Chemistry? What Is Organic Chemistry? EQ: What is Organic Chemistry? Read: pages 1-3 Answer the questions in your packet Basics of Organic Chem 1 Chapter 1: Structure and Bonding Key terms Organic Chemistry Inorganic

More information

Chapter 8: Concepts of Chemical Bonding

Chapter 8: Concepts of Chemical Bonding Chapter 8: Concepts of Chemical Bonding Learning Outcomes: Write Lewis symbols for atoms and ions. Define lattice energy and be able to arrange compounds in order of increasing lattice energy based on

More information

Chapter 02 - Polar Covalent Bonds; Acids and Bases. Exhibit 2-1

Chapter 02 - Polar Covalent Bonds; Acids and Bases. Exhibit 2-1 Exhibit 2-1 Organic Chemistry 9th Edition McMurry TEST BANK Full clear download at: https://testbankreal.com/download/organic-chemistry-9th-edition-mcmurry-test-bank/ Organic Chemistry 9th Edition McMurry

More information

Chapter 3 Acids and Bases"

Chapter 3 Acids and Bases Chapter 3 Acids and Bases BrØnsted-Lowry Acids and Bases A BrØnsted-Lowry acid is a proton donor. A BrØnsted-Lowry base is a proton acceptor. H + = proton Acids and Bases Reactions of BrØnsted-Lowry Acids

More information

CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 2 Acids and Bases Central to Understanding Organic Chemistry Draw the conjugate acid of each of the following:

More information

Dipole Moment, Resonance. Dr. Sapna Gupta

Dipole Moment, Resonance. Dr. Sapna Gupta Dipole Moment, Resonance Dr. Sapna Gupta Dipole Moment This indicates whether a molecule is polar or not. Dipole moment ( ) is when a molecule can move in presence of an electric current. The higher the

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Chapter 3 An Introduction to Organic Reactions: Acids and Bases

Chapter 3 An Introduction to Organic Reactions: Acids and Bases There are 4 types of Organic Reactions Chapter 3 An Introduction to Organic Reactions: SUBSTITUTION: ADDITION: X Y + A X A + Y Example Example A B + X Y A B X Y ELIMINATION There are 4 Types of Organic

More information

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds:

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds: CHEMICAL BONDS Chemical Bonds: The strong electrostatic forces of attraction holding atoms together in a unit are called chemical bonds (EU 2.C). Reflect a balance in the attractive and repulsive forces

More information

Chapter 2 Lecture Outline

Chapter 2 Lecture Outline Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 2 Lecture Outline Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies,

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE The Ionic Bond Formation of Ions The

More information

Chapter 9. Chemical Bonding I: The Lewis Model. HIV-Protease. Lecture Presentation

Chapter 9. Chemical Bonding I: The Lewis Model. HIV-Protease. Lecture Presentation Lecture Presentation Chapter 9 Chemical Bonding I: The Lewis Model HIV-Protease HIV-protease is a protein synthesized by the human immunodeficiency virus (HIV). This particular protein is crucial to the

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

ORGANIC CHEMISTRY. Meaning of Organic?

ORGANIC CHEMISTRY. Meaning of Organic? ORGANIC CHEMISTRY Meaning of Organic? Initially scientists believed there was a special force in living organisms -this was assumed the unique component of organic material In 1828 Wöhler synthesized urea

More information

Chapter Bonding. Atoms trying to attain the stable configuration of a noble (inert) gas - often referred to as the octet rule

Chapter Bonding. Atoms trying to attain the stable configuration of a noble (inert) gas - often referred to as the octet rule Chapter 1 1.2-1.3 Bonding Atoms trying to attain the stable configuration of a noble (inert) gas - often referred to as the octet rule 1.2 Ionic Bonding - Electrons Transferred 1.3 Covalent Bonding - Electrons

More information

Chapter 02 - Polar Covalent Bonds; Acids and Bases

Chapter 02 - Polar Covalent Bonds; Acids and Bases Exhibit 2-1 Give the corresponding letter of the term that best matches the given definition. a. Brønsted-Lowry Acid f. Ionic Bond b. Brønsted-Lowry Base g. Covalent Bond c. Lewis Acid h. Polar-Covalent

