Uncertainty in Molecular Photoionization!

Size: px
Start display at page:

Download "Uncertainty in Molecular Photoionization!"

Transcription

1 Uncertainty in Molecular Photoionization! Robert R. Lucchese! Department of Chemistry! Texas A&M University Collaborators:! At Texas A&M: R. Carey, J. Lopez, J. Jose! At ISMO, Orsay, France: D. Dowek and coworkers! At Tohoku Univ: K. Ueda and coworkers! At LBNL: T. Rescigno and W. C. McCurdy!! Funding: Welch Foundation, US Dept of Energy, NSF, JSPS! 1

2 Application and Validity Range! Very few experimental electron-molecular ion scattering cross sections! Molecular Photoionization! Total Cross Sections! Asymmetry Parameters! Molecular Frame Angular Distributions! Adiabatic Nuclei Approximation! Fixed Nuclei! Small Amplitude Motion! One electron in the continuum! 2

3 Method Description! Single Center Expansion! One electron in the continuum represented on numerical grid! Bound orbitals from standard Quantum Chemistry Code! Both linear molecules and non-linear polyatomic systems! Correlation in Target Wave Functions! Frozen-Core Hartree Fock! Modest CI expansion, up to 10,000 CSF! Selection of penetration terms to avoid pseudo-resonances! Coupled Channel Expansion! One channel! Coupled channels, no more than ~20 channels! 3

4 Schwinger Variational Expression! Variational approximation to M! t t t t! M R ψ S + χ R S χ R ( 1 G 0 V )ψ S! χ R ( 1 G 0 V ) = R ψ S t χ R t Expand and in basis sets and respectively:! u i v j M 0 = D ij = i,j R u i D 1 i,j v j S v i ( 1 G 0 V )u j 4

5 Φ i = j c ij ψ j ( ) Scattering Wave Function Ψ = A Φ i, χ i = c ij A ψ j, χ i i ( ) i, j ( ) Target! Scattering! Where A ψ j, χ i is an N electron spin-adapted state function constructed from CSF ψ j and continuum function χ i. The target states generally contain ,000 CSFs! Penetration terms occur when χ i is not orthogonal to the bound orbitals used to construct! ψ j Over-completeness and spurious resonances are avoided by selective removal of penetration terms!!! 5

6 Single-Center Expansion! Single-center expansion! l! r β = max f β lm ( r)y lm ( r ˆ )!! l=0!typical values: l max = 60 for N 2 and l max = 80 for CO 2! The matrix for photoionization is not symmetric n=0 φ i µ ψ lm = φ i µ GV ( ) n φ lm We compute a sequence of terms φ i µ ( GV ) n for the one initial state and take simple overlaps with the many homogeneous scattering states φ lm. 6

7 Verification! Consider verification within a given correlation model, i.e. number of channels and representation of targets! Convergence with respect to radial and angular grids! Convergence with respect to one-electron basis set size, complete basis set extrapolation! Depends on range of photo-electron kinetic energies! 7

8 Convergence of Partial-Wave Expansion! Position of! Resonance! N 2 Photoionization! The energy of a shape resonance converges as 1/l 3 8

9 Comparison With Complex Kohn Method Rescigno and McCurdy! Single-Center Expansion Complex Kohn 8 (3σ u ) 1 CO 2 Cross Section (Mb) (t 1g ) 1 Cross Section (Mbarn) (4σ g ) Photon Energy (ev) Photon Energy (ev) SF 6 One Channel! Hartree-Fock Target! CO 2 Two Channel! CASSCF Targets! 9

10 Validation! Validation possible for each level of theory (or model)! Fixed nuclei! Adiabatic nuclei! Different choices for channel coupling and target correlation! Comparison to experimental data! Total cross sections! Laboratory frame differential cross sections! Molecular frame differential cross sections! Consistency! Length vs Velocity! Convergence with respect to hierarchy of models! 10

11 SF 6 (1s) 1 Photoionization Single channel Hartree Fock! Shape resonance at a kinetic energy of 65 ev! Due to a high angular momentum barrier! 11

