ANALYSIS AND MEASUREMENT OF STOKES LAYER FLOWS IN AN OSCILLATING NARROW CHANNEL *

Size: px
Start display at page:

Download "ANALYSIS AND MEASUREMENT OF STOKES LAYER FLOWS IN AN OSCILLATING NARROW CHANNEL *"

Transcription

1 ,0(6): ANALYSIS AND MEASUREMENT OF STOKES LAYER FLOWS IN AN OSCILLATING NARROW CANNEL PENG Xiao-xing China Ship Scientific search Center, Wuxi 1408, China, SU C. T. Department of Mechanical Engineering, The ong Kong University of Science and Technology, ong Kong, China (ceived November 1, 007, vised January 4, 008) Abstract: The velocities of boundary layer flows between two parallel oscillating plates separated by small distance, i.e., in so called narrow channel, were theoretically and experimentally studied. The focus was on the laminar case where the ynolds number A is much smaller than the transition value. The theoretical analysis of the Stokes layer in oscillating flow over a narrow channel was made first. Then Laser Doppler Velocimeter (LDV) was employed to measure the Stokes boundary layer above an oscillating flat plate and inside the oscillating narrow channel at various numbers. At the same time, the phase angle difference along the vertical direction in both analysis and experiment were provided. The good agreements are shown between the measured results and the theoretical solution. Key words: oscillation flow, Stokes layer, Laser Doppler Velocimeter (LDV), narrow channel 1. Introduction Oscillating flow can be found in engineering, such as ocean engineering, environmental engineering, thermal engineering and bio-engineering [1,]. For shallow water waves, the vertical velocity is negligible outside the oscillatory boundary layer near the bottom, where the fluid particle orbits are flat ellipses. Therefore, the flows near the bottoms locally can be modelled as the sinusoidal oscillating flows over a flat bottom. In recent years, bionics is widely studied to reduce the resistance and noise of underwater body. As a basic research Wang et al. [3] numerically studied the turbulence features near an oscillating curved wall. In thermal engineering systems oscillation flows in narrow channel are applied in the cooling of infrared sensors in missile guiding and satellite based surveillance system, as Project supported by the ongkong SAR Government under the RGC (Grant No. 6165/98E), the RIG (Grant No. R195/96.EG15). Biography: PENG Xiao- xing (1963-), Male, Ph.D., Professor well as in the cooling of superconductors, semiconductors and many other civilian applications. Dong et al. [4] used the LES to investigate thermally-stratified turbulent channel flow under temperature oscillation on the bottom wall. In fact, for all the oscillating flow near the well it is necessary to understand the behavior and variation of the Stokes layer. The flow induced in a semi-infinite body of fluid over a harmonically oscillating plate of infinite extent was first analyzed by Stokes [5]. Schilichting [6] gave approximate solutions and showed steady secondary flow with the method of successive approximations. owever, the measurement of velocity inside the Stokes layer has been rare conducted. The thinness of the Stokes layer thickness may be main reason especially in the case of higher oscillation frequency before the Laser Doppler Velocimeter (LDV) is introduced to the flow measurement. In the early work Russell et al. [7] and Carter et al. [8] used dye-tracing techniques to measure the mass transport velocity and only the velocity at the outer edge of the boundary layer was usually presented. Beech [9], Sleath [10],

2 771 wung et al. [11] and Liu et al. [1] presented their measurement results of velocity inside the Stokes layer with the LDV. These studies were limited in the water column above an oscillating solid surface. But the velocity distribution in the oscillating narrow channel is still not found, where the interaction of two Stokes layers need be considered. In addition, phase information was not given in previous measurements. In this work the theoretical analysis of stokes layer in oscillating flow over a narrow channel is made first. Then LDV is employed to measure the Stokes boundary layer above an oscillating flat plate and inside the narrow channel at various numbers. The measurement results are compared with the theoretical solution. At the same time we also provide the experimental results of phase angle difference along the vertical direction.. Analytical solutions Consider the fluid flow in oscillating channel consisting of two parallel infinite plates, as shown in Fig.1, in which A is the displacement amplitude of oscillating narrow channel and = f represents the oscillating frequency. There are three length scales in the oscillating flows in the narrow channel. They are the channel width, the Stokes layer thickness = and the oscillating displacement amplitude A. We can obtain two key non-dimensional parameters defined as A A = = (1) () As ( 1 ), the problem is reduced to that of two separated Stokes layers on the oscillating plates. As is reduced to close to the problem becomes more complicated due to the interaction of two Stokes layers. The solution of the laminar flow at low A can be derived as follow. We define = z, U = u A, = t T (3) The equation and boundary condition for the flow induced by oscillating narrow channel can be expressed as U U = T 1 U(, T) = e +e it it = 1 (4) (5) The solution to Eq.(4) satisfying the boundary condition (5) is 1 cosh( i ) it U(, T)= e + cc.. cosh( i ) (6) To obtain the amplitude and the phase angle the above solution, Eq.(6) is expressed as 1 U T a b cc it (, )= [( +i )e +..]= 1 [ + e i( T + ) +. a b cc.] (7) So the amplitude is ˆ = + U a b and the phase angle is = arctan( b/ a), where a = cosh( ) [1 cos ( )] [sinh( )sinh( )sin( ) sin( ) + cosh( )cosh( ) cos( )cos( )] (8a) Fig.1 Coordinates system of flows induced by an oscillating channel

