New Online Algorithms for Story Scheduling in Web Advertising

Size: px
Start display at page:

Download "New Online Algorithms for Story Scheduling in Web Advertising"

Transcription

1 New Online Algorithms for Story Scheduling in Web Advertising Susanne Albers TU Munich Achim Paßen HU Berlin

2 Online advertising Worldwide online ad spending 2012/13: $ 100 billion Expected to surpass print ad spending soon Display advertising: images, videos, animations Content shown depending on browsing history of user

3 Story boarding

4 Story boarding Maintain ad position of a web site during browsing session of a user. Position depicts image sequences of advertisers. Advertiser pay unit shown. Depending on history/state user becomes interesting for advertisers. Maximize revenue of session.

5 Model Session time is slotted Time t: user continues surfing with probability β 0 < β < 1 I = J 1,...,J N J i = (a i,l i,v i ) a i = arrival time l i = length v i = per-unit value Preemption: Job J i may be scheduled for < l i time units max t 0β t v(t) v(t) = per-unit value of job scheduled at time t Dasgupta, Ghosh, Nazerzadeh, Raghavan SODA 09

6 Competitive analysis A: Online algorithm OPT: Offline algorithm A(I) OPT(I) A is c-competitive if for all I A(I) 1 c OPT(I).

7 Previous results Lower bound: c 2 for general β c β +β 2 Upper bound: c = 7 ALG: t v i of current J i loss in delaying J k with v k > v i for 1 time unit Dasgupta, Ghosh, Nazerzadeh, Raghavan SODA 09

8 Previous results Lower bound: c 2 for general β c β +β 2 Upper bound: c = 7 Jobs to be scheduled immediately upon arrival c = Ω( logµ/loglogµ) µ = max{l max /l min, v max /v min } Total value of v i gained only if entire J i is shown c = O(log(v max /v min )) Dasgupta, Ghosh, Nazerzadeh, Raghavan SODA 09

9 Our contribution Upper bound: c = 4/(2 β) Upper bound: c = 1+Φ 2.62 Φ = Golden Ratio Problem extension: Web page with m ad positions, where stories can be shown simultaneously; job migration not allowed max m β t v(t,j) t 0 j=1 v(t,j) = per-unit value of job scheduled on ad position j at time t Upper bound: /(2 2) c 1/(3 2 2) 5.828

10 Algorithmic approach Time: P 1 P 2 P 3 0 k 1 k 2k 1 2k 3k 1 Phases P 1,P 2,P 3,... of k consecutive time steps. Scheduling decisions are made at the beginning of the phase. Jobs arriving during the phase are ignored.

11 Simple algorithm Time: Q n : P n (n 1)k nk 1 ALG1: Phase P n : Q n = {unscheduled jobs J i with a i (n 1)k} Schedule jobs of Q n in order of non-increasing per-unit value Preempt job at the end of P n Thm: c = 1/(β k 1 (1 β k )) c = 4/(2 β) for k = log β 2 c = 1/(1 β) for k = 1

12 Refined algorithm Time: Q n : P n (n 1)k nk 1 ALG2: Phase P n : J n = remainder of last job in P n 1 Q n = {J n + unscheduled jobs J i with a i (n 1)k} Schedule jobs of Q n in order of non-increasing per-unit value If J n contained in schedule, move it to the front Thm: c = 1/β k 1 max{1/β k 1,1/(1 β 2k ),β 3k /(1 β k )} c = 1+Φ 2.618, where Φ = (1+ 5)/2 for k = 1 2 log β(1+φ) +1

13 Refined algorithm Time: Q n : P n (n 1)k nk 1 ALG2: Phase P n : J n = remainder of last job in P n 1 Q n = {J n + unscheduled jobs J i with a i (n 1)k} Schedule jobs of Q n in order of non-increasing per-unit value If J n contained in schedule, move it to the front Thm: c = 1/β k 1 max{1/β k 1,1/(1 β 2k ),β 3k /(1 β k )} c = 1+Φ 2.618, where Φ = (1+ 5)/2 for k = 1 2 log β(1+φ) +1

14 Algorithm for m ad positions Q n : Pos. 1 Pos. 2 (n 1)k nk 1 ALG3: Phase P n : Q n = {unscheduled jobs J i with a i (n 1)k} For t = (n 1)k,...,nk 1, schedule m jobs of highest per-unit value Preempt jobs at the end of P n Implementation: Units of a job are placed on same ad position

15 Algorithm for m ad positions Q n : Pos. 1 Pos. 2 (n 1)k nk 1 ALG3: Phase P n : Q n = {unscheduled jobs J i with a i (n 1)k} For t = (n 1)k,...,nk 1, schedule m jobs of highest per-unit value Preempt jobs at the end of P n Thm: c = 1/β k 1 (1+1/(1 β k )) c = (1+1/(1 β(2 2)))/(2 2) for k = log β (2 2) /(2 2) c 1/(3 2 2) 5.828

