RESEARCH ON THE MIXING ENHANCEMENT PERFORMANCE OF LOBED NOZZLES BY USING PIV AND LIF

Size: px
Start display at page:

Download "RESEARCH ON THE MIXING ENHANCEMENT PERFORMANCE OF LOBED NOZZLES BY USING PIV AND LIF"

Transcription

1 Proceedings of FEDSM ASME Fluids Engineering Division Summer Meeting June 21-25,1998, Washington, DC FEDSM RESEARCH ON THE MIXING ENHANCEMENT PERFORMANCE OF LOBED NOZZLES BY USING PIV AND LIF Hu Hui, Toshio Kobayashi, Tatsuo Saga Nobuyuki Taniguchi, Sigeki Segawa and Akira Ono Institute of Industrial Science, University of Tokyo 7-22-l Roppongi, Tokyo 106, Japan ABSTRACT An experimental investigation of the vertical and turbulent structures in the jet mixing flows of lobed nozzles had been conducted. The techniques of Laser Induced Fluoresce (LIF) and Particle Image Velocimetry (PIV) were used to accomplish the flow visualization, instantaneous quantitative concentration measurements and velocity field measurements of the lobed jet mixing flows. The experimental results showed that, besides the existence of the well known streamwise vortices, compared with a circular jet flow, lobed jet flows were found to have shorter laminar region, smaller scale of the spanwise Kelvin-Helmholtz vortices, earlier appearance of small scale turbulent structures and bigger turbulent intensity. Based on the LIF and PIV results, two aspects of the mechanism of mixing enhancement of a lobed nozzle are suggested. One is that a lobed nozzle can accelerate the cut and connect process of large scale spanwise Kelvin- Helmholtz vertical rings. Another is that the stretch effect of streamwise vortices generated by the lobed nozzle on the spanwise Kelvin-Helmhotz vertical rings also enhanced the energy cascade process of turbulence. Both of them can result in the creation of much small scale intense turbulence and enhances the mixing of jet flow with ambient flow. INTRODUCTION A lobed nozzle which consists of a splitter plate with convoluted trailing edge is extraordinary fluid mechanic device for efficient mixing of two co-flow streams with different velocity, temperature and/or spices. Such device had been known since the earliest days of jet engines and received considerable attention for reducing jet noise during the 1960 s. More recently, it has emerged as an attractive approach for mixing core and bypass streams of turbofan engine to improve propulsion efficiency, reduce the specific fuel consumption (SFC) and suppress the infrared radiation emission (Power et al.1994, Presz et al.1994 and Hu Hui et a1.1996). Lobed nozzle/mixer has also been received attention for using in supersonic ejectors for jet noise reduction at aircraft take off and landing as well as in combustion chamber for enhancing mixing between fuel and air (Tillman et al.1993 and Smith et a1.1997). About the mechanism of the mixing enhancement of a lobed nozzle, many work had been conducted in the past, such as Paterson (1982), Werle et a1.(1987), Elliott et a1.(1992) and McCormick et a1.(1993). In the work of the Belovich et al.( 1997), the results of these researches were summarized by that the mixing process in a lobed nozzle/mixer is controlled by three primary elements. The first is the streamwise vortices generated due to the lobed shape. The second is the increase in interfacial area between the two flows due to the special geometry of the lobed structure, and the third is the Brown- Roshiko type structures which occurring in any shear layer due to the Kelvin-Helmholtz instabilities. Although many important results had been got through these investigations, much work still need to understand the fluid dynamic mechanism of mixing enhancement by a lobed nozzle more clearly, especially regarding to the vertical and turbulent structures changes in the jet flow caused by a lobed nozzle and the mechanism of how the streamwise vortices caused by a lobed nozzle enhance jet flow mixing process. In the meanwhile, most of the previous researches were conducted by using Pitot probe, Laser Doppler Velocimetry(LDV) or Hot Film Anemeter (HFA), which are very hard to reveal the vertical and turbulent structures in jet mixing flows instantaneously and globally due to the limitation of these experimental techniques. In the present study, both Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) techniques were used to studied lobed jet mixing flows instantaneously and globally. 1 Copyright by ASME

2 EXPERIMENTAL SYSTEM AND TECHNIQUES 8/ Lase Figure 1. Experimental Setup Figure 1 shows the schematically experimental facility used in the present research. The tested nozzles were stalled in the middle of the water tank (550mm*550mm*600mm). Fluorescent dye for LIF or PIV tracers (polystyrene particles of d=looum) was premixed with the water in the jet supply tank, and jet flow was supplied by a pump. The flowrate of the jet flow, which was used to calculate the representative velocity and Reynolds numbers of the jet flow, was measured by a flow meter. A honeycomb structure was installed in the entrance of the tested nozzle to insure the uniform flow entrance. A beam of argon ion laser passed an optical system to form a plane sheet. The investigated area was focused on a CCD camera and then, recorded by Laser Videodisc Recorder. The images were digitized by a s-bit gray-scale image processing system at a spatial resolution of 640 by 480 pixels, which also can be stored on a PC (host computer) and displayed on a PC monitor. a. circular nozzle A outer pcnetratton ang c b. lobed nozzle B c. lobed nozzle C d. three tested axial slices - Figure 2. Studied tested nozzles Figure 2 shows the three tested nozzles: a baseline circular nozzle A and two lobed nozzles with different lobe numbers. The equivalent diameters of these nozzles at the exit were the same, i.e. D=40mm. In the present study, the jet velocities were O.O7m/s and 0.2Om/s, and the Reynolds Number of the jet flows, based on the nozzle exit diameter, were about 2,000 and 6,000. In the present research, LIF technique was used to conducted flow visualization and instantaneous concentration measurement. Rhodamine B was used as fluorescent dye and the fluorescent light was separated from the scattered laser light with an optical filter. Rhodamine B solution in the jet supply box has a low concentration (0.5mg/l) to insure the strength of fluorescent light being linear with the concentration of the fluorescent dye and the effect of laser light attenuation being negligible as the laser light sheet propagated through the flow. The cross correlation method was used in the present study to conduct PIV image processing. The post-processing procedures including subgrid interpolation (Hu Hui et al. 1998), velocity outliner deletion (Zhou et al. 1996), and field smoothing (Willert et a1.1991) were used to improve the accuracy of the PIV measurements. RESULTS AND DISCUSSIONS Form the result of the flow visualization and instantaneous concentration field measured for the circular jet flow (Fig, 3(a)), it can be seen that three different regions, which are laminar, transition and turbulent regions, can be identified clearly in the figure. At the end of laminar region (X/D=l.O), spanwise Kelvin-Helmholtz vortices were found to roll up. The pairing and combining of these spanwise vortices were conducted in the transition region. In the downstream of X/D=3.0, the small scale mixing (low concentration region) began to occur and much small scale turbulence and vertical structures began to appear in the flow field. Figure 3(b) shows the result of the flow visualization and instantaneous concentration field measured in the axial slice of the lobe trough (Fig.2(d)) for the lobed nozzle B. Compared with the circular jet flow, the jet flow for lobed nozzle B at this axial slice had a shorter laminar region (X/D=O.2). The scale of the spanwise Kelvin-Helmholtz vortices of the jet flow was much smaller. The transition region in which the pairing and combining process of the spanwise vortices were accomplished also became shorter. In the downstream of the locationx/d=o.& much small scale mixing and small scale turbulent structures (low concentration region) were found to appear. Figure 3(c) shows the result of the flow visualization and instantaneous concentration field measurements in the axial slice of the lobe peak (Fig.2(d)) for the lobed nozzle B. From the figure, it can be seen that: the laminar region was not a straight cylinder like that in the circular jet, and looked like a expansive cut-off cone along the downstream of the lobed structure instead. Compared with the flow structures shown in Fig.3(b), the laminar region in the lobe peak axial slice was a bit longer (X/D=0.4), but it was still shorter than that in the circular jet flow. This is caused by the different thickness of the boundary layer at the exit of the lobed nozzle (the work of the Brink et al.(1993), had verified that the thickness of the Copyright by ASME