3 77 b = cosh( ) [1 cos ( )] [cosh( )sinh( ) cos( )sin( ) sinh( )cosh( ) sin( )cos( )] (8b) If we consider the problem under the coordinates moving with the plates, which represents the oscillating flows in the two infinite parallel plates, the solution will be 1 it cosh( i ) U(, T)= [e cosh( i ) it e + cc.. ] (9) The magnitude and phase angle can be written as ˆ = (1 a ) + U b =arctan 1 a b (10) (11) The solution of oscillation flow over a flat plate is just the limit case of oscillation flow over a narrow channel, which can be expressed as / U(, T)=cosT e cos( T )(1) The amplitude and phase angle at different positions can be shown as / AP( )=[(1 e cos ) + / (e sin ) ] 1/ / = arctan e sin( / ) 1 e / cos( / ) where = = z z (13) (14) For the case of flow induced by oscillating flat plate the solution is / U (, T)=e cos( T / ) (15) The amplitude and phase angle of oscillation flow in different position along the z direction can be shown as ˆ ( )=e U z / (16) = (17) The solution clearly shows that the flow induced by oscillating plate decay exponentially with the distance from the plate. In other words, the influence of oscillating plate is just limited to the fluid domain near the plate. And the Stokes layer thickness is the length scale to measure the effect. 3. Experimental setup Experiments based on the LDV measurement were carried out in a water tank facility. The experimental setup consists of the water tank, the oscillation mechanism and a support frame. The experimental model with two flat plates to form a parallel channel was fixed in the support frame and moving with the oscillation mechanism. The LDV used in the experiments was a TSI s IFA 750 LDV system as shown in Fig.. In the model installation process the great attentions were paid on the level for both cases of a flat plate and the two parallel plates. The measurement principle of LDV is based on the Doppler frequency shift. When very fine particles pass though a focus volume of two laser beams, the laser light is scattered by the particles resulting in a slight frequency shift (the Doppler shift) in the scattering light relative to the incident light. In the

4 773 present experiment fine titanium dioxide (TiO ) particles around 10 m in diameter were seeded during the measurements. Fig. A picture of traverse table and fiber-optic probe For the experiments on flows induced by an oscillating flat plate, The LDV measurements were performed over a series of runs of different plate displacement amplitudes (A=10, 50, 81.3mm) and oscillation frequencies ( f = 0.033, 0.087, 0.167, 0.5, 0.5, 0.867z). A is from 0 to , which is in the laminar domain. The velocity profiles were measured over different z locations, and the results were presented by the normalized Stokes layer thickness ( = z / =( z )/ ). In the case of narrow channel, the experiments were carried out at the conditions of two channel gaps ( = 1.5,.5mm), with a series of runs of different displacement amplitudes ( A = 5, 10, 15, 5, 50, 81.3mm) and oscillation frequencies ( f = 0.033, 0.087, 0.133, 0.167, 0.5, 0.333, 0.5, 0.667, 0.867, 1, 1.333, z). So the value of was limited from 0.5 to 40. In the present experiments, the sample size for the velocity measurement was set to be 0000 data points to provide data length of approximately 30 to 60 oscillation periods, which was suitable for phase average process. The measurements of flow fields were conducted in the vertical directions of the oscillation. There were 15 measurement locations for the flat plate and measurement locations for the two parallel plates with the interval of 0. mm. The level of laser beam was adjusted to maintain the parallelity of plate plane and laser plane before the experiments. In our present measurements it was quite difficult to rigorously determine the origin of z coordinate. ence, the origin was determined experimentally by first locating an artificial approximate origin to the LDV measurement system, measuring the velocity profiles and then shifting the origin to best fit the measured velocity profile to the theoretical solution. 4. Measurement results and comparisons with analytical solutions 4. 1 sults for flat plate The experimental results of flow induced by an oscillating flat plate were summarized in Fig.3, and the origin of -coordinate is from the flat plate. The left of Fig.3 is the measurement results of velocity magnitudes inside/near the Stokes boundary layer and the results obtained from the theoretical solution Eq.(16) is plotted as the solid line. The measured phase differences inside/near the Stokes boundary layer were plotted on right of Fig.3, with the solid line representing the results obtained by theoretical solution Eq.(17). The different symbols in the figures show the measurement results at different frequencies of plate oscillation, while the difference oscillation amplitudes with same frequency are shown with the same symbol. But after the normalization of magnitude of velocity and the measurement position, good agreement between the analytical results and experimental data is achieved. When the measurement locations are far from the plate there are some differences between the theoretical solution and experiment data. The reason is that the absolute velocities in these locations are so small (less than 10 mm/s) in the present experiments so that the greater errors are induced in the LDV measurement. Fig.3 Magnitude and phase differences comparisons between the theoretical results and experimental data inside the Stokes boundary layer for plate oscillation in still water