16 Simple algorithm Time: Q n : P n (n 1)k nk 1 ALG1: Phase P n : Q n = {unscheduled jobs J i with a i (n 1)k} Schedule jobs of Q n in order of non-increasing per-unit value Jobs of same value sorted in order of increasing arrival time Preempt job at the end of P n

17 Analysis simple algorithm I = J 1,...,J N J i = (a i,l i,v i ) k-quantized input I k = J 1,...,J N J i = (a i,l i,v i ) a i = k a i/k P n (n 1)k nk 1

18 Analysis simple algorithm Lemma: OPT(I k ) β k 1 OPT(I) Proof: Shift optimal schedule for I by k 1 time units to the right. Observation: ALG1(I k ) = ALG1(I)

19 Relaxed offline algorithm CHOP : Optimal algorithm that may resume preempted jobs Always schedule job with highest per-unit value. Jobs with same per-unit value are scheduled in the same order as in ALG1. Observation: CHOP(I k ) OPT(I k )

20 Timing property S = ALG1 s schedule for I k S = CHOP s schedule for I k t S (i) = start time of J i in S t S (i) = start time of J i in S Lemma: t S (i) t S (i)

21 t S (i) t S (i) Let J i be first job in S with t S (i ) > t S (i ) = t t J i CHOP ALG1: J i v i v i At time t CHOP has finished J i v i > v i : v i = v i : CHOP schedules jobs of value v i in the same order as ALG1 t S (i) t l i t S (i) t l i +1

22 Phase analysis P n Time: (n 1)k nk 1 J n = {jobs scheduled by ALG1 in P n } ALG1(P n ) = value achieved for J n ALG1(I k ) = n ALG1(P n ) CHOP(P n ) = value achieved for J n Lemma: CHOP(I k ) = n CHOP(P n ) Proof: For any J i scheduled by CHOP, {jobs scheduled by CHOP} n t S (i) t S (i) J n

23 Phase analysis P n Time: (n 1)k nk 1 Lemma: CHOP(P n ) ALG1(P n )/(1 β k ) Proof: J = last job of P n with value v CHOP(P n ) ALG1(P n )+extra value in scheduling preempted portion of J ALG1(P n ) = nk 1 t=(n 1)k β t v = (β (n 1)k β nk )/(1 β) v extra value = β t v = β nk /(1 β) v t nk CHOP(P n )/ALG1(P n ) 1+β nk /(β (n 1)k β nk ) = 1/(1 β k )

24 Wrapping up CHOP(I k ) ALG1(I k )/(1 β k ) β k 1 OPT(I) CHOP(I k ) OPT(I) ALG1(I)/(β k 1 (1 β k ))

25 Analysis refined algorithm Take care of delays if last job of previous phase is continued. Loss of preempted jobs have to amortized over several phases; segments of up to three phases.

26 Analysis m ad positions S value is at least as high as that of optimal schedule S schedules up to 2m jobs at any time t: each J i scheduled in S but not in S can be mapped (a) to a unit v i v i scheduled in S or (b) to a job preempted by S at time t < t

27 Open problems Tight bounds for deterministic algorithms Design randomized algorithms

Online Non-Preemptive Story Scheduling in Web Advertising

Online Non-Preemptive Story Scheduling in Web Advertising Online Non-Preemptive Story Scheduling in Web Advertising Tie-Yan Liu Microsoft Research tyliu@microsoft.com Pingzhong Tang Tsinghua University kenshinping@gmail.com Weidong Ma Microsoft Research weima@microsoft.com

More information

On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm

On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm Christoph Ambühl and Monaldo Mastrolilli IDSIA Galleria 2, CH-6928 Manno, Switzerland October 22, 2004 Abstract We investigate

More information

Bin packing and scheduling

Bin packing and scheduling Sanders/van Stee: Approximations- und Online-Algorithmen 1 Bin packing and scheduling Overview Bin packing: problem definition Simple 2-approximation (Next Fit) Better than 3/2 is not possible Asymptotic

More information

Online Scheduling with Bounded Migration

Online Scheduling with Bounded Migration Online Scheduling with Bounded Migration Peter Sanders Universität Karlsruhe (TH), Fakultät für Informatik, Postfach 6980, 76128 Karlsruhe, Germany email: sanders@ira.uka.de http://algo2.iti.uni-karlsruhe.de/sanders.php

More information

How much can lookahead help in online single machine scheduling

How much can lookahead help in online single machine scheduling JID:IPL AID:3753 /SCO [m3+; v 1.80; Prn:16/11/2007; 10:54] P.1 (1-5) Information Processing Letters ( ) www.elsevier.com/locate/ipl How much can lookahead help in online single machine scheduling Feifeng

More information

Scheduling Online Algorithms. Tim Nieberg

Scheduling Online Algorithms. Tim Nieberg Scheduling Online Algorithms Tim Nieberg General Introduction on-line scheduling can be seen as scheduling with incomplete information at certain points, decisions have to be made without knowing the complete