3 boundary layer at the lobed trough is smaller than that in the lobed peak), and the thicker boundary layer at the lobe peak need a longer streamwise distance to roll-up the Kelvin- Helmholtz vortices (Hussain et al. 1989). In this axial slice, it can also be seen that small scale mixing and small scale turbulent structures (low concentration region) were found to appear about in the down stream of location X/D=0.8. Figure 3.(d) gives the result of flow visualization and instantaneous concentration field measurement in the axial slice of the lobe side (Fig.2(d)) for the jet flow of lobed nozzle B. In this axial slice, streak flow structures can be seen in the near field of the jet flow. These structures were the Kelvin- Helmholtz vertical tubes shed periodically from the lobe training edge, which was observed and called normal vortex by McCormick et a1.(1993). At the downstream of the location X/D = 0.8, small scale mixing and small scale turbulent structures (low concentration region) were found to appear in the flow field. Figure 4 is the flow visualization of the jet flow for the lobed nozzle C in four cross planes. From the figures it can be seen that, at X=lOmm (X/D=0.25, Fig.4(a)), the existence of the streamwise vortices in the form of 12 petal mushrooms can be seen clearly in the jet flow. As the streamwise distance increased to X=20mm(X/D=OS), the mushrooms grew up (Fig.4(b)), which indicated the intersection and enhancement of the streamwise vortices generated by lobed nozzle. As the streamwise vortices intensified, some small scale structures began to appear in the flow and the interaction between the streamwise vortices and Kelvin-Helmholtz vortices made adjacent mushrooms merging with each other (X=30mm, Fig.4(c), which indicated the process that the streamwise vortices deform the Kelvin-Helmholtz vertical tube into pinchoff structure suggested by McCormick et a1.(1993). At X= 40mm (X/D=I.O, Fig.4(d)), the mushroom shape structures almost disappeared and the flow was almost fully filled with small turbulent structures. 2). PIV results The PIV measurement results of the lobed jet flow and circular jet flow were showed in the Fig. 5 to Fig. 8. The instantaneous flow fields showed on these figures were obtained at the frequency of 30 Hz and the mean flow fields were got by the average of 100 frames of the instantaneous flow fields. The instantaneous spanwise vorticity (Wzi,j,, ), mean velocity (U i,j and V i,j ) and mean turbulent intensity T, shown on the figures were defined as: r&zyg7 ~j(.~,,,, -I/,.,)? +(v,,,,,-y,,) T = /=I I 100 = 100 In which ui,j,r and Vi,j,r are the instantaneous velocities in the X and Y directions respectively, while u i,j,t and v i,j,t are the instantaneous turbulent velocities. From these figures, it can be seen that, compared with the mean flow fields, the instantaneous velocity and vorticity fields revealed the existence of many small scale turbulent in the flow field, which cannot be observed in the mean flow fields. This is also the advantage of the instantaneous full field experimental technique like PIV over conventional experimental techniques. From the mean turbulent intensity fields, it can also be seen that, the bigger turbulent intensity regions in the three axial slices of the lobed jet were located almost in the near down stream of the lobed nozzle, which means that the most of the mixing process between the jet and ambient flows were completed in near down stream region (X/D<3.0). While, for the flow field of the circular jet, it is still in its core potential region (Fig. 8). From the comparison the maximum values of the turbulent intensity fields in the lobed jet (which are n/s, 0.1 lom/s and O.lOOm/s in the axial slice of lobe trough slice, lobe peak slice and side of the lobe slice respectively) and circular jet flow (which is O.O6Om/s), it also can be seen that lobed jet flows were much more turbulent than the circular jet, which also indicted the mixing enhancement performance of the lobed nozzle. Figure 9 shows the 100 frames PIV instantaneous velocity fields in the axial slice passing the lobe trough of the lobe nozzle B. In the figure, Z direction indicates the time step. The iso-surfaces of the spanwise vorticity Wz=l.O(red) and Wz=l.O(blue) was also showed in the figure. From the figure it can be seen that, at the entrance of the measurement region, for the iso-surface of the spanwise vorticity Wz= I.O(red) and Wz=-1.0 (blue), some periodical structures were found along the time direction (Z direction), which were corresponded to the periodically rolled up process of the spanwise vortices due to the Kelvin-Helmholtz instability in the shear layer. The size of the iso-surface of these spanwise vortices decreased along the flow direction (Y direction) due to the mixing process in the jet flow. In the exit of the measurement region, the scale of these iso-surface structures were much smaller than that in the entrance of the measurement region. 3). Mechanism of the mixing enhancement of lobed nozzles From above LIF and PIV results, it can be seen that, compared with the circular jet flow, lobed nozzles can reduce the scale of Kelvin-Helmholtz vortices, accelerate the process of vortices pairing, produce streamwise vortices in the jet flow. Small scale turbulence appeared earlier and bigger turbulent intensity was found in the lobed jet. All these indicated the mixing enhancement performance of lobed nozzles. However, how the lobed nozzles enhance fluid mixing in the jet flow? McCormick et a1.(1993) suggested that the interaction of Kelvin-Helmholtz vortices with streamwise vortices generated by lobed nozzles produces high levels of mixing which is the mainly responsible for the enhanced mixing, but by what means were these processes conducted? They did not explain it. Copyright by ASME