5 774 The experimental results were also converted to those in the moving coordinates that represent the oscillation flow over fixed plate to compare with the theoretical results of oscillating flows over a still flat plate. The experimental magnitudes of velocity inside/near the Stokes boundary layer are plotted in the left of Fig.4. The solid line in the figure represents the theoretical solution expressed as Eq.(13). The measured phase differences inside/near the Stokes boundary layer were plotted in the right of Figure 4. The solid line in this figure represents the theoretical solution shown as Eq.(14). The agreement between the theoretical results and experimental data is excellent for the phase difference. The agreement between the theorrtical solution and experimental data for velocity magnitudes is reasonable though the experimental data are a little bit higher than the theoretical solution at measurement locations far from the plate. The reason is the same as that described above. velocity and phase difference between experimental results and theoretical solution. It should be noted that the origin of -coordinate in the figures is from centerline of the narrow channel. The solid lines in the figures represent the theoretical solutions. The theoretical solution of magnitude in the left of Fig.5 is (1 a) + b and phase angle in the right of Fig.5 is = arctan[ b/(1 a)], where the expressions of a and b can be found in Eq.(8). The different symbols in Fig.5 represent the experimental data at different numbers. Three cases for numbers of.343, and 3.8 were plotted. The agreement between the theoretical soluyion and experimental data is reasonable. Fig.5 Magnitude profiles and phase difference comparisons between the theoretical solution and experimental data For flows between two parallel plates Fig. 4 Magnitude and phase differences comparisons between the theoretical solution and experimental data inside the Stokes boundary layer for oscillation flows over a still plate 4. sults for narrow channel The results presented below were reduced in moving coordinates the same as oscillation flows past narrow channels, though they are for the oscillating narrow channel moving in still water in real experiments Velocity and phase profiles at different Figure 5 shows the comparisons of the profiles of 4.. Velocity and phase in centre plane of narrow channel The velocities amplitude and phase differences at the centre of two parallel plates are given in Fig.6. The results of two different gaps of parallel plates = 1.5mm and =.5mm are presented and all experimental results are normalized by the dimensionless parameter. The solid lines in the figures represent the theoretical solutions Eq.(9) when =0. The agreement between the theoretical solution and experimental data is quite good at the low

6 775 and reasonable for higher numbers. And the velocity amplitude and phase different tend to the incoming values when 35, which imply the effect of two parallel plates on the flow field of centre plane can be ignored as exceeds such value. phase difference in the channel will be identical to the case of flat plate as over 35. It should be pointed out that all flow patterns in the present experimental domain are laminar as A is much smaller than the transition value shown by su et al [13]. Acknowledgement This work was supported by the KUST (Grant No. 654/0E). ferences Fig. 6 Comparisons between the theoretical solution and experimental data for magnitude of velocity and phase difference at centre of two parallel plates 5. Concluding remarks To understand the flow features of oscillating flows in narrow channel the theoretical analysis of velocity distributions in an oscillating channel consisting of two parallel infinite plates has been presented in this paper firstly. The theoretical analysis leads to the results of the amplitude and phase of velocity in the channel and flat plate. Then the LDV has been used to measure the Stokes boundary layers in the channel and flat plate. The measurement results of velocity amplitude and phase of flows induced by either an oscillating flat plates or an oscillating channel of parallel plates have been compared with the theoretical solutions and showed good agreement. Both experimental data and theoretical solutions indicate that the interaction of two Stokes layers is even distinct with the decrease of channel gap. Compared to the case of oscillating flow over flat plate, the phase difference in the Stokes layer decreases with the increase of gap in the case of narrow channel. And velocity magnitudes enlarge with the increase of gap. The velocity magnitudes and [1] DENG Jian, SAO Xue-ming and REN An-lu. Vanishing of three-dimensionality in the wake behind a rotationally oscillating circular cylinder[j]. Journal of ydrodynamics, 007, 19(6): [] LIANG Bing-chen, LI ua-jun and LEE Dong-yong. Bottom shear stress under wave-current interaction[j]. Journal of ydrodynamics, 008, 0(1): [3] WANG Wen-quan, ANG Li-Xiang and YAN Yan et al. Study on turbulence features near an oscillating curved wall[j]. Journal of ydrodynamics, Ser. B, 007, 19(3): [4] DONG Yu-hong, LU Xi-yun and UANG Li-xian. Large eddy simulation of thermally-stratified turbulent channel flow with temperature oscillation on the bottom wall[j]. Journal of ydrodynamics, Ser. B, 004, 16(1): [5] STOKES G. G. On the effect of the internal friction of fluids on the motion of pendulums[j]. Transactions of the Cambridge Philosophical Society, 1851, 9: [6] SCLICTING. Boundary-layer theory[m]. Seventh Edition, New York: McGraw-ill, [7] RUSSELL R. O., OSORIO J. D. C. An experiment investigation of drift profiles in a closed channel[c]. Proc. 6th Conf. Coastal Engng. ASCE, Gainesville, Florid, USA, 1957, [8] CARTER T. G., LIU P. L.-F. and MEI C. C. Mass transport by waves and offshore sand bedforms[j]. J. Waterways, arbor, Coastal Engineering Div., ASCE, 1973, 99: [9] BEEC N. W. Laser Doppler measurements in the oscillatory boundary layer beneath water waves[j]. DSIA Elektronik (Appl. Sci. s.), 1978, A1(3): [10] SLEAT J. F. A. Measurements of mass transport in water waves propagated over a rough bed[c]. 19th Conf. Coastal Engng. ouston Texas, USA, 1984, [11] WUNG.., LIN C. The mass transport of wave propagating on a slopping bottom[c]. th Conf. Costal Engng. Delft, The Netherlands, 1990, [1] LIU P. L.-F., DAVIS M.. and DOWNING S. Wave-induced boundary layers above and in a permeable bed[j]. J. Fluid Mech., 1996, 35: [13] SU C. T., LU X. and KWAN M. K. LES and RANS studies of oscillating flows over a flat plate[j]. Journal of Engineering Mechanics, ASCE, 000, 16():