More information

NONCLAIRVOYANT SPEED SCALING FOR FLOW AND ENERGY

NONCLAIRVOYANT SPEED SCALING FOR FLOW AND ENERGY Symposium on Theoretical Aspects of Computer Science year (city), pp. numbers www.stacs-conf.org NONCLAIRVOYANT SPEED SCALING FOR FLOW AND ENERGY HO-LEUNG CHAN AND JEFF EDMONDS 2 AND TAK-WAH LAM 3 AND

More information

Online bin packing 24.Januar 2008

Online bin packing 24.Januar 2008 Rob van Stee: Approximations- und Online-Algorithmen 1 Online bin packing 24.Januar 2008 Problem definition First Fit and other algorithms The asymptotic performance ratio Weighting functions Lower bounds

More information

Online Scheduling of Parallel Jobs on Two Machines is 2-Competitive

Online Scheduling of Parallel Jobs on Two Machines is 2-Competitive Online Scheduling of Parallel Jobs on Two Machines is 2-Competitive J.L. Hurink and J.J. Paulus University of Twente, P.O. box 217, 7500AE Enschede, The Netherlands Abstract We consider online scheduling

More information

Completion Time Scheduling and the WSRPT Algorithm

Completion Time Scheduling and the WSRPT Algorithm Connecticut College Digital Commons @ Connecticut College Computer Science Faculty Publications Computer Science Department Spring 4-2012 Completion Time Scheduling and the WSRPT Algorithm Christine Chung

More information

Online Interval Coloring and Variants

Online Interval Coloring and Variants Online Interval Coloring and Variants Leah Epstein 1, and Meital Levy 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. Email: lea@math.haifa.ac.il School of Computer Science, Tel-Aviv

More information

SPT is Optimally Competitive for Uniprocessor Flow

SPT is Optimally Competitive for Uniprocessor Flow SPT is Optimally Competitive for Uniprocessor Flow David P. Bunde Abstract We show that the Shortest Processing Time (SPT) algorithm is ( + 1)/2-competitive for nonpreemptive uniprocessor total flow time

More information

Online interval scheduling on uniformly related machines

Online interval scheduling on uniformly related machines Online interval scheduling on uniformly related machines Leah Epstein Lukasz Jeż Jiří Sgall Rob van Stee August 27, 2012 Abstract We consider online preemptive throughput scheduling of jobs with fixed

More information

There are three priority driven approaches that we will look at

There are three priority driven approaches that we will look at Priority Driven Approaches There are three priority driven approaches that we will look at Earliest-Deadline-First (EDF) Least-Slack-Time-first (LST) Latest-Release-Time-first (LRT) 1 EDF Earliest deadline

More information

Online Scheduling of Jobs with Fixed Start Times on Related Machines

Online Scheduling of Jobs with Fixed Start Times on Related Machines Algorithmica (2016) 74:156 176 DOI 10.1007/s00453-014-9940-2 Online Scheduling of Jobs with Fixed Start Times on Related Machines Leah Epstein Łukasz Jeż Jiří Sgall Rob van Stee Received: 10 June 2013

More information

CSE 421 Greedy Algorithms / Interval Scheduling

CSE 421 Greedy Algorithms / Interval Scheduling CSE 421 Greedy Algorithms / Interval Scheduling Yin Tat Lee 1 Interval Scheduling Job j starts at s(j) and finishes at f(j). Two jobs compatible if they don t overlap. Goal: find maximum subset of mutually

More information

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling.

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling. Algorithm Design Scheduling Algorithms Part 2 Parallel machines. Open-shop Scheduling. Job-shop Scheduling. 1 Parallel Machines n jobs need to be scheduled on m machines, M 1,M 2,,M m. Each machine can

More information

Online algorithms December 13, 2007

Online algorithms December 13, 2007 Sanders/van Stee: Approximations- und Online-Algorithmen 1 Online algorithms December 13, 2007 Information is revealed to the algorithm in parts Algorithm needs to process each part before receiving the

More information

Optimizing Energy Consumption under Flow and Stretch Constraints

Optimizing Energy Consumption under Flow and Stretch Constraints Optimizing Energy Consumption under Flow and Stretch Constraints Zhi Zhang, Fei Li Department of Computer Science George Mason University {zzhang8, lifei}@cs.gmu.edu November 17, 2011 Contents 1 Motivation

More information

Online Packet Routing on Linear Arrays and Rings

Online Packet Routing on Linear Arrays and Rings Proc. 28th ICALP, LNCS 2076, pp. 773-784, 2001 Online Packet Routing on Linear Arrays and Rings Jessen T. Havill Department of Mathematics and Computer Science Denison University Granville, OH 43023 USA

More information

Secretary Problems. Petropanagiotaki Maria. January MPLA, Algorithms & Complexity 2

Secretary Problems. Petropanagiotaki Maria. January MPLA, Algorithms & Complexity 2 January 15 2015 MPLA, Algorithms & Complexity 2 Simplest form of the problem 1 The candidates are totally ordered from best to worst with no ties. 2 The candidates arrive sequentially in random order.