12 C 60 Photoionization! (6h u ) 1! 12

13 Multi-Channel Frozen Core Hartree Fock! Exp Coupled Channels Separated Channels σ (Mb) SF 6 (4t 1u ) 1 +(1t 2g ) 1 +(3e g ) 1 +(5t 1u ) 1 +(1t 2u ) 1 +(1t 1g ) Photon Energy (ev) Vibrational effects can explain some of the errors! 13

14 Bending in Core Ionization from Hot CO 2 and NO 2! Probe of the effects of bending on shape resonance! Just above threshold core ionization from hot molecules! Primary excitation is the bending! Angle resolved ion yield! Tanaka et al. New J. Phys. 12, (2010)! 14

15 Geometry Dependence! 0.7 Cross Section (Mbarn) I(90 ) 430 I(0 ) 440 Photon Energy (ev) N 2 O N c (1s) -1 θ = 180 θ = 172 θ = 164 θ = Cross Section (Mbarn) I(0 ) I(90 ) N 2 O N t (1s) -1 θ = 180 θ = 172 θ = 164 θ = Photon Energy (ev) CO 2! N 2 O! 15

16 Comparison to Experiment! Cross Section (Mbarn) CO 2 C (1s) -1 (0,0,0) I(0 ) (0,0,0) I(90 ) (0,1,0) I(0 ) (0,1,0) I(90 ) Cross Section (Mbarn) N 2 O N c + N t (1s) -1 (0,0,0) I(0 ) (0,0,0) I(90 ) (0,1,0) I(0 ) (0,1,0) I(90 ) Cross Section (Mbarn) Photon Energy (ev) CO 2 O (1s) -1 (0,0,0) I(0 ) (0,0,0) I(90 ) (0,1,0) I(0 ) (0,1,0) I(90 ) 550 Photon Energy (ev) Cross Section (Mbarn) Photon Enegy (ev) N 2 O O (1s) (0,0,0) I(0 ) (0,0,0) I(90 ) (0,1,0) I(0 ) (0,1,0) I(90 ) Photon Energy (ev)

17 CO Photoionization! 13 valence coupled channels, CASSCF targets! Cross Secion (Mbarns) X 2 Σ + A 2 Π B 2 Σ + Hamnett Plummer Plummer Cross Secion (Mbarns) D 2 Π 3 2 Σ Δ D 2 Π Σ Δ Hamnett "C" State Photon Energy hν (ev) Photon Energy hν (ev)

18 CO Photoelectron Asymmetry Parameters! Photoelectron Asymmetry Parameter Photon Energy hν (ev) 35 X 2 Σ + A 2 Π B 2 Σ + Marr Holmes 40 Photoelectron Asymmetry Parameter D 2 Π 3 2 Σ Δ 34 Photon Energy hν (ev)

19 CO Photoionization! Cross Secion (Mbarns) X 2 Σ + Mixed Length Velocity Hamnett Plummer Plummer Cross Secion (Mbarns) A 2 Π Mixed Length Velocity Hamnett Plummer Photon Energy hν (ev) Photon Energy hν (ev) Consistency Check using Length vs Velocity! 19

20 Molecular Frame Photoelectron Angular Distributions (MFPADs)! In linear molecules, this general expression simplifies to! I ( θ k,φ k,θ n,φ n ) = H L L N Y ( LN ˆk )Y L N ( ˆn ) L L =0,2 ( ) 0 N min L, L The MFPAD can be alternatively written using only real-valued functions for linearly polarized light as:!! ( ) = F 00 ( θ k ) + F 20 ( θ k )P 0 2 ( cosθ n ) +F 21 ( θ k )P 1 2 ( cosθ n ) cos ( φ k φ n ) +F 22 ( θ k )P 2 2 ( cosθ n ) cos 2[ φ k φ n ] I θ k,φ k,θ n,φ n ( ) Lucchese et al. Phys. Rev. A 65, (2002); Cherepkov and Raseev, J. Chem. Phys 103, 8238 (1995)! 20

21 Dissociative Ionization of NO! MFPADs measured by coincidence measurements of fragments and photoelectrons! The ion fragmentation threshold is just above 21 ev! The number of nearby states makes it important that correlation is included in the description of the ion states! Results will be presented for ionization leading to the c 3 Π state of NO +.! 21