LES AND RANS STUDIES OF OSCILLATING FLOWS OVER FLAT PLATE

LES AND RANS STUDIES OF OSCILLATING FLOWS OVER FLAT PLATE LES AND RANS STUDIES OF OSCILLATING FLOWS OVER FLAT PLATE By Chin-Tsau Hsu, 1 Xiyun Lu, and Man-Kim Kwan 3 ABSTRACT: Oscillatory flows over a flat plate are studied by using Large Eddy Simulation (LES)

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

VERTICAL SCALES AND SHEAR STRESSES IN WAVE BOUNDARY LAYERS OVER MOVABLE BEDS. Peter Nielsen & Paul A Guard

VERTICAL SCALES AND SHEAR STRESSES IN WAVE BOUNDARY LAYERS OVER MOVABLE BEDS. Peter Nielsen & Paul A Guard VERTICAL SCALES AND SHEAR STRESSES IN WAVE BOUNDARY LAYERS OVER MOVABLE BEDS. Peter Nielsen & Paul A Guard ABSTRACT Unified scaling rules are provided for smooth and rough wave boundary layers. It is shown

More information

FLUID CHARACTERISTICS OF ROTARY WING HEAT METER WITH SINGLE-CHANNEL *

FLUID CHARACTERISTICS OF ROTARY WING HEAT METER WITH SINGLE-CHANNEL * 101 2008,20(1):101-107 FLUID CHARACTERISTICS OF ROTARY WING HEAT METER WITH SINGLE-CHANNEL * Du Guang-sheng, Liu Zheng-gang, LI Li, LIU Yong-hui, MA Yong-kun, MENG Liang School of Energy and Power Engineering,Shandong

More information

Experimental and numerical simulation studies of the squeezing dynamics of the UBVT system with a hole-plug device

Experimental and numerical simulation studies of the squeezing dynamics of the UBVT system with a hole-plug device Experimental numerical simulation studies of the squeezing dynamics of the UBVT system with a hole-plug device Wen-bin Gu 1 Yun-hao Hu 2 Zhen-xiong Wang 3 Jian-qing Liu 4 Xiao-hua Yu 5 Jiang-hai Chen 6

More information

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER.

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER. White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER Prepared by: Dr. Thomas J. Gieseke NUWCDIVNPT - Code 8233 March 29, 1999

More information

Effect of Seabed Topography Change on Sound Ray Propagation A Simulation Study

Effect of Seabed Topography Change on Sound Ray Propagation A Simulation Study Open Journal of Acoustics, 212, 2, 25-33 http://dx.doi.org/1.4236/oja.212.213 Published Online March 212 (http://www.scirp.org/journal/oja) Effect of Seabed Topography Change on Sound Ray Propagation A

More information

Estimation of Flutter Derivatives of Various Sections Using Numerical Simulation and Neural Network

Estimation of Flutter Derivatives of Various Sections Using Numerical Simulation and Neural Network The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Estimation of Flutter Derivatives of Various Sections Using Numerical Simulation

More information

STEADY CURRENTS INDUCED BY SEA WAVES PROPAGATING OVER A SLOPING BOTTOM

STEADY CURRENTS INDUCED BY SEA WAVES PROPAGATING OVER A SLOPING BOTTOM STEADY CURRENTS INDUCED BY SEA WAVES PROPAGATING OVER A SLOPING BOTTOM Erminia Capodicasa 1 Pietro Scandura 1 and Enrico Foti 1 A numerical model aimed at computing the mean velocity generated by a sea

More information

Study on Coal Methane Adsorption Behavior Under Variation Temperature and Pressure-Taking Xia-Yu-Kou Coal for Example

Study on Coal Methane Adsorption Behavior Under Variation Temperature and Pressure-Taking Xia-Yu-Kou Coal for Example International Journal of Oil, Gas and Coal Engineering 2018; 6(4): 60-66 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20180604.13 ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online) Study

More information

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD 3rd Workshop on Transport Phenomena in Two-Phase Flow Nessebar, Bulgaria, 2-7 September 1998, p.p. 133-138 INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

More information

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference Rhodes, Greece, June 26-July 1, 2016 Copyright 2016 by the International Society of Offshore and Polar Engineers

More information

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT Ito D*, and Saito Y Research Reactor Institute Kyoto University 2-1010 Asashiro-nishi, Kumatori, Sennan,

More information

CHAPTER 155 SHEET FLOW UNDER NONLINEAR WAVES AND CURRENTS. Abstract

CHAPTER 155 SHEET FLOW UNDER NONLINEAR WAVES AND CURRENTS. Abstract CHAPTER 155 SHEET FLOW UNDER NONLINEAR WAVES AND CURRENTS Mohammad Dibajnia x and Akira Watanabe 2 Abstract Experiments were conducted on initiation and transport rate of sheet flow under asymmetric oscillations.

More information

Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer

Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer CHIN.PHYS.LETT. Vol. 25, No. 5 (2008) 1738 Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer LIU Jian-Hua( ), JIANG Nan( ) Department

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Research on measuring method of the angular displacement of muzzle vibration

Research on measuring method of the angular displacement of muzzle vibration Research on measuring method of the angular displacement of muzzle vibration Baoyuan Wang 1, Chunmao Ma 2, Gang Heng 3, Hongxiao Chao 4, Jun Liu 5 Northwest Institute of Mechanical and Electrical Engineering,

More information

SHIP WAVE CRESTS IN INTERMEDIATE-DEPTH WATER

SHIP WAVE CRESTS IN INTERMEDIATE-DEPTH WATER Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 011) December 14 16, 011, Hong Kong, China SHIP WAVE CRESTS IN INTERMEDIATE-DEPTH WATER C. LEE, B.W. LEE Department of