More information

Competitive Management of Non-Preemptive Queues with Multiple Values

Competitive Management of Non-Preemptive Queues with Multiple Values Competitive Management of Non-Preemptive Queues with Multiple Values Nir Andelman and Yishay Mansour School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel Abstract. We consider the online problem

More information

Online Competitive Algorithms for Maximizing Weighted Throughput of Unit Jobs

Online Competitive Algorithms for Maximizing Weighted Throughput of Unit Jobs Online Competitive Algorithms for Maximizing Weighted Throughput of Unit Jobs Yair Bartal 1, Francis Y. L. Chin 2, Marek Chrobak 3, Stanley P. Y. Fung 2, Wojciech Jawor 3, Ron Lavi 1, Jiří Sgall 4, and

More information

Polynomial Time Algorithms for Minimum Energy Scheduling

Polynomial Time Algorithms for Minimum Energy Scheduling Polynomial Time Algorithms for Minimum Energy Scheduling Philippe Baptiste 1, Marek Chrobak 2, and Christoph Dürr 1 1 CNRS, LIX UMR 7161, Ecole Polytechnique 91128 Palaiseau, France. Supported by CNRS/NSF

More information

Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy

Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy Tak-Wah Lam Lap-Kei Lee Isaac K. K. To Prudence W. H. Wong 1 Introduction This paper is concerned with online scheduling algorithms

More information

bound of (1 + p 37)=6 1: Finally, we present a randomized non-preemptive 8 -competitive algorithm for m = 2 7 machines and prove that this is op

bound of (1 + p 37)=6 1: Finally, we present a randomized non-preemptive 8 -competitive algorithm for m = 2 7 machines and prove that this is op Semi-online scheduling with decreasing job sizes Steve Seiden Jir Sgall y Gerhard Woeginger z October 27, 1998 Abstract We investigate the problem of semi-online scheduling jobs on m identical parallel

More information

ARobustPTASforMachineCoveringand Packing

ARobustPTASforMachineCoveringand Packing ARobustPTASforMachineCoveringand Packing Martin Skutella and José Verschae Institute of Mathematics, TU Berlin, Germany {skutella,verschae}@math.tu-berlin.de Abstract. Minimizing the makespan or maximizing

More information

NATCOR: Stochastic Modelling

NATCOR: Stochastic Modelling NATCOR: Stochastic Modelling Queueing Theory II Chris Kirkbride Management Science 2017 Overview of Today s Sessions I Introduction to Queueing Modelling II Multiclass Queueing Models III Queueing Control

More information

Colored Bin Packing: Online Algorithms and Lower Bounds

Colored Bin Packing: Online Algorithms and Lower Bounds Noname manuscript No. (will be inserted by the editor) Colored Bin Packing: Online Algorithms and Lower Bounds Martin Böhm György Dósa Leah Epstein Jiří Sgall Pavel Veselý Received: date / Accepted: date

More information

Coin Changing: Give change using the least number of coins. Greedy Method (Chapter 10.1) Attempt to construct an optimal solution in stages.

Coin Changing: Give change using the least number of coins. Greedy Method (Chapter 10.1) Attempt to construct an optimal solution in stages. IV-0 Definitions Optimization Problem: Given an Optimization Function and a set of constraints, find an optimal solution. Optimal Solution: A feasible solution for which the optimization function has the

More information

Pavel Veselý. Online Algorithms for Packet Scheduling

Pavel Veselý. Online Algorithms for Packet Scheduling DOCTORAL THESIS Pavel Veselý Online Algorithms for Packet Scheduling Computer Science Institute of Charles University Supervisor of the doctoral thesis: Study programme: Study branch: prof. RNDr. Jiří

More information

arxiv: v1 [cs.ds] 30 Jun 2016

arxiv: v1 [cs.ds] 30 Jun 2016 Online Packet Scheduling with Bounded Delay and Lookahead Martin Böhm 1, Marek Chrobak 2, Lukasz Jeż 3, Fei Li 4, Jiří Sgall 1, and Pavel Veselý 1 1 Computer Science Institute of Charles University, Prague,

More information

Weighted flow time does not admit O(1)-competitive algorithms

Weighted flow time does not admit O(1)-competitive algorithms Weighted flow time does not admit O(-competitive algorithms Nihil Bansal Ho-Leung Chan Abstract We consider the classic online scheduling problem of minimizing the total weighted flow time on a single

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Speed Scaling in the Non-clairvoyant Model

Speed Scaling in the Non-clairvoyant Model Speed Scaling in the Non-clairvoyant Model [Extended Abstract] ABSTRACT Yossi Azar Tel Aviv University Tel Aviv, Israel azar@tau.ac.il Zhiyi Huang University of Hong Kong Hong Kong zhiyi@cs.hku.hk In recent