More information

Chapter 8. Chemical Bonding I: Basic Concepts

Chapter 8. Chemical Bonding I: Basic Concepts Chapter 8 Chemical Bonding I: Basic Concepts Topics Lewis Dot Symbols Ionic Bonding Covalent Bonding Electronegativity and Polarity Drawing Lewis Structures Lewis Structures and Formal Charge Resonance

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CEMISTRY The Molecular Nature of Matter SIXT EDITIN Jespersen Brady yslop Chapter 9 The Basics of Chemical Bonding Copyright 2012 by John Wiley & Sons, Inc. Chemical Bonds Attractive forces that hold atoms

More information

Chapter In each case the conjugate base is obtained by removing a proton from the acid: (a) OH (b) I (c)

Chapter In each case the conjugate base is obtained by removing a proton from the acid: (a) OH (b) I (c) Practice Exercises 16.1 Conjugate acid base pairs (a), (c), and (f) (b) The conjugate base of I is I (d) The conjugate base of N 2 is N 2 and the conjugate base of N 4 is N 3 (e) The conjugate acid of

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

CHEMISTRY XL-14A CHEMICAL BONDS

CHEMISTRY XL-14A CHEMICAL BONDS CHEMISTRY XL-14A CHEMICAL BONDS July 16, 2011 Robert Iafe Office Hours 2 July 18-July 22 Monday: 2:00pm in Room MS-B 3114 Tuesday-Thursday: 3:00pm in Room MS-B 3114 Chapter 2 Overview 3 Ionic Bonds Covalent

More information

Copyright McGraw-Hill Education. Permission required for reproduction or display : A force that holds atoms together in a molecule or compound

Copyright McGraw-Hill Education. Permission required for reproduction or display : A force that holds atoms together in a molecule or compound : Chemical Bonding 8-1 8.1 Types of Bonds : A force that holds atoms together in a molecule or compound Two types of chemical bonds Ionic Bonds Covalent Bonds 8-2 1 8.1 Types of Bonds 8-3 8.1 Types of

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas.

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. CHEMICAL BONDING Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. 1.Electrons can be from one atom to another forming. Positive ions (cations) are formed when

More information

Chapter 7: Chemical Bonding and Molecular Structure

Chapter 7: Chemical Bonding and Molecular Structure Chapter 7: Chemical Bonding and Molecular Structure Ionic Bond Covalent Bond Electronegativity and Bond Polarity Lewis Structures Orbital Overlap Hybrid Orbitals The Shapes of Molecules (VSEPR Model) Molecular

More information

Chemical Bonding Chapter 8

Chemical Bonding Chapter 8 Chemical Bonding Chapter 8 Get your Clicker, 2 magnets, goggles and your handouts Nov 15 6:15 PM Recall that: Ionic-Involves the transfer of electrons - forms between a metal and a nonmetal Covalent-Involves

More information

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds? I: Covalent Bonding How are atoms held together in compounds? IONIC or COVALENT bonds or forces For most atoms, a filled outer shell contains 8 electrons ----- an octet Atoms want to form octets when they

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Chapter 3 Acids and Bases. The Curved-Arrow Notation

Chapter 3 Acids and Bases. The Curved-Arrow Notation Organic Chemistry, 5th ed. Marc Loudon Chapter 3 Acids and Bases. The Curved-Arrow Notation Eric J. Kantorows ki California Polytechnic State University San Luis Obispo, CA Chapter 3 Overview 3.1 Lewis

More information

Acid-Base Chemistry & Organic Compounds. Chapter 2

Acid-Base Chemistry & Organic Compounds. Chapter 2 Acid-Base Chemistry & Organic Compounds Chapter 2 Brønsted Lowry Acids & Bases! Brønsted-Lowry Acid: Proton (H + ) Donor! Brønsted-Lowry Base: Proton (H + ) Acceptor! General reaction: HA + B: A - + BH

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Chapter 1 Introduction and Review

Chapter 1 Introduction and Review Chapter 1 Introduction and Review Concept to review: It is your responsibility to review the following concepts before the first class to ensure success in understanding new concepts: Atomic structure

More information

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols Chapter 8: Bonding Section 8.1: Lewis Dot Symbols The Lewis electron dot symbol is named after Gilbert Lewis. In the Lewis dot symbol, the element symbol represents the nucleus and the inner electrons.