More information

Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004

Hydrodynamics for Ocean Engineers Prof. A.H. Techet Fall 2004 13.01 ydrodynamics for Ocean Engineers Prof. A.. Techet Fall 004 Morrison s Equation 1. General form of Morrison s Equation Flow past a circular cylinder is a canonical problem in ocean engineering. For

More information

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake Evolution of the pdf of a high Schmidt number passive scalar in a plane wake ABSTRACT H. Rehab, L. Djenidi and R. A. Antonia Department of Mechanical Engineering University of Newcastle, N.S.W. 2308 Australia

More information

5. Secondary Current and Spiral Flow

5. Secondary Current and Spiral Flow 5. Secondary Current and Spiral Flow The curve of constant velocity for rectangular and triangular cross-section obtained by Nikuradse are shown in Figures and 2. In all cases the velocities at the corners

More information

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor 1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor Bai-zhou Li 1, Yu Wang 2, Qi-chang Zhang 3 1, 2, 3 School of Mechanical

More information

Interfacial Flows of Contact Line Dynamics and Liquid Displacement in a Circular Microchannel

Interfacial Flows of Contact Line Dynamics and Liquid Displacement in a Circular Microchannel Proceedings of the 3 rd World Congress on Mechanical, Chemical, and Material Engineering (MCM'17) Rome, Italy June 8 10, 2017 Paper No. HTFF 159 ISSN: 2369-8136 DOI: 10.11159/htff17.159 Interfacial Flows

More information

FUNDAMENTALS OF OCEAN ACOUSTICS

FUNDAMENTALS OF OCEAN ACOUSTICS FUNDAMENTALS OF OCEAN ACOUSTICS Third Edition L.M. Brekhovskikh Yu.P. Lysanov Moscow, Russia With 120 Figures Springer Contents Preface to the Third Edition Preface to the Second Edition Preface to the

More information

O. A Survey of Critical Experiments

O. A Survey of Critical Experiments O. A Survey of Critical Experiments 1 (A) Visualizations of Turbulent Flow Figure 1: Van Dyke, Album of Fluid Motion #152. Generation of turbulence by a grid. Smoke wires show a uniform laminar stream

More information

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13-17, 2011, Honolulu, Hawaii, USA AJTEC2011-44190 LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Youngbae

More information

2.2 The Turbulent Round Jet

2.2 The Turbulent Round Jet Canonical Turbulent Flows 13. The Turbulent Round Jet Jet flows are a subset of the general class of flows known as free shear flows where free indicates that the shear arises in the absence of a boundary

More information

/01/04: Morrison s Equation SPRING 2004 A. H. TECHET

/01/04: Morrison s Equation SPRING 2004 A. H. TECHET 3.4 04/0/04: orrison s Equation SPRING 004 A.. TECET. General form of orrison s Equation Flow past a circular cylinder is a canonical problem in ocean engineering. For a purely inviscid, steady flow we

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of boundary layer Thickness and classification Displacement and momentum thickness Development of laminar and turbulent flows in circular pipes

More information

Numerical comparison of two boundary meshless methods for water wave problems

Numerical comparison of two boundary meshless methods for water wave problems Boundary Elements and Other Mesh Reduction Methods XXXVI 115 umerical comparison of two boundary meshless methods for water wave problems Zatianina Razafizana 1,2, Wen Chen 2 & Zhuo-Jia Fu 2 1 College

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Fluctuating Heat Transfer to an Impinging Air Jet in the Transitional Wall Jet Region

Fluctuating Heat Transfer to an Impinging Air Jet in the Transitional Wall Jet Region Fluctuating Heat Transfer to an Impinging Air Jet in the Transitional Wall Jet Region Tadhg S. O Donovan, Darina B. Murray Department of Mechanical & Manufacturing Engineering, Trinity College Dublin,

More information

Spatially Resolved Wind Tunnel Wake Measurements at High Angles of Attack and High Reynolds Numbers Using a Laser-Based Velocimeter

Spatially Resolved Wind Tunnel Wake Measurements at High Angles of Attack and High Reynolds Numbers Using a Laser-Based Velocimeter Spatially Resolved Wind Tunnel Wake Measurements at High Angles of Attack and High Reynolds Numbers Using a Laser-Based Velocimeter Daniel R. Cadel and K. Todd Lowe Dept. of Aerospace and Ocean Eng., Virginia

More information

Ripple Morphodynamics in Wave-Current Boundary-Layer Flows

Ripple Morphodynamics in Wave-Current Boundary-Layer Flows Ripple Morphodynamics in Wave-Current Boundary-Layer Flows Marcelo H. García Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign 205 North Mathews Avenue Urbana,

More information

Measurement of the velocities of dielectric particles in ER fluids with laser speckle

Measurement of the velocities of dielectric particles in ER fluids with laser speckle Journal of Physics: Conference Series Measurement of the velocities of dielectric particles in ER fluids with laser speckle To cite this article: Fan Jijun et al 2011 J. Phys.: Conf. Ser. 276 012119 View

More information

SUPER-ABSORPTION CORRELATION BETWEEN DEUTERIUM FLUX AND EXCESS HEAT

SUPER-ABSORPTION CORRELATION BETWEEN DEUTERIUM FLUX AND EXCESS HEAT Li, X.Z., et al. "Super-absorption" - Correlation between deuterium flux and excess heat-. in The 9th International Conference on Cold Fusion, Condensed Matter Nuclear Science. 00. Tsinghua Univ., Beijing,