4 completed in the near field region (X/D<3.0) of the lobe jet flow. stretched Doint Kelvin- Helmhotlz spanwise streamwise vortices Figure 10. Idealization of the vertical evolution in a circular jet flow conjectured by Hussain (1986) It was well known that, for a circular jet, just like described in the article of Hussain (1986, Fig.10) spanwise vortex rings will be rolled up firstly due to the Kelvin-Helmholtz instability (first instability) existed at any shear layer. As these spanwise vortex rings move downsteam, they can not be two dimensional vertical rings due to the self-interaction effect and cross-interaction effect between them. They will be the combinations of helical vertical tubes, i.e. toroidal vertical rings through the effect of an additional instability (secondary instability or azimuthal helical instability model). So, the two dimensional spanwise vortex rings caused by the Kelvin- Helmholtz instability will be wrapped and developed into three dimensional structures through secondary instability. With undergoing interactions, the large scale toroidal vertical rings will be broken down into many substructures through the cut and connect process, which may be responsible for the avalanche of three dimensional and smaller scale motions and for the generation of high turbulence and Reynolds stress. However, in a circular jet flow, the evolution of such process will need a very long streamwise distance to complete. For a lobed nozzle, because of its special geometry, it can cause big perturbation along the azimuth of the jet flow, such as the non-uniform momentum thickness of the boundary layer at the exit of the lobed nozzle. The streamwise vortices produced by the lobed nozzle enlarge the azimuthal perturbation by the means of deforming the Kelvin-Helmholtz vertical tubes into pinch-off structures (suggested by McCormick et al.( 1993) and visualized in the Fig.4). All these enhance the creation of the complex three dimensional vortices and the helical instability of the jet flow. i. e., the toroidal effect of the spanwise vertical structures is enlarged, and then the cut and connect process of the vertical rings is accelerated (which is the merging process of the adjacent mushroom observed on the flow visualization in the cross plane, Fig. 4), This means that the process of a large-scale vertical structure breaking into smaller scale vertical structure is conducted more rapidly, therefore, the mixing of the jet flow with ambient flow is enhanced. All these processes can be stretchid point Figure1 1. Stretch effect of streamwise vortices on the spanwise Kelvin-Helmhotlz vertical tube Besides this, the interaction between the large scale streamwise vortices produced by the lobed nozzles and the spanwise vortices caused by the Kelvin-Helmholtz instability also results in that the spanwise vertical rings are stretched(fig. 11). According to the Helmholtz vorticity conservation law, the scale of the vortices will be reduced when the vortices are stretched, These also enhance the energy cascade process of turbulence, and result in rapid reduction of the scale of the spanwise instability (this is the reason why the scale of spanwise Kelvin-Helmholtz vortices is smaller in the lobed jet flows than that in the circular jet flow showed in the above LIF results). These also result in the creation of much small scale intense turbulence and the mixing enhancement of the jet flow with ambient flow. CONCLUSION The LIF and PIV results of the investigation revealed the great differences of the turbulent structure and vortex scale between the lobed jet and circular jet mixing flow. Compared with the circular jet flow, the lobed jet flow had shorter laminar instability region, smaller scale of the spanwise Kelvin-Helmholtz vorices, earlier appearance of the small scale turbulent structures and bigger turbulent intensity. All these indicated the mixing enhancement performances of a lobed nozzle over a circular nozzle. Based on LIF and PIV measurement results, two aspects of the mechanism of the mixing enhancement of a lobed nozzle are suggested: One is that a lobed nozzle can cause azimuthal perturbations in the jet flow,and the streamwise vortices produced by the lobed nozzle enhanced these azimuthal perturbations. These accelerate the cut and connect process of the large scale spanwise Kelvin-Helmholtz vortex rings to transfer the energy and vorticity from large scale vortices to small scale vortices. Another is that the interaction between the streamwise vortices and spanwise Kelvin-Helmholtz vortices also enhanced the energy cascade process of the turbulence, which also resulted in the creation of much smaller scale intense turbulence and mixing enhancement of the jet flow with ambient flow. 4 Copyright by ASME

5

6

7

8

Proceedings of 3rd International Workshop on PIV, Santa Barbara, USA, Sep.16-18, 1999 PIV and LIF Measurements on the Lobed Jet Mixing Flows

Proceedings of 3rd International Workshop on PIV, Santa Barbara, USA, Sep.16-18, 1999 PIV and LIF Measurements on the Lobed Jet Mixing Flows Proceedings of rd International Workshop on PIV, Santa Barbara, USA, Sep.68, 999 PIV and LIF Measurements on the Lobed Jet Mixing Flows Hui HU, Toshio KOBAASHI, Tetsuo SAGA, Shigeki SEGAWA and Nobuyuki

More information

Mixing Process in the Jet Flow of Lobed Nozzle

Mixing Process in the Jet Flow of Lobed Nozzle Proceeding of 99 Korea-Japan Joint Seminar on Particle Image Velocimetry pp9-5 Mixing Process in the Jet Flow of Lobed Nozzle Tetsuo SAGA, Hui HU and Toshio KOBAASHI Institute of Industrial Science, University

More information

PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS

PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS Proceedings of the Sixth Triennial International Symposium on Fluid Control, Measurement and Visualization, Sherbrooke, Canada, August -7,. PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS

More information

Mixing Process in the Jet Flows of Lobed Nozzles

Mixing Process in the Jet Flows of Lobed Nozzles Proceedings of VSJ-SPIE98 December 6-9,998,Yokohama, JAPA AB Mixing Process in the Jet Flows of Lobed ozzles Hu Hui, Toshio Kobayashi, Tetsuo Saga, obuyuki Taniguchi and Shigeki Segawa Institute of Industrial

More information

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Proceedings of International Symposium on Visualization and Image in Transport Phenomena, Turkey, -9 Oct. SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Hui HU a, Tetsuo

More information

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow HUI HU, a TETSUO SAGA, b TOSHIO KOBAYASHI, b AND NOBUYUKI TANIGUCHI b a Department of Mechanical Engineering, Michigan

More information

Changes to the vortical and turbulent structure of jet flows due to mechanical tabs

Changes to the vortical and turbulent structure of jet flows due to mechanical tabs 321 Changes to the vortical and turbulent structure of jet flows due to mechanical tabs H Hui1*, T Kobayashi1, SWu2 and G Shen2 12nd Department, Institute of Industrial Science, University of Tokyo, Japan