22 Photoionization Leading to the c 3 Π State of NO +! 22

23 NO + States! Initial NO configuration! (1σ) 2 (2σ) 2 (3σ) 2 (4σ) 2 (5σ) 2 (1σ) 4 (2σ) 1 1 channel calculation! 5 channel calculation! 17 channel calculation! Exp.: Albritton et al. 1979!! CASCI Exp State (ev) (ev) Main Configuration X 1 Σ (2π) -1 a 3 Σ (1π) -1 b 3 Π (5σ) -1 w 3 Δ (1π) -1 b' 3 Σ (1π) -1 A' 1 Σ (1π) -1 A 1 Π (5σ) -1 W 1 Δ (1π) -1 c 3 Π (4σ) -1 B 1 Π (4σ) -1 (3) 3 Π (5σ) -1 (1π) -1 (2π) +1 B' 1 Σ (1π) -1 (4) 3 Π (5σ) -1 (1π) -1 (2π) +1 (3) 1 Π (5σ) -1 (1π) -1 (2π) +1 (3) 1 Σ (4σ) -1 (5σ) -1 (2π) +1 (5) 1 Δ (4σ) -2 (2π) +1 (7) 3 Σ (4σ) -1 (5σ) -1 (1π) -1 (2π) +2 23

24 Correlation in NO Photoionization Leading to the c 3 Π State of NO +! The 4σ and 5σ hole states included in the 5- channel calculation provide polarization when the electron is ejected in the axial direction! The 17-channel calculation includes 1π hole states that provide polarization of the target when the electron is ejected in the perpendicular direction! 24

25 MFPAD in NO Photoionization Leading to the c 3 Π State of NO +! Exp. - Lucchese, et al., Phys. Rev. A 65, (2002)! 25

26 Recoil Frame Photoelectron Angular Distribution (RFPAD)! Experimentally, MFPAD can be measured with angle resolved electron-ion fragment coincidence using the axial recoil approximation! In linear molecules when the axial recoil approximation fails one can only measure the RFPAD! Rotation before dissociation! Polyatomic linear molecules can also bend in the dissociation process! The RFPAD is all that can be obtained in nonlinear molecules when only two fragments are produced! 26

27 Effects of Rotation on RFPAD for Ionization Leading to the B 2 Σ g State of O 2+! θ k e θ R θ k e hν Ionization Rotation Dissociation 27

28 Valence-Shell Photoionization of O 2! 28

29 Photoionization of O 2 Leading to the B 2 Σ g State of O 2 + A. C. E. Brion, et al., J. Electron Spectrosc. Relat. Phenom. 17, 101 (1979).! B. J. A. R. Samson, et al., J. Electron Spectrosc. Relat. Phenom. 12, 281 (1977).! C. T. Gustafsson, Chem. Phys. Lett. 75, 505 (1980).! D. M. Braunstein and V. McKoy, J. Chem. Phys. 90, 150 (1989).! E. P. W. Langhoff, et al., Int. J. Quantum Chem. Symp. 13, 645 (1979).! 29

30 Effects of Rotation on the RFPAD! τ= 0.45 ps! about 50! rotation Lafosse et al., J. Chem. Phys. 117, 8368 (2002). 30

31 Conclusions! Verification! Grids can be converged so that quantities of interest are converged to within ~5%! One-electron basis sets could be converged, with appropriate extrapolation, not done yet! Validation and Uncertainties! Semi-quantitative agreement with experiment possible with lower level correlation treatments! More differential quantities require higher level calculations! Quantitative agreement possible away from narrow resonances! Nuclear motion can be important with narrow resonances or when resonances are strongly geometry dependent! Consequences of lack of consistency between electronic structure needed to obtain geometric structure and vibrational motion and the description of the electron scattering! 31

32 32

Theoretical study of vibrationally resolved photoionization for the C K-shell of the CO molecule

Theoretical study of vibrationally resolved photoionization for the C K-shell of the CO molecule INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 37 (2004) 1331 1342 PII: S0953-4075(04)72648-6 Theoretical study of vibrationally