More information

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

Frequency-Dependent Amplification of Unsaturated Surface Soil Layer

Frequency-Dependent Amplification of Unsaturated Surface Soil Layer Frequency-Dependent Amplification of Unsaturated Surface Soil Layer J. Yang, M.ASCE 1 Abstract: This paper presents a study of the amplification of SV waves obliquely incident on a surface soil layer overlying

More information

Stripes developed at the strong limit of nematicity in FeSe film

Stripes developed at the strong limit of nematicity in FeSe film Stripes developed at the strong limit of nematicity in FeSe film Wei Li ( ) Department of Physics, Tsinghua University IASTU Seminar, Sep. 19, 2017 Acknowledgements Tsinghua University Prof. Qi-Kun Xue,

More information

DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT

DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT 54 Journal of Marine Science and Technology, Vol. 10, No. 1, pp. 54-60 (2002) DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT Sung-Shan Hsiao*, Ming-Chung Lin**, and

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow HUI HU, a TETSUO SAGA, b TOSHIO KOBAYASHI, b AND NOBUYUKI TANIGUCHI b a Department of Mechanical Engineering, Michigan

More information

NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE

NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE Applied Mathematics and Mechanics (English Edition), 2006, 27(2):247 253 c Editorial Committee of Appl. Math. Mech., ISSN 0253-4827 NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL

More information

Sand Ripple Dynamics on the Inner Shelf

Sand Ripple Dynamics on the Inner Shelf Sand Ripple Dynamics on the Inner Shelf Donald N. Slinn Department of Civil and Coastal Engineering, University of Florida Gainesville, FL 32611-6590, Phone: (352) 392-9537 x 1431 Fax: (352) 392-3466 E-mail:

More information

COMBINED WAVE-CURRENT FORCES ON HORIZONTAL CYLINDERS

COMBINED WAVE-CURRENT FORCES ON HORIZONTAL CYLINDERS COMBINED WAVE-CURRENT FORCES ON HORIZONTAL CYLINDERS by B.D. Chandler 1 and J.B. Hinwood 2 ABSTRACT Some early results are reported from an investigation of the forces exerted on horizontal cylinders by

More information

DYNAMICS OF CONTROLLED BOUNDARY LAYER SEPARATION

DYNAMICS OF CONTROLLED BOUNDARY LAYER SEPARATION p.1 DYNAMICS OF CONTROLLED BOUNDARY LAYER SEPARATION Václav Uruba, Martin Knob Institute of Thermomechanics, AS CR, v. v. i., Praha Abstract: The results of experimental study on a boundary layer separation

More information

Study on Acoustically Transparent Test Section of Aeroacoustic Wind Tunnel

Study on Acoustically Transparent Test Section of Aeroacoustic Wind Tunnel Journal of Applied Mathematics and Physics, 2018, 6, 1-10 http://www.scirp.org/journal/jamp ISSN Online: 2327-4379 ISSN Print: 2327-4352 Study on Acoustically Transparent Test Section of Aeroacoustic Wind

More information

Practical Algorithm for large diameter pile tip bearing capacity based on displacement control RUAN Xiang 1, a

Practical Algorithm for large diameter pile tip bearing capacity based on displacement control RUAN Xiang 1, a Advances in ngineering Research (AR), volume 43 6th International Conference on nergy and nvironmental Protection (ICP 207) Practical Algorithm for large diameter pile tip bearing capacity based on displacement

More information

Acoustic wave reflection from the transition layer of surficial marine sediment

Acoustic wave reflection from the transition layer of surficial marine sediment Acoust. Sci. & Tech. 25, 3 (2004) PAPER Acoustic wave reflection from the transition layer of surficial marine sediment Masao Kimura and Takuya Tsurumi School of Marine Science and Technology, Tokai University

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

Bottom friction effects on linear wave propagation

Bottom friction effects on linear wave propagation Bottom friction effects on linear wave propagation G. Simarro a,, A. Orfila b, A. Galán a,b, G. Zarruk b. a E.T.S.I. Caminos, Canales y Puertos, Universidad de Castilla La Mancha. 13071 Ciudad Real, Spain.

More information

CURRENT CHARACTERISTICS IN THE PRESENCE OF NEAR-ORTHOGONAL WAVES

CURRENT CHARACTERISTICS IN THE PRESENCE OF NEAR-ORTHOGONAL WAVES CURRENT CHARACTERISTICS IN THE PRESENCE OF NEAR-ORTHOGONAL WAVES Kian Yew Lim 1, Ole Secher Madsen 2, Hin Fatt Cheong 1 An experimental study involving near-orthogonal wave-current interaction in a wave

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

Experimental study of open-channel flow with partial double-layered vegetation

Experimental study of open-channel flow with partial double-layered vegetation Experimental study of open-channel flow with partial double-layered vegetation Xiaonan Tang 1*, Hamidrez Rahimi 1, Prateek Singh 1, Zishun Wei 1, Yuxuan Wang 1, Yufan Zhao 1, Qiangshuai Lu 1 1 Department

More information

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

An Equation for the Adsorption Under Variable Temperature and Pressure Condition

An Equation for the Adsorption Under Variable Temperature and Pressure Condition International Journal of Oil, Gas and Coal Engineering 2018; 6(6): 171-176 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20180606.17 ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online)

More information

ANALYTIC SOLUTION FOR THE FORCED MEAN CROSS-SHORE FLOW IN THE SURF ZONE

ANALYTIC SOLUTION FOR THE FORCED MEAN CROSS-SHORE FLOW IN THE SURF ZONE ANALYTIC SOLUTION FOR THE FORCED MEAN CROSS-SHORE FLOW IN THE SURF ZONE Thomas C. Lippmann 1, Assoc. MASCE Analytical solutions to the forced horizontal momentum equations are found for the local vertical