More information

New Utilization Criteria for Online Scheduling

New Utilization Criteria for Online Scheduling New Utilization Criteria for Online Scheduling Dissertation zur Erlangung des Grades eines D o k t o r s d e r N a t u r w i s s e n s c h a f t e n der Universität Dortmund am Fachbereich Informatik von

More information

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1 SRPT Optimally Utilizes Faster Machines to Minimize Flow Time ERIC TORNG Michigan State University AND JASON MCCULLOUGH University of Illinois Urbana-Champaign Abstract. We analyze the shortest remaining

More information

Speed Scaling Functions for Flow Time Scheduling based on Active Job Count

Speed Scaling Functions for Flow Time Scheduling based on Active Job Count Speed Scaling Functions for Flow Time Scheduling based on Active Job Count Tak-Wah Lam 1, Lap-Kei Lee 1, Isaac K. K. To 2, and Prudence W. H. Wong 2 1 Department of Computer Science, University of Hong

More information

arxiv: v1 [cs.ds] 6 Jun 2018

arxiv: v1 [cs.ds] 6 Jun 2018 Online Makespan Minimization: The Power of Restart Zhiyi Huang Ning Kang Zhihao Gavin Tang Xiaowei Wu Yuhao Zhang arxiv:1806.02207v1 [cs.ds] 6 Jun 2018 Abstract We consider the online makespan minimization

More information

arxiv: v1 [cs.ni] 18 Apr 2017

arxiv: v1 [cs.ni] 18 Apr 2017 Zijun Zhang Dept. of Computer Science University of Calgary zijun.zhang@ucalgary.ca Zongpeng Li Dept. of Computer Science University of Calgary zongpeng@ucalgary.ca Chuan Wu Dept. of Computer Science The

More information

Online bin packing with delay and holding costs

Online bin packing with delay and holding costs Online bin packing with delay and holding costs Lauri Ahlroth, André Schumacher, Pekka Orponen Aalto University School of Science, Department of Information and Computer Science and Helsinki Institute

More information

Online Packet Buffering

Online Packet Buffering Online Packet Buffering Dissertation zur Erlangung des Doktorgrades der Fakultät für Angewandte Wissenschaften der Albert-Ludwigs-Universität Freiburg im Breisgau Markus Schmidt Freiburg im Breisgau Februar

More information

Almost Tight Bounds for Reordering Buffer Management *

Almost Tight Bounds for Reordering Buffer Management * Almost Tight Bounds for Reordering Buffer Management * Anna Adamaszek Artur Czumaj Matthias Englert Harald Räcke ABSTRACT We give almost tight bounds for the online reordering buffer management problem

More information

Improved On-line Broadcast Scheduling with Deadlines

Improved On-line Broadcast Scheduling with Deadlines Improved On-line Broadcast Scheduling with Deadlines Feifeng Zheng 1, Stanley P. Y. Fung 2, Wun-Tat Chan 3, Francis Y. L. Chin 3, Chung Keung Poon 4, and Prudence W. H. Wong 5 1 School of Management, Xi

More information

A Robust APTAS for the Classical Bin Packing Problem

A Robust APTAS for the Classical Bin Packing Problem A Robust APTAS for the Classical Bin Packing Problem Leah Epstein 1 and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. Email: lea@math.haifa.ac.il 2 Department of Statistics,

More information

Online Coloring of Intervals with Bandwidth

Online Coloring of Intervals with Bandwidth Online Coloring of Intervals with Bandwidth Udo Adamy 1 and Thomas Erlebach 2, 1 Institute for Theoretical Computer Science, ETH Zürich, 8092 Zürich, Switzerland. adamy@inf.ethz.ch 2 Computer Engineering

More information

SOFA: Strategyproof Online Frequency Allocation for Multihop Wireless Networks

SOFA: Strategyproof Online Frequency Allocation for Multihop Wireless Networks SOFA: Strategyproof Online Frequency Allocation for Multihop Wireless Networks Ping Xu and Xiang-Yang Li Department of Computer Science, Illinois Institute of Technology, Chicago, IL, 60616. pxu3@iit.edu,

More information

Online Path Computation & Function Placement in SDNs

Online Path Computation & Function Placement in SDNs Online Path Computation & Function Placement in SDNs Guy Even Tel Aviv University Moti Medina MPI for Informatics Boaz Patt-Shamir Tel Aviv University Today s Focus: Online Virtual Circuit Routing Network:

More information

Preemptive Online Scheduling: Optimal Algorithms for All Speeds

Preemptive Online Scheduling: Optimal Algorithms for All Speeds Preemptive Online Scheduling: Optimal Algorithms for All Speeds Tomáš Ebenlendr Wojciech Jawor Jiří Sgall Abstract Our main result is an optimal online algorithm for preemptive scheduling on uniformly

More information

A Framework for Scheduling with Online Availability

A Framework for Scheduling with Online Availability A Framework for Scheduling with Online Availability Florian Diedrich, and Ulrich M. Schwarz Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany {fdi,ums}@informatik.uni-kiel.de

More information

Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption

Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption 12 Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption Jinkyu Lee, Department of Computer Science and Engineering, Sungkyunkwan University, South Korea. Kang G.