More information

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed.

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed. CHEMICAL BONDS Atoms or ions are held together in molecules or compounds by chemical bonds. The type and number of electrons in the outer electronic shells of atoms or ions are instrumental in how atoms

More information

Introduction to Chemical Bonding

Introduction to Chemical Bonding Chemical Bonding Introduction to Chemical Bonding Chemical bond! is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together Why are most

More information

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015 chapter 8 Bonding General Concepts.notebook Chapter 8: Bonding: General Concepts Mar 13 11:15 AM 8.1 Types of Chemical Bonds List and define three types of bonding. Bonds are forces that hold groups of

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction 1 Chemical Bonds: A Preview 2 Chemical Bonds Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic compounds. Chemical bonds are electrostatic forces; they

More information

Bonding - Ch Types of Bonding

Bonding - Ch Types of Bonding Types of Bonding I. holds everything together! II. All bonding occurs because of III. Electronegativity difference and bond character A. A between two atoms results in a when those two atoms form a bond.

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Problems: 1-26, 27c, 28, 33-34, 35b, 36(a-c), 37(a,b,d), 38a, 39-40, 41-42(a,c), 43-58, 67-74 12.1 THE CHEMICAL BOND CONCEPT chemical bond: what holds atoms or ions together

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Lewis Symbols and the Octet Rule When atoms or ions are strongly attracted to one another, we say that there is a chemical bond between them. In chemical

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Chemistry 101 Chapter 9 CHEMICAL BONDING

Chemistry 101 Chapter 9 CHEMICAL BONDING CHEMICAL BONDING Chemical bonds are strong attractive force that exist between the atoms of a substance. Chemical bonds are commonly classified into 3 types: Ionic Bonding Ionic bonds form between metals

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information

Elements react to attain stable (doublet or octet) electronic configurations of the noble gases.

Elements react to attain stable (doublet or octet) electronic configurations of the noble gases. digitalteachers.co.ug Chemical bonding This chapter teaches the different types and names of bonds that exist in substances that keep their constituent particles together. We will understand how these

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Chemistry: The Central Science. Chapter 8: Basic Concepts of Chemical Bonding

Chemistry: The Central Science. Chapter 8: Basic Concepts of Chemical Bonding Chemistry: The Central Science Chapter 8: Basic Concepts of Chemical Bonding The properties of substances are determined in large part by the chemical bonds that hold their atoms together 8.1: Chemical

More information

Chapter 01 Structure Determines Properties part 2

Chapter 01 Structure Determines Properties part 2 Chapter 01 Structure Determines Properties part 2 CEM 341: Spring 2012 Prof. Greg Cook Resonance Section 1.8 Resonance Some molecules may have more than one correct Lewis structure These are NT isomers.

More information

Chemistry: The Central Science. Chapter 16: Acid-Base Equilibria. 16.1: Acids and Bases: A Brief Review

Chemistry: The Central Science. Chapter 16: Acid-Base Equilibria. 16.1: Acids and Bases: A Brief Review Chemistry: The Central Science Chapter 16: Acid-Base Equilibria 16.1: Acids and Bases: A Brief Review Acids have a sour taste and cause certain dyes to change color Base have a bitter taste and feel slippery

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

AP Chemistry Chapter 7: Bonding

AP Chemistry Chapter 7: Bonding AP Chemistry Chapter 7: Bonding Types of Bonding I. holds everything together! I All bonding occurs because of! Electronegativity difference and bond character A. A difference in electronegativity between

More information

C h a p t e r T h r e e: Acids and Bases. 17, 21-Dimethylheptatriacontane, a sex attractant pheromone of the tsetse fly

C h a p t e r T h r e e: Acids and Bases. 17, 21-Dimethylheptatriacontane, a sex attractant pheromone of the tsetse fly C h a p t e r T h r e e: Acids and Bases 17, 21-Dimethylheptatriacontane, a sex attractant pheromone of the tsetse fly CM 321: Summary of Important Concepts YConcepts for Chapter 3: Acids and Bases I.