More information

The Mathematical Analysis of Temperature-Pressure-Adsorption Data of Deep Shale Gas

The Mathematical Analysis of Temperature-Pressure-Adsorption Data of Deep Shale Gas International Journal of Oil, Gas and Coal Engineering 2018; 6(6): 177-182 http://www.sciencepublishinggroup.com/j/ogce doi: 10.11648/j.ogce.20180606.18 ISSN: 2376-7669 (Print); ISSN: 2376-7677(Online)

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

A Pair of Large-incidence-angle Cylinders in Cross-flow with the Upstream One Subjected to a Transverse Harmonic Oscillation

A Pair of Large-incidence-angle Cylinders in Cross-flow with the Upstream One Subjected to a Transverse Harmonic Oscillation Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010 A Pair of Large-incidence-angle Cylinders in Cross-flow with the

More information

Natural frequency analysis of fluid-conveying pipes in the ADINA system

Natural frequency analysis of fluid-conveying pipes in the ADINA system Journal of Physics: Conference Series OPEN ACCESS Natural frequency analysis of fluid-conveying pipes in the ADINA system To cite this article: L Wang et al 2013 J. Phys.: Conf. Ser. 448 012014 View the

More information

Rohrströhmungsverhalten bei Drallerzeugung: Validierung von CFD Simulationen mit Laser-Doppler Anemometrie

Rohrströhmungsverhalten bei Drallerzeugung: Validierung von CFD Simulationen mit Laser-Doppler Anemometrie Fachtagung Lasermethoden in der Strömungsmesstechnik 8. 10. September 2015, Dresden Rohrströhmungsverhalten bei Drallerzeugung: Validierung von CFD Simulationen mit Laser-Doppler Anemometrie Characteristics

More information

Impact loading of ductile rectangular plates

Impact loading of ductile rectangular plates Structures Under Shock and Impact XI 71 Impact loading of ductile rectangular plates N. Jones Impact Research Centre, Department of Engineering, University of Liverpool, UK Abstract In many industries,

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

Heat Transfer Augmentation through Electric Fan Heater Using Computational Fluid Dynamics

Heat Transfer Augmentation through Electric Fan Heater Using Computational Fluid Dynamics Pa. J. Engg. & Appl. Sci. Vol. 0, Jan., 0 (p. -) eat ransfer Augmentation through Electric Fan eater Using Computational Fluid ynamics M Ahmad, M Shafiq and I. A. Chaudhry 3. search Scholar Mathematics

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Investigation of Flow Profile in Open Channels using CFD

Investigation of Flow Profile in Open Channels using CFD Investigation of Flow Profile in Open Channels using CFD B. K. Gandhi 1, H.K. Verma 2 and Boby Abraham 3 Abstract Accuracy of the efficiency measurement of a hydro-electric generating unit depends on the

More information

GENERATING AND ABSORBING BOUNDARY CONDITIONS FOR COMBINED WAVE-CURRENT SIMULATIONS

GENERATING AND ABSORBING BOUNDARY CONDITIONS FOR COMBINED WAVE-CURRENT SIMULATIONS Paper ID: 53, Page 1 GENERATING AND ABSORBING BOUNDARY CONDITIONS FOR COMBINED WAVE-CURRENT SIMULATIONS Xing Chang 1 *, Ido Akkerman 1, Rene H.M. Huijsmans 1, Arthur E.P. Veldman 1 Delft University of

More information

Exponential decay. The deviations in amplitude over 30 periods rise to more than ±20%. Fig 1 a rod and ball pendulum

Exponential decay. The deviations in amplitude over 30 periods rise to more than ±20%. Fig 1 a rod and ball pendulum Exponential decay A counter example There is a common belief that the damping of the motion of a pendulum in air is exponential, or nearly so, in all situations. To explore the limits of that approximation

More information

Direct Numerical Simulations on the Uniform In-plane Flow around an Oscillating Circular Disk

Direct Numerical Simulations on the Uniform In-plane Flow around an Oscillating Circular Disk Proceedings of the Twenty-third (2013) International Offshore and Polar Engineering Anchorage, Alaska, USA, June 30 July 5, 2013 Copyright 2013 by the International Society of Offshore and Polar Engineers

More information

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient

Oscillatory MHD Mixed Convection Boundary Layer Flow of Finite Dimension with Induced Pressure Gradient Journal of Applied Fluid Mechanics, Vol. 9, No., pp. 75-75, 6. Available online at www.jafmonline.net, ISSN 75-57, EISSN 75-65. DOI:.8869/acadpub.jafm.68.5.876 Oscillatory MHD Mixed Convection Boundary

More information

EXPERIMENTAL STUDY OF JET FLOW FIELD BY DUAL HOLOGRAM INTERFEROMETRY

EXPERIMENTAL STUDY OF JET FLOW FIELD BY DUAL HOLOGRAM INTERFEROMETRY 7 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES EXPERIMENTAL STUDY OF JET FLOW FIELD BY DUAL HOLOGRAM INTERFEROMETRY Peng Lv*, Zhimin Chen, Xing Wang *Northwestern Polytechnical University, Xian,