More information

RESEARCH ON THE SELF-INDUCED SLOSHING PHENOMENA IN A RECTANGULAR TANK

RESEARCH ON THE SELF-INDUCED SLOSHING PHENOMENA IN A RECTANGULAR TANK 9TH. INTERNATIONAL SYMPOSIUM ON FLOW VISUALIZATION, RESEARCH ON THE SELF-INDUCED SLOSHING PHENOMENA IN A RECTANGULAR TANK Tetsuo SAGA, Hui HU, Toshio KOBAYASHI Shigeki SEGAWA and Nobuyuki TANIGUCHI Keywords:

More information

Numerical Simulation of the Vortical Structures in a Lobed Jet Mixing Flow

Numerical Simulation of the Vortical Structures in a Lobed Jet Mixing Flow Numerical Simulation of the Vortical Structures in a Lobed Jet Mixing Flow Nathan J. Cooper * and Parviz Merati Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo,

More information

Visualization of Multi-scale Turbulent Structure in Lobed Mixing Jet Using Wavelets

Visualization of Multi-scale Turbulent Structure in Lobed Mixing Jet Using Wavelets 2001 The Visualization Society of Japan and Ohmsha, Ltd. Journal of Visualization, Vol. 4, No. 3 (2001) 231-238 Visualization of Multi-scale Turbulent Structure in Lobed Mixing Jet Using Wavelets Li, H.*

More information

Stereoscopic PIV Measurement of a Jet Flow with Vortex Generating Tabs

Stereoscopic PIV Measurement of a Jet Flow with Vortex Generating Tabs The th International Symposium on Flow Visualization August -,, Kyoto, Japan F Stereoscopic PIV Measurement of a Jet Flow with Vortex Generating Tabs Hui HU* 1, Toshio KOBAASHI *, Tetsuo SAGA* and Nubuyuki

More information

A PIV Study on the Self-induced Sloshing in a Tank with Circulating Flow

A PIV Study on the Self-induced Sloshing in a Tank with Circulating Flow Proceeding of PSFVIP-2 May 16-19, 1999, Honolulu, USA PF152 A PIV Study on the Self-induced Sloshing in a Tank with Circulating Flow Hu Hu Toshio Kobayash Tetsuo Saga, Shigeki Segawa and obuyuki Taniguchi

More information

A Comparative Study of the PIV and LDV Measurements on a Self-induced Sloshing Flow

A Comparative Study of the PIV and LDV Measurements on a Self-induced Sloshing Flow 2000 The Visualization Society of Japan and Ohmsha, Ltd. Journal of Visualization, Vol. 3, No.2 (2000) 145-156 A Comparative Study of the PIV and LDV Measurements on a Self-induced Sloshing Flow Saga,

More information

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS 4th International Symposium on Particle Image Velocimetry Göttingen, Germany, September 7-9, 00 PIV 0 Paper 096 THE EFFECT OF SAMPLE SIZE, TURBULECE ITESITY AD THE VELOCITY FIELD O THE EXPERIMETAL ACCURACY

More information

Mixing Augmentation by Multiple Lobed Jets

Mixing Augmentation by Multiple Lobed Jets American Journal of Fluid Dynamics 2015, 5(2): 55-64 DOI: 10.5923/j.ajfd.20150502.03 Mixing Augmentation by Multiple Lobed Jets N. K. Depuru Mohan 1,*, K. R. Prakash 2, N. R. Panchapakesan 3 1 Department

More information

Mixing Enhancement of Coaxial Jet with Arrayed Flap Actuators for Active Control of Combustion Field

Mixing Enhancement of Coaxial Jet with Arrayed Flap Actuators for Active Control of Combustion Field Proceedings of the 2nd Symposium on Smart Control of Turbulence, Tokyo, Japan, March 4-6, 2001. Mixing Enhancement of Coaxial Jet with Arrayed Flap Actuators for Active Control of Combustion Field Naoki

More information

FLOW-FIELD OF A 12-LOBE CONVOLUTED MIXER

FLOW-FIELD OF A 12-LOBE CONVOLUTED MIXER 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FLOW-FIELD OF A 12-LOBE CONVOLUTED MIXER Leiyong Jiang, Ibrahim Yimer and W.E. Carscallen Gas Turbine Environmental Research Centre Institute for

More information

The Effects of Scalloping Width and Position on Jet Mixing of Lobed Nozzles

The Effects of Scalloping Width and Position on Jet Mixing of Lobed Nozzles doi: 10.5028/jatm.v7i4.519 The Effects of Scalloping Width and Position on Jet Mixing of Lobed Nozzles Liu Dawei 1, Huang Jun 1, Sheng Zhiqiang 1, Ji Jinzu 1 Abstract: A series of geometric models of lobed

More information

Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers)

Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers) Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers) T-S Leu May. 3, 2018 Chapter 5: Phenomena of laminar-turbulent boundary layer transition (including free

More information

Article published by EDP Sciences and available at or

Article published by EDP Sciences and available at   or http://www.emath.fr/proc/vol.1/ Three-Dimensional Vorticity Dynamics in a Coowing Turbulent Jet Subjected to Axial and Azimuthal Perturbations Katherine Prestridge and Juan C. Lasheras Department of Applied

More information

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS ELECTRIC POWER 2003 March 4-6, 2003 George R Brown Convention Center, Houston, TX EP 03 Session 07C: Fuels, Combustion and Advanced Cycles - Part II ASME - FACT Division CHARACTERISTICS OF ELLIPTIC CO-AXIAL

More information

Experimental Analysis on Incompressible circular and noncircular Fluid Jet through Passive Control Method

Experimental Analysis on Incompressible circular and noncircular Fluid Jet through Passive Control Method IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684, p-issn : 2320 334X PP 15-21 www.iosrjournals.org Experimental Analysis on Incompressible circular and noncircular Fluid Jet

More information

Shear instabilities in a tilting tube

Shear instabilities in a tilting tube Abstract Shear instabilities in a tilting tube Edmund Tedford 1, Jeff Carpenter 2 and Greg Lawrence 1 1 Department of Civil Engineering, University of British Columbia ttedford@eos.ubc.ca 2 Institute of

More information

Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies

Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies Experimental investigation of flow control devices for the reduction of transonic buffeting on rocket afterbodies F.F.J. Schrijer 1, A. Sciacchitano 1, F. Scarano 1 1: Faculty of Aerospace Engineering,

More information

INITIAL CONDITION EFFECTS ON KELVIN-HELMHOLTZ INSTABILITIES AND DEVELOPMENT OF A ROUND JET

INITIAL CONDITION EFFECTS ON KELVIN-HELMHOLTZ INSTABILITIES AND DEVELOPMENT OF A ROUND JET INITIAL CONDITION EFFECTS ON KELVIN-HELMHOLTZ INSTABILITIES AND DEVELOPMENT OF A ROUND JET Amy B. McCleney and Philippe M. Bardet The George Washington University 800 22 nd St NW, Washington, D.C. 20037