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16. Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids taste sour and cause certain dyes to change color. Bases taste bitter and feel soapy. Arrhenius concept of acids and bases: An

More information

Topics to Expect: Periodic Table: s, p, d, f blocks Metal, Metalloid, Non metal, etc. Periodic Trends, Family names Electron Configuration: Orbitals a

Topics to Expect: Periodic Table: s, p, d, f blocks Metal, Metalloid, Non metal, etc. Periodic Trends, Family names Electron Configuration: Orbitals a Chemistry Final Exam Review and Practice Chapters Covered ESSENTIALLY CUMMULATIVE List of Chapters: Ch: 6, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20 Topics to Expect: Periodic Table: s, p, d, f blocks Metal,

More information

Chemical Bonding -- Lewis Theory (Chapter 9)

Chemical Bonding -- Lewis Theory (Chapter 9) Chemical Bonding -- Lewis Theory (Chapter 9) Ionic Bonding 1. Ionic Bond Electrostatic attraction of positive (cation) and negative (anion) ions Neutral Atoms e - transfer (IE and EA) cation + anion Ionic

More information

Chapter 8. Ions and the Noble Gas. Chapter Electron transfer leads to the formation of ionic compounds

Chapter 8. Ions and the Noble Gas. Chapter Electron transfer leads to the formation of ionic compounds Chapter 8 Chemical Bonding: General Concepts 1 8.1 Electron transfer leads to the formation of ionic compounds Ionic compounds form when metals and nonmetals react The attraction between positive and negative

More information

CHAPTER 3 CHEMICAL BONDING NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL, JB

CHAPTER 3 CHEMICAL BONDING NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL, JB CHAPTER 3 CHEMICAL BONDING NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL, JB LEARNING OUTCOMES (ionic bonding) 1. Describe ionic (electrovalent) bonding such as NaCl and MgCl 2 LEARNING OUTCOMES (metallic

More information

Covalent Bonding bonding that results from the sharing of electron pairs.

Covalent Bonding bonding that results from the sharing of electron pairs. Unit 5 Notes Covalent Bonding, Covalent Compounds, and Intermolecular Forces Chemical Bond a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms

More information

Chemical Bonding. 8.1 Types of Bonds. 8.1 Types of Bonds. : A force that holds atoms together in a molecule or compound

Chemical Bonding. 8.1 Types of Bonds. 8.1 Types of Bonds. : A force that holds atoms together in a molecule or compound : Chemical Bonding 8-1 8.1 Types of Bonds : A force that holds atoms together in a molecule or compound Two types of chemical bonds Ionic Bonds Covalent Bonds 8-2 8.1 Types of Bonds 8-3 1 8.1 Types of

More information

The energy associated with electrostatic interactions is governed by Coulomb s law:

The energy associated with electrostatic interactions is governed by Coulomb s law: Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

Many Organic compounds are acids or bases (or both) Many Organic compounds undergo acid-base reactions

Many Organic compounds are acids or bases (or both) Many Organic compounds undergo acid-base reactions Objective 4 Intro to Reactivity 1: identify acids and bases using Lewis definition. Use curved arrows to show how base reacts with acid. Relate strength to pk a. Determine direction of equilibrium. Use

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding hapter 8 Basic oncepts of hemical Bonding An Important Principle in hemistry The microscopic structure defines the properties of matter at our mesoscopic level. Ex. Graphite and Diamond (both are pure

More information

Chapter 2: Acids and Bases

Chapter 2: Acids and Bases hapter 2: Acids and Bases 32 hapter 2: Acids and Bases Problems 2.1 Write each acid- reaction as a proton-transfer reaction. Label which reactant is the acid and which the, as well as which product is

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces Molecular Compounds The simplest molecule is H 2 : Increased electron density draws nuclei together The pair of shared electrons constitutes a covalent bond. Intermolecular Forces

More information

Chapter 2 Acids and Bases. Arrhenius Acid and Base Theory. Brønsted-Lowry Acid and Base Theory

Chapter 2 Acids and Bases. Arrhenius Acid and Base Theory. Brønsted-Lowry Acid and Base Theory hapter 2 Acids and Bases A significant amount of chemistry can be described using different theories of acids and bases. We ll consider three different acid-base theories (listed in order of increasing

More information

CHAPTER 8: BASIC CONCEPTS OF CHEMICAL BONDING. Bond-an attractive interaction between two or more atoms.