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

M/G/1 and Priority Queueing

M/G/1 and Priority Queueing M/G/1 and Priority Queueing Richard T. B. Ma School of Computing National University of Singapore CS 5229: Advanced Compute Networks Outline PASTA M/G/1 Workload and FIFO Delay Pollaczek Khinchine Formula

More information

Competitive Online Scheduling for Server Systems

Competitive Online Scheduling for Server Systems Competitive Online Scheduling for Server Systems Kirk Pruhs Computer Science Department University of Pittsburgh Pittsburgh, PA 15260 kirk@cs.pitt.edu 1. INTRODUCTION Our goal here is to illustrate the

More information

Semi-Online Scheduling on Two Uniform Machines with Known Optimum Part I: Tight Lower Bounds

Semi-Online Scheduling on Two Uniform Machines with Known Optimum Part I: Tight Lower Bounds Angewandte Mathematik und Optimierung Schriftenreihe Applied Mathematics and Optimization Series AMOS # 27(2015) György Dósa, Armin Fügenschuh, Zhiyi Tan, Zsolt Tuza, and Krzysztof Węsek Semi-Online Scheduling

More information

Last class: Today: Threads. CPU Scheduling

Last class: Today: Threads. CPU Scheduling 1 Last class: Threads Today: CPU Scheduling 2 Resource Allocation In a multiprogramming system, we need to share resources among the running processes What are the types of OS resources? Question: Which

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

Alternatives to competitive analysis Georgios D Amanatidis

Alternatives to competitive analysis Georgios D Amanatidis Alternatives to competitive analysis Georgios D Amanatidis 1 Introduction Competitive analysis allows us to make strong theoretical statements about the performance of an algorithm without making probabilistic

More information

Non-clairvoyant Scheduling for Minimizing Mean Slowdown

Non-clairvoyant Scheduling for Minimizing Mean Slowdown Non-clairvoyant Scheduling for Minimizing Mean Slowdown N. Bansal K. Dhamdhere J. Könemann A. Sinha April 2, 2003 Abstract We consider the problem of scheduling dynamically arriving jobs in a non-clairvoyant

More information

A robust APTAS for the classical bin packing problem

A robust APTAS for the classical bin packing problem A robust APTAS for the classical bin packing problem Leah Epstein Asaf Levin Abstract Bin packing is a well studied problem which has many applications. In this paper we design a robust APTAS for the problem.

More information

Online Interval Scheduling: Randomized and Multiprocessor Cases

Online Interval Scheduling: Randomized and Multiprocessor Cases Online Interval Scheduling: Randomized and Multiprocessor Cases Stanley P. Y. Fung Chung Keung Poon Feifeng Zheng August 28, 2007 Abstract We consider the problem of scheduling a set of equal-length intervals

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Online Allocation Algorithms with Applications in Computational Advertising. Morteza Zadimoghaddam

Online Allocation Algorithms with Applications in Computational Advertising. Morteza Zadimoghaddam Online Allocation Algorithms with Applications in Computational Advertising by Morteza Zadimoghaddam Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of

More information

Shrinking Maxima, Decreasing Costs: New Online Packing and Covering Problems

Shrinking Maxima, Decreasing Costs: New Online Packing and Covering Problems Shrinking Maxima, Decreasing Costs: New Online Packing and Covering Problems Pierre Fraigniaud Magnús M. Halldórsson Boaz Patt-Shamir CNRS, U. Paris Diderot Dror Rawitz Tel Aviv U. Reykjavik U. Adi Rosén

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Hermann Härtig WS 2018/19 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed Priority schedulers

More information

A general framework for handling commitment in online throughput maximization

A general framework for handling commitment in online throughput maximization A general framework for handling commitment in online throughput maximization Lin Chen Franziska Eberle Nicole Megow Kevin Schewior Cliff Stein November 20, 2018 Abstract We study a fundamental online

More information

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Real-time operating systems course 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Definitions Scheduling Scheduling is the activity of selecting which process/thread should

More information

Online algorithms for parallel job scheduling and strip packing Hurink, J.L.; Paulus, J.J.