More information

Quantum Dots (DQ) Imaging for Thermal flow studies

Quantum Dots (DQ) Imaging for Thermal flow studies AerE 545 class notes #43 Quantum Dots (DQ) Imaging for Thermal flow studies Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 511, U.S.A Quantum Dots Quantum dots are chemically

More information

EXPERIMENTAL INVESTIGATION ON THE NONCIRCULAR INCOMPRESSIBLE JET CHARACTERISTICS

EXPERIMENTAL INVESTIGATION ON THE NONCIRCULAR INCOMPRESSIBLE JET CHARACTERISTICS EXPERIMENTAL INVESTIGATION ON THE NONCIRCULAR INCOMPRESSIBLE JET CHARACTERISTICS S. Venkata Sai Sudheer 1, Chandra Sekhar K 2, Peram Laxmi Reddy 3 1,2 Assistant Professor, Mechanical Engineering, CVR College

More information

PIV study for the analysis of planar jets in cross-flow at low Reynolds number

PIV study for the analysis of planar jets in cross-flow at low Reynolds number PIV study for the analysis of planar jets in cross-flow at low Reynolds number Vincenti I., Guj G., Camussi R., Giulietti E. University Roma TRE, Department of Ingegneria Meccanica e Industriale (DIMI),

More information

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES THERMAL SCIENCE, Year, Vol. 8, No. 5, pp. 87-9 87 PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES by Cheng-Xu TU, a,b Fu-Bin BAO

More information

(a) Re=150 (Spanwise domain: 8D) (b) Re=200 (Spanwise domain: 8D) (c) Re=300 (Spanwise domain: 4D) (d) Re=1000 (Spanwise domain: 4D) Fig.5 Isovorticity surface of instantaneous dynamic wake at Re=150,

More information

FLOW VISUALIZATION AND SIMULTANEOUS VELOCITY AND TEMPERATURE MEASUREMENTS IN THE WAKE OF A HEATED CYLINDER

FLOW VISUALIZATION AND SIMULTANEOUS VELOCITY AND TEMPERATURE MEASUREMENTS IN THE WAKE OF A HEATED CYLINDER TH INTERNATIONAL SYMPOSIUM ON FLOW VISUALIZATION August -,, University of Notre Dame, Notre Dame, Indiana, USA FLOW VISUALIZATION AND SIMULTANEOUS VELOCITY AND TEMPERATURE MEASUREMENTS IN THE WAKE OF A

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

Comparison between Numerical and Experimental for UVP Measurement in Double Bent Pipe with Out-of-Plane Angle

Comparison between Numerical and Experimental for UVP Measurement in Double Bent Pipe with Out-of-Plane Angle Journal of Flow Control, Measurement & Visualization, 24, 2, 54-64 Published Online October 24 in SciRes. http://www.scirp.org/journal/jfcmv http://dx.doi.org/.4236/jfcmv.24.247 Comparison between Numerical

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

This is the published version of a paper presented at Healthy Buildings 2017 Europe, Lublin, Poland.

This is the published version of a paper presented at Healthy Buildings 2017 Europe, Lublin, Poland. http://www.diva-portal.org This is the published version of a paper presented at Healthy Buildings 2017 Europe, Lublin, Poland. Citation for the original published paper: Kabanshi, A., Sattari, A., Linden,

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

FEDSM COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET IMPINGEMENT ON A FLAT PLATE WITH/WITHOUT HOLE

FEDSM COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET IMPINGEMENT ON A FLAT PLATE WITH/WITHOUT HOLE Proceedings of FEDSM2007: 5 th Joint ASME/JSME Fluids Engineering Conference July 30-August 2, 2007, San Diego, CA, USA FEDSM2007-37563 COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Science and Technology LDV and PIV Measurements of the Organized Oscillations of Turbulent Flow over a Rectangular Cavity* Takayuki MORI ** and Kenji NAGANUMA ** **Naval Systems Research Center, TRDI/Ministry

More information

Flow Control around Bluff Bodies by Attached Permeable Plates

Flow Control around Bluff Bodies by Attached Permeable Plates Flow Control around Bluff Bodies by Attached Permeable Plates G. M. Ozkan, H. Akilli Abstract The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use

More information

PIV measurements of cold flow field in a partially premixed bluff body burner M. Dutka, 1, M. Ditaranto 2, T. Løvås 1

PIV measurements of cold flow field in a partially premixed bluff body burner M. Dutka, 1, M. Ditaranto 2, T. Løvås 1 PIV measurements of cold flow field in a partially premixed bluff body burner M. Dutka, 1, M. Ditaranto 2, T. Løvås 1 1 Department of Energy and Process Engineering, Norwegian University of Science and

More information

Design of an Acoustically Excited Jet for Laser Diagnostics Development

Design of an Acoustically Excited Jet for Laser Diagnostics Development Design of an Acoustically Excited Jet for Laser Diagnostics Development Michael A. Willis * Auburn University, Auburn, Alabama, 36849 An acoustically excited jet facility has been designed, constructed

More information

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560 FLOW MEASUREMENT INC 102 Fundamental of Instrumentation and Process Control 2/2560 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry

More information

Numerical Studies of Supersonic Jet Impingement on a Flat Plate

Numerical Studies of Supersonic Jet Impingement on a Flat Plate Numerical Studies of Supersonic Jet Impingement on a Flat Plate Overset Grid Symposium Dayton, OH Michael R. Brown Principal Engineer, Kratos/Digital Fusion Solutions Inc., Huntsville, AL. October 18,

More information

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake Evolution of the pdf of a high Schmidt number passive scalar in a plane wake ABSTRACT H. Rehab, L. Djenidi and R. A. Antonia Department of Mechanical Engineering University of Newcastle, N.S.W. 2308 Australia

More information

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER.