CHAPTER 8: BASIC CONCEPTS OF CHEMICAL BONDING. Bond-an attractive interaction between two or more atoms. CHAPTER 8: BASIC CONCEPTS OF CHEMICAL BONDING Bond-an attractive interaction between two or more atoms. Bonding is the "glue" that holds molecules together. Two extreme types: Ionic (transfer) Covalent

More information

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds Chapter 8 Molecular Compounds & Covalent Bonding Why do covalent bonds form? If only group 5A, 6A, 7A atoms existed, ionic bonds can t form. NNMETALS Each atom needs electrons so they are not willing to

More information

Chemical Bonding. Chemical Bonding 20/03/2015. The atomic radius increases from right to left. The atomic radius increases from top to bottom

Chemical Bonding. Chemical Bonding 20/03/2015. The atomic radius increases from right to left. The atomic radius increases from top to bottom Chemical Bonding Atomic Radius: This distance from the nucleus to the outermost electron. Chemical Bonding Chemistry 11 Two factors must be taken into consideration in explaining this periodic trend: Increasing

More information

Bonding - Ch. 7. Types of Bonding

Bonding - Ch. 7. Types of Bonding Types of Bonding I. holds everything together! II. All bonding occurs because of III. Electronegativity difference and bond character A. A between two atoms results in a when those two atoms form a bond.

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Chapter 8. Covalent Bonding

Chapter 8. Covalent Bonding Chapter 8 Covalent Bonding Two Classes of Compounds Usually solids with high melting points Many are soluble in polar solvents such as water. Most are insoluble in nonpolar solvents such as hexane. Molten

More information

Chapter 8 Notes. Covalent Bonding

Chapter 8 Notes. Covalent Bonding Chapter 8 Notes Covalent Bonding Molecules and Molecular Compounds Helium and Neon are monoatomic, meaning they exist as single atoms Some compounds exist as crystalline solids, such as NaCl Others exist

More information

6.2 Electron Movements in Brønsted Acid Base Reactions. Copyright 2018 by Nelson Education Limited 1

6.2 Electron Movements in Brønsted Acid Base Reactions. Copyright 2018 by Nelson Education Limited 1 6.2 Electron Movements in Brønsted Acid Base Reactions Copyright 2018 by Nelson Education Limited 1 Recall: Brønsted Acid Base Reactions often simply termed acid base reactions Recall: H + does not actually

More information

CHEM 3013 ORGANIC CHEMISTRY I LECTURE NOTES CHAPTER 2

CHEM 3013 ORGANIC CHEMISTRY I LECTURE NOTES CHAPTER 2 EM 3013 RGANI EMISTRY I LETURE NTES 1 APTER 2 1. ormal harge The Lewis structures we have drawn thus far have all been neutral covalent molecules. owever, some covalently bonded molecules may contain charged

More information

Chapter 1: Structure Determines Properties 1.1: Atoms, Electrons, and Orbitals

Chapter 1: Structure Determines Properties 1.1: Atoms, Electrons, and Orbitals hapter 1: Structure Determines Properties 1.1: Atoms, Electrons, and rbitals Molecules are made up of atoms Atoms- protons- (+)-charge, mass = 1.676 X 10-7 kg neutrons- no charge, mass = 1.6750 X 10-7

More information

Electronic Structure and Anders Jöns Ångström ( ) Bonding 1 Å = 10 picometers = 0.1 nanometers = 10-4 microns = 10-8 centimeters Molecular

Electronic Structure and Anders Jöns Ångström ( ) Bonding 1 Å = 10 picometers = 0.1 nanometers = 10-4 microns = 10-8 centimeters Molecular Chapters 1 & 2 ~ 0.1 nm General Chemistry Review Electronic Structure and Bonding Anders Jöns Ångström (1814-1874) 1 Å = 10 picometers = 0.1 nanometers = 10-4 microns = 10-8 centimeters Molecular Representations

More information