Online algorithms for parallel job scheduling and strip packing Hurink, J.L.; Paulus, J.J. Online algorithms for parallel job scheduling and strip packing Hurink, J.L.; Paulus, J.J. Published: 01/01/007 Document Version Publisher s PDF, also known as Version of Record (includes final page, issue

More information

Competitive Algorithms for Due Date Scheduling

Competitive Algorithms for Due Date Scheduling Competitive Algorithms for Due Date Scheduling Nikhil Bansal Ho-Leung Chan Kirk Pruhs As a strategic weapon, time is the equivalent of money, productivity, quality, even innovation. Abstract George Stalk,

More information

Contention-Free Executions for Real-Time Multiprocessor Scheduling

Contention-Free Executions for Real-Time Multiprocessor Scheduling Contention-Free Executions for Real-Time Multiprocessor Scheduling JINKYU LEE, University of Michigan ARVIND EASWARAN, Nanyang Technological University INSIK SHIN, KAIST A time slot is defined as contention-free

More information

Dispatching Equal-length Jobs to Parallel Machines to Maximize Throughput

Dispatching Equal-length Jobs to Parallel Machines to Maximize Throughput Dispatching Equal-length Jobs to Parallel Machines to Maximize Throughput David P. Bunde 1 and Michael H. Goldwasser 2 1 Dept. of Computer Science, Knox College email: dbunde@knox.edu 2 Dept. of Mathematics

More information

ONLINE SCHEDULING OF MALLEABLE PARALLEL JOBS

ONLINE SCHEDULING OF MALLEABLE PARALLEL JOBS ONLINE SCHEDULING OF MALLEABLE PARALLEL JOBS Richard A. Dutton and Weizhen Mao Department of Computer Science The College of William and Mary P.O. Box 795 Williamsburg, VA 2317-795, USA email: {radutt,wm}@cs.wm.edu

More information

Parallel machines scheduling with applications to Internet ad-slot placement

Parallel machines scheduling with applications to Internet ad-slot placement UNLV Theses, Dissertations, Professional Papers, and Capstones 12-2011 Parallel machines scheduling with applications to Internet ad-slot placement Shaista Lubna University of Nevada, Las Vegas Follow

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms What do you do when a problem is NP-complete? or, when the polynomial time solution is impractically slow? assume input is random, do expected performance. Eg, Hamiltonian path

More information

Tardiness Bounds under Global EDF Scheduling on a Multiprocessor

Tardiness Bounds under Global EDF Scheduling on a Multiprocessor Tardiness ounds under Global EDF Scheduling on a Multiprocessor UmaMaheswari C. Devi and James H. Anderson Department of Computer Science The University of North Carolina at Chapel Hill Abstract This paper

More information

A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks

A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks Krishnendu Chatterjee 1, Andreas Pavlogiannis 1, Alexander Kößler 2, Ulrich Schmid 2 1 IST Austria, 2 TU Wien

More information

The Power of Migration in Online Machine Minimization

The Power of Migration in Online Machine Minimization The Power of Migration in Online Machine Minimization Lin Chen Magyar Tudományos Akadémia (MTA SZTAKI) Budapest, Hungary chenlin198662@gmail.com Nicole Megow Technische Universität München Zentrum Mathematik

More information

An Improved Bound for Minimizing the Total Weighted Completion Time of Coflows in Datacenters

An Improved Bound for Minimizing the Total Weighted Completion Time of Coflows in Datacenters IEEE/ACM TRANSACTIONS ON NETWORKING An Improved Bound for Minimizing the Total Weighted Completion Time of Coflows in Datacenters Mehrnoosh Shafiee, Student Member, IEEE, and Javad Ghaderi, Member, IEEE

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Marcus Völp, Hermann Härtig WS 2013/14 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed

More information

Submodular Secretary Problem and Extensions

Submodular Secretary Problem and Extensions Submodular Secretary Problem and Extensions MohammadHossein Bateni MohammadTaghi Hajiaghayi Morteza Zadimoghaddam Abstract Online auction is the essence of many modern markets, particularly networked markets,

More information

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES Department for Embedded Systems/Real-Time Systems, University of Ulm {name.surname}@informatik.uni-ulm.de Abstract:

More information

Improving Online Algorithms via ML Predictions

Improving Online Algorithms via ML Predictions Improving Online Algorithms via ML Predictions Ravi Kumar Google Mountain View, CA ravi.k53@gmail.com Manish Purohit Google Mountain View, CA mpurohit@google.com Zoya Svitkina Google Mountain View, CA

More information

Speed Scaling to Manage Temperature

Speed Scaling to Manage Temperature Speed Scaling to Manage Temperature Leon Atkins 1, Guillaume Aupy 2, Daniel Cole 3, and Kirk Pruhs 4, 1 Department of Computer Science, University of Bristol, atkins@compsci.bristol.ac.uk 2 Computer Science

More information

Open Problems in Throughput Scheduling

Open Problems in Throughput Scheduling Open Problems in Throughput Scheduling Jiří Sgall Computer Science Institute of Charles University, Faculty of Mathematics and Physics, Malostranské nám. 25, CZ-11800 Praha 1, Czech Republic. sgall@iuuk.mff.cuni.cz

More information

A lower bound for scheduling of unit jobs with immediate decision on parallel machines