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER. White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER Prepared by: Dr. Thomas J. Gieseke NUWCDIVNPT - Code 8233 March 29, 1999

More information

The Effect of Endplates on Rectangular Jets of Different Aspect Ratios

The Effect of Endplates on Rectangular Jets of Different Aspect Ratios The Effect of Endplates on Rectangular Jets of Different Aspect Ratios M. Alnahhal *, Th. Panidis Laboratory of Applied Thermodynamics, Mechanical Engineering and Aeronautics Department, University of

More information

Abstract Particle image velocimetry (PIV)

Abstract Particle image velocimetry (PIV) Computation of Pressure Distribution Using PIV Velocity Data R. Gurka'l), A. Liberzon''), D. Hefet~'~), D. Rubinstein"), U. Shavit(')* 'I) Agricultural Engineering, Technion, Haifa 32000, Israel (anuri@tr.technian.ac.il)

More information

AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER

AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER Abstract AEROACOUSTIC INVESTIGATION OF THE EFFECT OF A DETACHED FLAT PLATE ON THE NOISE FROM A SQUARE CYLINDER Aniket D. Jagtap 1, Ric Porteous 1, Akhilesh Mimani 1 and Con Doolan 2 1 School of Mechanical

More information

Counter-Current Shear Layer Vortex Generation Facility

Counter-Current Shear Layer Vortex Generation Facility Counter-Current Shear Layer Vortex Generation Facility Robert Thompson * and David Wall Auburn University, Auburn, Alabama, 36830 Dr. Brian Thurow Auburn University, Auburn, Alabama, 36830 A counter current

More information

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction 13 th Int. Symp. on Appl. Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26-29, 26 Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction Marcel

More information

LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications

LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications by K. M. Bernhard Gustafsson Department of Thermo and Fluid Dynamics Chalmers University of Technology SE-41296 Göteborg, SWEDEN

More information

FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids

FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids FLIHY constructed as a flexible facility that serves many needs for Free-Surface Flows in low-k, high Pr fluids Flow Control Large scale test sections with water/koh working liquid Penetrations (e.g. modified

More information

Hajime NAKAMURA and Tamotsu IGARASHI

Hajime NAKAMURA and Tamotsu IGARASHI 622 Heat Transfer in Separated Flow behind a Circular Cylinder for Reynolds Numbers from 120 to 30 000 (2nd Report, Unsteady and Three-Dimensional Characteristics) Hajime NAKAMURA and Tamotsu IGARASHI

More information

PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW

PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW ICAS CONGRESS PIV STUDY OF LONGITUDINAL VORTICES IN A TURBULENT BOUNDARY LAYER FLOW G. M. Di Cicca Department of Aerospace Engineering, Politecnico di Torino C.so Duca degli Abruzzi, 4 - I 19 Torino, ITALY

More information

Active Control of Turbulence and Fluid- Structure Interactions

Active Control of Turbulence and Fluid- Structure Interactions Bonjour! Active Control of Turbulence and Fluid- Structure Interactions Yu Zhou Institute for Turbulence-Noise-Vibration Interaction and Control Shenzhen Graduate School, Harbin Institute of Technology

More information

DETERMINATION OF ABRASIVE PARTICLE VELOCITY USING LASER-INDUCED FLUORESCENCE AND PARTICLE TRACKING METHODS IN ABRASIVE WATER JETS

DETERMINATION OF ABRASIVE PARTICLE VELOCITY USING LASER-INDUCED FLUORESCENCE AND PARTICLE TRACKING METHODS IN ABRASIVE WATER JETS 2005 WJTA American Waterjet Conference August 21-23, 2005 Houston, Texas DETERMINATION OF ABRASIVE PARTICLE VELOCITY USING LASER-INDUCED FLUORESCENCE AND PARTICLE TRACKING METHODS IN ABRASIVE WATER JETS

More information

A MHZ RATE IMAGING SYSTEM FOR STUDY OF TURBULENT AND TIME EVOLVING HIGH SPEED FLOWS

A MHZ RATE IMAGING SYSTEM FOR STUDY OF TURBULENT AND TIME EVOLVING HIGH SPEED FLOWS A MHZ RATE IMAGING SYSTEM FOR STUDY OF TURBULENT AND TIME EVOLVING HIGH SPEED FLOWS B. Thurow, J. Hileman, M. Samimy, and W. Lempert Department of Mechanical Engineering The Ohio State University Columbus,

More information

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13-17, 2011, Honolulu, Hawaii, USA AJTEC2011-44190 LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Youngbae

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Science and Technology Flow Structure of a Coaxial Circular Jet with Axisymmetric and Helical Instability Modes* Takahiro KIWATA**, Taichi USUZAWA***, Nobuyoshi KOMATSU**, Shigeo KIMURA**** and Peter OSHKAI*****

More information

Fluid Flow Characteristics of a Swirl Jet Impinging on a Flat Plate

Fluid Flow Characteristics of a Swirl Jet Impinging on a Flat Plate Fluid Flow Characteristics of a Swirl Jet Impinging on a Flat Plate Juliana K. Abrantes 1, Luis Fernando A. Azevedo 2 1: Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro, Brazil, kuhlmann@mec.puc-rio.br

More information

Flow Characteristics around an Inclined Circular Cylinder with Fin

Flow Characteristics around an Inclined Circular Cylinder with Fin Lisbon, Portugal, 7- July, 28 Flow Characteristics around an Inclined Circular Cylinder with Fin Tsuneaki ISHIMA, Takeshi SASAKI 2, Yoshitsugu GOKAN 3 Yasushi TAKAHASHI 4, Tomio OBOKATA 5 : Department

More information

Dynamics of Large Scale Motions in Bubble-Driven Turbulent Flow

Dynamics of Large Scale Motions in Bubble-Driven Turbulent Flow Dynamics of Large Scale Motions in Bubble-Driven Turbulent Flow Kyung Chun Kim School of Mechanical Engineering, Pusan National University Jangjeon-dong, Geumjeong-gu, Pusan, 609-735, Korea kckim@pusan.ac.kr

More information

Instrumentation. Dr. Hui Hu Dr. Rye Waldman. Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A

Instrumentation. Dr. Hui Hu Dr. Rye Waldman. Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A AerE 344 Lecture Notes Lecture # 05: elocimetry Techniques and Instrumentation Dr. Hui Hu Dr. Rye Waldman Department of Aerospace Engineering Iowa State University Ames, Iowa 500, U.S.A Sources/ Further

More information

Breakdown in a boundary layer exposed to free-stream turbulence

Breakdown in a boundary layer exposed to free-stream turbulence Experiments in Fluids (2005) 39: 1071 1083 DOI 10.1007/s00348-005-0040-6 RESEARCH ARTICLE J. Mans Æ E. C. Kadijk Æ H. C. de Lange A. A. van. Steenhoven Breakdown in a boundary layer exposed to free-stream

More information

Burner Tubing Specification for the Turbulent Ethylene Non-Premixed Jet Flame

Burner Tubing Specification for the Turbulent Ethylene Non-Premixed Jet Flame Burner Tubing Specification for the Turbulent Ethylene Non-Premixed Jet Flame Figure 1 shows a schematic of the burner used to support the turbulent ethylene non-premixed jet flames. The dimensions of