More information

Resonant enhanced electron impact dissociation of molecules

Resonant enhanced electron impact dissociation of molecules Journal of Physics: Conference Series Resonant enhanced electron impact dissociation of molecules Recent citations - An R-matrix study of singlet and triplet continuum states of N 2 Duncan A Little and

More information

Lecture 10. Transition probabilities and photoelectric cross sections

Lecture 10. Transition probabilities and photoelectric cross sections Lecture 10 Transition probabilities and photoelectric cross sections TRANSITION PROBABILITIES AND PHOTOELECTRIC CROSS SECTIONS Cross section = = Transition probability per unit time of exciting a single

More information

Lecture 10. Transition probabilities and photoelectric cross sections

Lecture 10. Transition probabilities and photoelectric cross sections Lecture 10 Transition probabilities and photoelectric cross sections TRANSITION PROBABILITIES AND PHOTOELECTRIC CROSS SECTIONS Cross section = σ = Transition probability per unit time of exciting a single

More information

Calculations of electron-molecule scattering cross sections using the Rmatrix method

Calculations of electron-molecule scattering cross sections using the Rmatrix method Calculations of electron-molecule scattering cross sections using the Rmatrix method Jimena Gorfinkiel Department of Physical Sciences The Open University Milton Keynes, UK Jimena.Gorfinkiel@open.ac.uk

More information

SHAPE RESONANCE IN PHOTOELECTRON SPECTROSCOPY

SHAPE RESONANCE IN PHOTOELECTRON SPECTROSCOPY SHAPE RESONANCE IN PHOTOELECTRON SPECTROSCOPY Pradipta Sankar Maiti (CY05C012) Sandip Mukherjee (CY05C017) Sanjib Saha (CY05C020) Shreyasi Dutta (CY05C022) Suman Ghorai (CY05C026) 1 Contents Introduction

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Photo-Dissociation Resonances of Jet-Cooled NO 2 by CW-CRDS

Photo-Dissociation Resonances of Jet-Cooled NO 2 by CW-CRDS Photo-Dissociation Resonances of Jet-Cooled NO 2 by CW-CRDS Patrick DUPRÉ Laboratoire de Physico-Chimie de l Atmosphère, Université du Littoral, Côte d Opale Dunkerque, France ISMS 22-26 June 2015 Patrick

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

Laser-controlled Molecular Alignment and Orientation. Marc Vrakking FOM Institute AMOLF

Laser-controlled Molecular Alignment and Orientation. Marc Vrakking FOM Institute AMOLF Laser-controlled Molecular Alignment and Orientation Marc Vrakking FOM Institute AMOLF Summer School Cargese - Tuesday August 19 th 2008 Contents What is molecular alignment resp. orientation, and why

More information

Vibrational effect on the fragmentation dynamics of the C K-shell excited CF 2 CH 2

Vibrational effect on the fragmentation dynamics of the C K-shell excited CF 2 CH 2 Vibrational effect on the fragmentation dynamics of the C K-shell excited CF 2 CH 2 K. Okada a, Y. Yamana a, T. Ibuki b, A. Fujii c, S. Nagaoka c, K. Tabayashi a, Y. Shimada b, Y. Morishita d, Y. Tamenori

More information

Photoionization Cross Sections and Asymmetry Parameters for Ethylene

Photoionization Cross Sections and Asymmetry Parameters for Ethylene Brazilian Journal of Physics On line version ISSN 1678 4448 Braz. J. Phys. vol. 27 n. 4 São Paulo Dec. 1997 http://dx.doi.org/10.1590/s0103 97331997000400007 Photoionization Cross Sections and Asymmetry

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Vibrational Autoionization in Polyatomic molecules

Vibrational Autoionization in Polyatomic molecules Vibrational Autoionization in Polyatomic molecules S.T. Pratt Annu. Rev. Phys. Chem. 2005. 56:281-308 2006. 12. 4. Choi, Sunyoung 1 Schedule 12/4 (Mon) - Introduction - Theoretical background 12/6 (Wed)

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Supporting Information. Dynamics of the Dissociating Uracil Anion. Following Resonant Electron Attachment