A lower bound for scheduling of unit jobs with immediate decision on parallel machines A lower bound for scheduling of unit jobs with immediate decision on parallel machines Tomáš Ebenlendr Jiří Sgall Abstract Consider scheduling of unit jobs with release times and deadlines on m identical

More information

Optimal Allocation for Chunked-Reward Advertising

Optimal Allocation for Chunked-Reward Advertising Optimal Allocation for Chunked-Reward Advertising Weihao Kong, Jian Li, Tie-Yan Liu, and Tao Qin Microsoft Research Asia Tsinghua University Abstract. Chunked-reward advertising is commonly used in the

More information

Exam Spring Embedded Systems. Prof. L. Thiele

Exam Spring Embedded Systems. Prof. L. Thiele Exam Spring 20 Embedded Systems Prof. L. Thiele NOTE: The given solution is only a proposal. For correctness, completeness, or understandability no responsibility is taken. Sommer 20 Eingebettete Systeme

More information

An O(logm)-Competitive Algorithm for Online Machine Minimization

An O(logm)-Competitive Algorithm for Online Machine Minimization An O(logm)-Competitive Algorithm for Online Machine Minimization Downloaded 10/18/16 to 160.39.192.19. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php Abstract

More information

Multiprocessor jobs, preemptive schedules, and one-competitive online algorithms

Multiprocessor jobs, preemptive schedules, and one-competitive online algorithms Multiprocessor jobs, preemptive schedules, and one-competitive online algorithms Jiří Sgall 1 and Gerhard J. Woeginger 2 1 Computer Science Institute of Charles University, Praha, Czech Republic, sgall@iuuk.mff.cuni.cz.

More information

Resource Augmentation for Weighted Flow-time explained by Dual Fitting

Resource Augmentation for Weighted Flow-time explained by Dual Fitting Resource Augmentation for Weighted Flow-time explained by Dual Fitting S. Anand Naveen Garg Amit Kumar Abstract We propose a general dual-fitting technique for analyzing online scheduling algorithms in

More information

A lower bound on deterministic online algorithms for scheduling on related machines without preemption

A lower bound on deterministic online algorithms for scheduling on related machines without preemption Theory of Computing Systems manuscript No. (will be inserted by the editor) A lower bound on deterministic online algorithms for scheduling on related machines without preemption Tomáš Ebenlendr Jiří Sgall

More information

1 Identical Parallel Machines

1 Identical Parallel Machines FB3: Matheatik/Inforatik Dr. Syaantak Das Winter 2017/18 Optiizing under Uncertainty Lecture Notes 3: Scheduling to Miniize Makespan In any standard scheduling proble, we are given a set of jobs J = {j

More information

Introduction to Algorithms 6.046J/18.401J

Introduction to Algorithms 6.046J/18.401J Introduction to Algorithms 6.046J/8.40J Lecture Prof. Piotr Indyk Welcome to Introduction to Algorithms, Spring 08 Handouts. Course Information. Calendar 3. Signup sheet (PLEASE return at the end of this

More information

THÈSE présentée par. Ming LIU GRADE DE DOCTEUR

THÈSE présentée par. Ming LIU GRADE DE DOCTEUR ÉCOLE CENTRALE DES ARTS ET MANUFACTURES «ÉCOLE CENTRALE PARIS» Spécialité : Génie Industriel THÈSE présentée par Ming LIU pour l obtention du GRADE DE DOCTEUR Laboratoire d accueil : Laboratoire Génie

More information

Online Optimization of Busy Time on Parallel Machines

Online Optimization of Busy Time on Parallel Machines Online Optimization of Busy Time on Parallel Machines Mordechai Shalom 1 Ariella Voloshin 2 Prudence W.H. Wong 3 Fencol C.C. Yung 3 Shmuel Zaks 2 1 TelHai College, Upper Galilee, 12210, Israel cmshalom@telhai.ac.il

More information

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016 Lecture 1: Introduction and Review We begin with a short introduction to the course, and logistics. We then survey some basics about approximation algorithms and probability. We also introduce some of

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

Networked Embedded Systems WS 2016/17

Networked Embedded Systems WS 2016/17 Networked Embedded Systems WS 2016/17 Lecture 2: Real-time Scheduling Marco Zimmerling Goal of Today s Lecture Introduction to scheduling of compute tasks on a single processor Tasks need to finish before

More information

On-line Scheduling of Two Parallel Machines. with a Single Server

On-line Scheduling of Two Parallel Machines. with a Single Server On-line Scheduling of Two Parallel Machines with a Single Server Lele Zhang, Andrew Wirth Department of Mechanical and Manufacturing Engineering, The University of Melbourne, VIC 3010, Australia Abstract

More information

Online Dial-a-Ride Problems: Minimizing the Completion Time

Online Dial-a-Ride Problems: Minimizing the Completion Time Online Dial-a-Ride Problems: Minimizing the Completion Time Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau Konrad-Zuse-Zentrum für Informationstechnik Berlin, Department Optimization, Takustr. 7, D-14195

More information