More information

FEDSM AIR ENTRAINMENT BY TWO-DIMENSIONAL PLUNGING JETS : THE IMPINGEMENT REGION AND THE VERY-NEAR FLOW FIELD

FEDSM AIR ENTRAINMENT BY TWO-DIMENSIONAL PLUNGING JETS : THE IMPINGEMENT REGION AND THE VERY-NEAR FLOW FIELD Proceedings of FEDSM'98: 1998 ASME Fluids Engineering Division Summer Meeting June 21-25, 1998, Washington, DC FEDSM98-486 AIR ENTRAINMENT BY TWO-DIMENSIONAL PLUNGING JETS : THE IMPINGEMENT REGION AND

More information

Dynamics of Transient Liquid Injection:

Dynamics of Transient Liquid Injection: Dynamics of Transient Liquid Injection: K-H instability, vorticity dynamics, R-T instability, capillary action, and cavitation William A. Sirignano University of California, Irvine -- Round liquid columns

More information

Mixing at the External Boundary of a Submerged Turbulent Jet

Mixing at the External Boundary of a Submerged Turbulent Jet Mixing at the External Boundary of a Submerged Turbulent Jet A. Eidelman, T. Elperin, N. Kleeorin, I. Rogachevskii, I. Sapir-Katiraie The Ben-Gurion University of the Negev, Beer-Sheva, Israel G. Hazak

More information

Computational Investigations of High-Speed Dual-Stream Jets

Computational Investigations of High-Speed Dual-Stream Jets 9th AIAA/CEAS Aeroacoustics Conference and Exhibit -4 May 3, Hilton Head, South Carolina AIAA 3-33 Computational Investigations of High-Speed Dual-Stream Jets Nicholas J. Georgiadis * National Aeronautics

More information

Forcing the shear layer of a backward-facing step flow

Forcing the shear layer of a backward-facing step flow Forcing the shear layer of a backward-facing step flow using DBD plasma actuator J.-L. Aider* T. Duriez* J. E. Wesfreid* G. Artana *Laboratoire PMMH UMR7636 CNRS ESPCI - France Laboratorio de FluidoDynamica

More information

EXPERIMENTAL INVESTIGATION OF THREE DIMENSIONAL SEPARATED FLOW OVER A BODY OF REVOLUTION AT HIGH ANGLES OF ATTACK

EXPERIMENTAL INVESTIGATION OF THREE DIMENSIONAL SEPARATED FLOW OVER A BODY OF REVOLUTION AT HIGH ANGLES OF ATTACK ICAS CONGRESS EXPERIMENTAL INVESTIGATION OF THREE DIMENSIONAL SEPARATED FLOW OVER A BODY OF Tadateru Ishide 1), Nobuhide Nishikawa ) and Fumihiko Mikami ) 1)Kisarazu National College of Technology, -11-1,kiyomidai-higashi,

More information

ME332 FLUID MECHANICS LABORATORY (PART I)

ME332 FLUID MECHANICS LABORATORY (PART I) ME332 FLUID MECHANICS LABORATORY (PART I) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: January 14, 2002 Contents Unit 1: Hydrostatics

More information

Periodic planes v i+1 Top wall u i. Inlet. U m y. Jet hole. Figure 2. Schematic of computational domain.

Periodic planes v i+1 Top wall u i. Inlet. U m y. Jet hole. Figure 2. Schematic of computational domain. Flow Characterization of Inclined Jet in Cross Flow for Thin Film Cooling via Large Eddy Simulation Naqavi, I.Z. 1, Savory, E. 2 and Martinuzzi, R. J. 3 1,2 The Univ. of Western Ontario, Dept. of Mech.

More information

Laser Doppler Velocimetry (LDV) Part - 01

Laser Doppler Velocimetry (LDV) Part - 01 AerE 545 class notes #21 Laser Doppler Velocimetry (LDV) Part - 01 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Techniques for Flow Velocity Measurements Intrusive

More information

Effects of Under Expansion Level on Sonic Turbulent Jets Propagation

Effects of Under Expansion Level on Sonic Turbulent Jets Propagation American Journal of Fluid Dynamics 2015, 5(3A): 12-18 DOI: 10.5923/s.ajfd.201501.02 Effects of Under Expansion Level on Sonic Turbulent Jets Propagation Mrinal Kaushik 1,*, Prashanth Reddy Hanmaiahgari

More information

Effect of blowing rate on the film cooling coverage on a multi-holed plate: application on combustor walls

Effect of blowing rate on the film cooling coverage on a multi-holed plate: application on combustor walls Effect of blowing rate on the film cooling coverage on a multi-holed plate: application on combustor walls P. Miron 1,2, C. Berat 1 & V. Sabelnikov 3 1 TURBOMECA-Bordes, France 2 LaTEP, Université de Pau

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

EFFECT OF WALL JET ON OSCILLATION MODE OF IMPINGING JET

EFFECT OF WALL JET ON OSCILLATION MODE OF IMPINGING JET EFFECT OF WALL JET ON OSCILLATION MODE OF IMPINGING JET Y. Sakakibara 1, M. Endo 2, and J. Iwamoto 3 ABSTRACT When an axisymmetric underexpanded jet impinges on a flat plate perpendicularly, the feedback

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

SEPARATION CONTROL BY SYNTHETIC JET ACTUATOR IN A STRAIGHT BLADE CASCADE

SEPARATION CONTROL BY SYNTHETIC JET ACTUATOR IN A STRAIGHT BLADE CASCADE 6 H INERNAIONAL CONGRESS OF HE AERONAUICAL SCIENCES SEPARAION CONROL BY SYNHEIC JE ACUAOR IN A SRAIGH BLADE CASCADE M. Matejka*, L. Popelka**, P.Safarik*, J. Nozicka* * Department of Fluid Dynamics and

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES

NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES NUMERICAL INVESTIGATION OF THE FLOW OVER A GOLF BALL IN THE SUBCRITICAL AND SUPERCRITICAL REGIMES Clinton Smith 1, Nikolaos Beratlis 2, Elias Balaras 2, Kyle Squires 1, and Masaya Tsunoda 3 ABSTRACT Direct

More information

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW DRAFT Proceedings of the 14 th International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington D.C., USA IHTC14-23176 MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW Hiroshi

More information

Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers

Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers L. A. Garrison A. S. Lyrintzis G. A. Blaisdell Purdue University, West Lafayette, IN, 47907, USA W. N. Dalton Rolls-Royce Corporation,

More information

Convection in Three-Dimensional Separated and Attached Flow

Convection in Three-Dimensional Separated and Attached Flow Convection in Three-Dimensional Separated and Attached Flow B. F. Armaly Convection Heat Transfer Laboratory Department of Mechanical and Aerospace Engineering, and Engineering Mechanics University of