Supporting Information. Dynamics of the Dissociating Uracil Anion. Following Resonant Electron Attachment Supporting Information Dynamics of the Dissociating Uracil Anion Following Resonant Electron Attachment Y. Kawarai,, Th. Weer, Y. Azuma, C. Winstead, V. McKoy, A. Belkacem, and D.S. Slaughter, Department

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Low-energy electron collisions with sulfur hexafluoride, SF 6

Low-energy electron collisions with sulfur hexafluoride, SF 6 JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 12 22 SEPTEMBER 2004 Low-energy electron collisions with sulfur hexafluoride, SF 6 C. Winstead and V. McKoy A. A. Noyes Laboratory of Chemical Physics, California

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Dissociative Electron Attachment to Carbon Dioxide via the 8.~;;eV Feshbach resonance Permalink https://escholarship.org/uc/item/59t9171b

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

* Paper presented at the Specialist Workshop on Excited and Ionised States of Atoms and Molecules, Strathgordon, Tasmania, 3-7 February 1986.

* Paper presented at the Specialist Workshop on Excited and Ionised States of Atoms and Molecules, Strathgordon, Tasmania, 3-7 February 1986. Aust. J. Phys., 1986,39,761-77 Dynamics of Single- and Multi-photon Ionisation Processes in Molecules* V. McKoy, S. N. Dixit, R. L. Dubs and D. L. Lynch Arthur Amos Noyes Laboratory of Chemical Physics,

More information

Femtosecond energy- and angle-resolved photoelectron spectroscopy

Femtosecond energy- and angle-resolved photoelectron spectroscopy JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 20 22 MAY 2000 Femtosecond energy- angle-resolved photoelectron spectroscopy Yasuki Arasaki Kazuo Takatsuka a) Department of Basic Science, Graduate School

More information

Atomic double slit: Coherence transfer through excitation and (Auger) decay processes. S. Fritzsche, Kassel University Göteborg, 3rd June 2006

Atomic double slit: Coherence transfer through excitation and (Auger) decay processes. S. Fritzsche, Kassel University Göteborg, 3rd June 2006 Atomic double slit: Coherence transfer through excitation and (Auger) decay processes S. Fritzsche, Kassel University Göteborg, 3rd June 2006 Experiments with double slits (Feynman-Lectures 1962) Interference

More information

Lecture 9. Hartree Fock Method and Koopman s Theorem

Lecture 9. Hartree Fock Method and Koopman s Theorem Lecture 9 Hartree Fock Method and Koopman s Theorem Ψ(N) is approximated as a single slater determinant Φ of N orthogonal One electron spin-orbitals. One electron orbital φ i = φ i (r) χ i (σ) χ i (σ)

More information

Transition probabilities and photoelectric cross sections

Transition probabilities and photoelectric cross sections Transition probabilities and photoelectric cross sections General geometry for defining the differential cross-section dσ/dω, Showing both polarized and unpolarized incident radiation. The polarization

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

468 Brazilian Journal of Physics, vol. 27, no. 4, december, Asymmetry Parameters for Ethylene. L.M. Brescansin, M.-T. Lee, L.E.

468 Brazilian Journal of Physics, vol. 27, no. 4, december, Asymmetry Parameters for Ethylene. L.M. Brescansin, M.-T. Lee, L.E. 468 Brazilian Journal of Physics, vol. 27, no. 4, december, 1997 Photoionization Cross Sections and Asymmetry Parameters for Ethylene L.M. Brescansin, M.-T. Lee, L.E. Machado y, M.A.P. Lima, and V. McKoy

More information

Energy- and angle-resolved pump probe femtosecond photoelectron spectroscopy: Molecular rotation

Energy- and angle-resolved pump probe femtosecond photoelectron spectroscopy: Molecular rotation JOURNAL OF CHEMICAL PHYSICS VOLUME 114, NUMBER 18 8 MAY 2001 Energy- and angle-resolved pump probe femtosecond photoelectron spectroscopy: Molecular rotation Yasuki Arasaki and Kazuo Takatsuka a) Department

More information

Photoionization of excited states of neon-like Mg III

Photoionization of excited states of neon-like Mg III PRAMANA cfl Indian Academy of Sciences Vol. 58, No. 4 journal of April 2002 physics pp. 639 646 Photoionization of excited states of neon-like Mg III NARENDRA SINGH and MAN MOHAN Department of Physics

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each.