More information

Reliability analysis of different structure parameters of PCBA under drop impact

Reliability analysis of different structure parameters of PCBA under drop impact Journal of Physics: Conference Series PAPER OPEN ACCESS Reliability analysis of different structure parameters of PCBA under drop impact To cite this article: P S Liu et al 2018 J. Phys.: Conf. Ser. 986

More information

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction 13 th Int. Symp. on Appl. Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26-29, 26 Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction Marcel

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

NUMERICAL SIMULATION ON THERMAL CONTACT RESISTANCE OF PRACTICAL SOLID SURFACES

NUMERICAL SIMULATION ON THERMAL CONTACT RESISTANCE OF PRACTICAL SOLID SURFACES Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00642 NUMERICAL SIMULATION ON THERMAL CONTACT RESISTANCE OF PRACTICAL SOLID SURFACES Yan-Jun

More information

13.42 LECTURE 13: FLUID FORCES ON BODIES. Using a two dimensional cylinder within a two-dimensional flow we can demonstrate some of the principles

13.42 LECTURE 13: FLUID FORCES ON BODIES. Using a two dimensional cylinder within a two-dimensional flow we can demonstrate some of the principles 13.42 LECTURE 13: FLUID FORCES ON BODIES SPRING 2003 c A. H. TECHET & M.S. TRIANTAFYLLOU 1. Morrison s Equation Using a two dimensional cylinder within a two-dimensional flow we can demonstrate some of

More information

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL A. MEHMOOD, A. ALI Department of Mathematics Quaid-i-Azam University 4530, Islamabad 44000 Pakistan

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *9061759643* PHYSICS 9702/41 Paper 4 A2 Structured Questions October/November 2012

More information

A Fully Coupled Model of Non-linear Wave in a Harbor

A Fully Coupled Model of Non-linear Wave in a Harbor Copyright 2013 Tech Science Press CMES, vol.91, no.4, pp.289-312, 2013 A Fully Coupled Model of Non-linear Wave in a Harbor Daguo Wang 1 Abstract: A 2-D time-domain numerical coupled model for non-linear

More information

AP PHYSICS (B) SYLLABUS. Text: Physics, Sixth Edition by Cutnell and Johnson ISBN , Wiley and Sons, 2004 COURSE OVERVIEW

AP PHYSICS (B) SYLLABUS. Text: Physics, Sixth Edition by Cutnell and Johnson ISBN , Wiley and Sons, 2004 COURSE OVERVIEW AP PHYSICS (B) SYLLABUS Text: Physics, Sixth Edition by Cutnell and Johnson ISBN 0471-15183-1, Wiley and Sons, 2004 COURSE OVERVIEW Advanced Placement Physics is an intensive and rigorous college level

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Laminar external natural convection on vertical and horizontal flat plates, over horizontal and vertical cylinders and sphere, as well as plumes, wakes and other types of free flow will be discussed in

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Preliminary Study of Single Particle Lidar for Wing Wake Survey. M.Valla, B. Augère, D. Bailly, A. Dolfi-Bouteyre, E. Garnier, M.

Preliminary Study of Single Particle Lidar for Wing Wake Survey. M.Valla, B. Augère, D. Bailly, A. Dolfi-Bouteyre, E. Garnier, M. Preliminary Study of Single Particle Lidar for Wing Wake Survey M.Valla, B. Augère, D. Bailly, A. Dolfi-Bouteyre, E. Garnier, M. Méheut Context of research Clean Sky Joint Technology Initiative : Aims

More information

Topic 4 &11 Review Waves & Oscillations

Topic 4 &11 Review Waves & Oscillations Name: Date: Topic 4 &11 Review Waves & Oscillations 1. A source produces water waves of frequency 10 Hz. The graph shows the variation with horizontal position of the vertical displacement of the surface

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Science and Technology LDV and PIV Measurements of the Organized Oscillations of Turbulent Flow over a Rectangular Cavity* Takayuki MORI ** and Kenji NAGANUMA ** **Naval Systems Research Center, TRDI/Ministry

More information

Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow

Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow Fluid Structure Interaction VII 147 Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow H. G. Sung 1, H. Baek 2, S. Hong 1 & J.-S. Choi 1 1 Maritime and Ocean

More information

Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du, Fucheng Cao

Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du, Fucheng Cao International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 015) Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du,

More information

Mathematical modeling of three-layer beam hydroelastic oscillations

Mathematical modeling of three-layer beam hydroelastic oscillations Mathematical modeling of three-layer beam hydroelastic oscillations L. I. Mogilevich 1, V. S. Popov, A. A. Popova 3, A. V. Christoforova 4, E. V. Popova 5 1,, 3 Yuri Gagarin State Technical University

More information

Submitted to Chinese Physics C CSNS/RCS

Submitted to Chinese Physics C CSNS/RCS Study the vibration and dynamic response of the dipole girder system for CSNS/RCS Liu Ren-Hong ( 刘仁洪 ) 1,2;1) Wang Min( 王敏 ) 1 Zhang Jun-Song( 张俊嵩 ) 2 Wang Guang-Yuan ( 王广源 ) 2 1 No. 58 Research Institute

More information

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 8 ǁ August. 2017 ǁ PP. 32-39 Effect of Liquid Viscosity on Sloshing

More information

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002 1667 Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN Yu. A. Ilyin, A. Nijhuis, H. H. J. ten

More information

Convection in Three-Dimensional Separated and Attached Flow

Convection in Three-Dimensional Separated and Attached Flow Convection in Three-Dimensional Separated and Attached Flow B. F. Armaly Convection Heat Transfer Laboratory Department of Mechanical and Aerospace Engineering, and Engineering Mechanics University of

More information