More information

Multiphase Science and Technology, Vol. 16, Nos. 1-4, pp. 1-20, 2005

Multiphase Science and Technology, Vol. 16, Nos. 1-4, pp. 1-20, 2005 Multiphase Science and Technology, Vol. 16, Nos. 1-4, pp. 1-2, 25 EXPERIMENTS ON THE TURBULENT STRUCTURE AND THE VOID FRACTION DISTRIBUTION IN THE TAYLOR BUBBLE WAKE L. Shemer, A. Gulitski and D. Barnea

More information

DYNAMIC SEPARATION CONTROL IN A LOW-SPEED ASYMMETRIC DIFFUSER WITH VARYING DOWNSTREAM BOUNDARY CONDITION

DYNAMIC SEPARATION CONTROL IN A LOW-SPEED ASYMMETRIC DIFFUSER WITH VARYING DOWNSTREAM BOUNDARY CONDITION AIAA 23-4161 DYNAMIC SEPARATION CONTROL IN A LOW-SPEED ASYMMETRIC DIFFUSER WITH VARYING DOWNSTREAM BOUNDARY CONDITION Samantha H. Feakins, Douglas G. MacMartin, and Richard M. Murray California Institute

More information

Design and Aerodynamic Characterization of a Synthetic Jet for Boundary Layer Control

Design and Aerodynamic Characterization of a Synthetic Jet for Boundary Layer Control Design and Aerodynamic Characterization of a Synthetic Jet for Boundary Layer Control FRANCESCA SATTA, DANIELE SIMONI, MARINA UBALDI, PIETRO ZUNINO Department of Fluid Machines, Energy Systems, and Transportation

More information

ScienceDirect. Gas flow visualization using laser-induced fluorescence

ScienceDirect. Gas flow visualization using laser-induced fluorescence Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 106 (2015 ) 92 96 Dynamics and Vibroacoustics of Machines (DVM2014) Gas flow visualization using laser-induced fluorescence

More information

Figure 1. Schematic of experimental setup.

Figure 1. Schematic of experimental setup. June 3 - July 3, Melbourne, Australia 9 9D- STRUCTURE OF 3D OFFSET JETS OVER A SURFACE MOUNTED SQUARE RIB Shawn P. Clark Department of Civil Engineering 7A Chancellors Circle, Winnipeg, Manitoba, R3T V,

More information

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory)

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory) Applied Thermal and Fluid Engineering Energy Engineering (Thermal Engineering Laboratory) Professor Assoc. Professor Hajime Nakamura Shunsuke Yamada Outline of Research In our laboratory, we have been

More information

EXPERIMENTAL AND NUMERICAL STUDY ON THE FLOW VISUALIZATION IN A TRI-HELICAL STATIC MIXER

EXPERIMENTAL AND NUMERICAL STUDY ON THE FLOW VISUALIZATION IN A TRI-HELICAL STATIC MIXER 392 Journal of Marine Science and Technology, Vol. 19, No. 4, pp. 392-397 (2011) EXPERIMENTAL AND NUMERICAL STUDY ON THE FLOW VISUALIZATION IN A TRI-HELICAL STATIC MIXER Kuo-Tung Chang*, Jer-Huan Jang*,

More information

Experiments on the perturbation of a channel flow by a triangular ripple

Experiments on the perturbation of a channel flow by a triangular ripple Experiments on the perturbation of a channel flow by a triangular ripple F. Cúñez *, E. Franklin Faculty of Mechanical Engineering, University of Campinas, Brazil * Correspondent author: fernandodcb@fem.unicamp.br

More information

PIV-INVESTIGATIONS OF INTERNAL SLIT NOZZLE FLOWS AND THEIR INFLUENCE ON LIQUID SHEET BREAKUP

PIV-INVESTIGATIONS OF INTERNAL SLIT NOZZLE FLOWS AND THEIR INFLUENCE ON LIQUID SHEET BREAKUP ILASS-Europe 2002 Zaragoza 9 11 September 2002 PIV-INVESTIGATIONS OF INTERNAL SLIT NOZZLE FLOWS AND THEIR INFLUENCE ON LIQUID SHEET BREAKUP J. Scholz, K. Roetmann, V. Beushausen Jochen.Scholz@llg.gwdg.de

More information

ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET

ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET TUR-3 ExHFT-7 8 June 03 July 009, Krakow, Poland ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET Α. Cavo 1, G. Lemonis, T. Panidis 1, * 1 Laboratory of Applied Thermodynamics,

More information

A KIND OF FAST CHANGING COHERENT STRUCTURE IN A TURBULENT BOUNDARY LAYER*

A KIND OF FAST CHANGING COHERENT STRUCTURE IN A TURBULENT BOUNDARY LAYER* ACTA MECHANICA SINICA (English Series), Vol.15, No.3, Aug. 1999 The Chinese Society of Theoretical and Applied Mechanics Chinese Journal of Mechanics Press, Beijing, China Allerton Press, INC., New York,

More information

EFFECT OF VORTICES ON JET IMPINGEMENT HEAT TRANSFER. Abstract

EFFECT OF VORTICES ON JET IMPINGEMENT HEAT TRANSFER. Abstract EFFECT OF VORTICES ON JET IMPINGEMENT HEAT TRANSFER T. S. O Donovan, D. B. Murray Dept of Mechanical & Manufacturing Engineering, University of Dublin Trinity College Dublin, Ireland Abstract Convective

More information

doi: / (

doi: / ( doi: 10.1063/1.1921949(http://dx.doi.org/10.1063/1.1921949) PHYSICS OF FLUIDS 17, 061701 2005 Experimental study of the production of vortex rings using a variable diameter orifice J. J. Allen a Department

More information

AN UNSTEADY AND TIME-AVERAGED STUDY OF A GROUND VORTEX FLOW

AN UNSTEADY AND TIME-AVERAGED STUDY OF A GROUND VORTEX FLOW 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AN UNSTEADY AND TIME-AVERAGED STUDY OF A GROUND VORTEX FLOW N J Lawson*, J M Eyles**, K Knowles** *College of Aeronautics, Cranfield University,

More information

HORSEHOE VORTICES IN UNIFORMLY SHEARED TURBULENCE

HORSEHOE VORTICES IN UNIFORMLY SHEARED TURBULENCE HORSEHOE VORTICES IN UNIFORMLY SHEARED TURBULENCE Christina Vanderwel Department of Mechanical Engineering University of Ottawa Ottawa, Ontario, Canada cvand072@uottawa.ca Stavros Tavoularis Department

More information