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each. Physical Chemistry Final Name Spring 2004 Prof. Shattuck Constants: h=6.626x10-34 J s h =1.054x10-34 J s 1Å=1x10-8cm=1x10-10m NA=6.022x1023 mol-1 R=8.314 J/mol K 1eV= 96.485 kj/mol Part 1. Answer 7 of

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

Feynman diagrams in nuclear physics at low and intermediate energies

Feynman diagrams in nuclear physics at low and intermediate energies «Избранные вопросы теоретической физики и астрофизики». Дубна: ОИЯИ, 2003. С. 99 104. Feynman diagrams in nuclear physics at low and intermediate energies L. D. Blokhintsev Skobeltsyn Institute of Nuclear

More information

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Laser operation Simplified energy conversion processes in a laser medium:

More information

C. D. Lin Kansas State U.

C. D. Lin Kansas State U. Dynamic Imaging of molecules using laser-induced Highorder harmonics and High-energy photoelectrons Goal: probing time-dependent structural changes Example: Isomerization of C 2 H 2 C. D. Lin Kansas State

More information

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry Resonances in Chemical Reactions : Theory and Experiment Toshiyuki Takayanagi Saitama University Department of Chemistry What is Chemical Reaction? Collision process between molecules (atoms) containing

More information

Electron Spettroscopies

Electron Spettroscopies Electron Spettroscopies Spettroscopy allows to characterize a material from the point of view of: chemical composition, electronic states and magnetism, electronic, roto-vibrational and magnetic excitations.

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

Strong Field Quantum Control. CAMOS Spring Meeting 2012 o

Strong Field Quantum Control. CAMOS Spring Meeting 2012 o Strong Field Quantum Control CAMOS Spring Meeting 2012 o p Motivation & Outline Motivation: Want to control molecular dynamics and develop control based spectroscopy 1. Controlling Molecular Dissociation

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~pchemlab ; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space.

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space. Spectral Resolution Spectral resolution is a measure of the ability to separate nearby features in wavelength space. R, minimum wavelength separation of two resolved features. Delta lambda often set to

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

arxiv: v1 [physics.chem-ph] 29 Jul 2010

arxiv: v1 [physics.chem-ph] 29 Jul 2010 Dissociative Electron Attachment to Polyatomic Molecules - V : Formic Acid and n-propyl Amine N. Bhargava Ram 1, and E. Krishnakumar 1, 1 Tata Institute of Fundamental Research, Mumbai 400005, India Abstract

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig Electron Density Matrices Density matrices Γ, an alternative to the wavefunction Ψ, for the description of a quantum system Electronic Structure The N-particle density matrix Electrons in Momentum Space

More information

Analysis of recombination in high-order harmonic generation in molecules

Analysis of recombination in high-order harmonic generation in molecules Analysis of recombination in high-order harmonic generation in molecules B. Zimmermann, M. Lein,* and J. M. Rost Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden,

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

tunneling theory of few interacting atoms in a trap

tunneling theory of few interacting atoms in a trap tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer,

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

(e, 2e) spectroscopy of atomic clusters

(e, 2e) spectroscopy of atomic clusters J. Phys. B: At. Mol. Opt. Phys. 30 (1997) L703 L708. Printed in the UK PII: S0953-4075(97)86235-9 LETTER TO THE EDITOR (e, 2e) spectroscopy of atomic clusters S Keller, E Engel, H Ast and R M Dreizler

More information

Summary lecture VI. with the reduced mass and the dielectric background constant

Summary lecture VI. with the reduced mass and the dielectric background constant Summary lecture VI Excitonic binding energy reads with the reduced mass and the dielectric background constant Δ Statistical operator (density matrix) characterizes quantum systems in a mixed state and

More information

Vibrational states of molecules. Diatomic molecules Polyatomic molecules

Vibrational states of molecules. Diatomic molecules Polyatomic molecules Vibrational states of molecules Diatomic molecules Polyatomic molecules Diatomic molecules V v 1 v 0 Re Q Birge-Sponer plot The solution of the Schrödinger equation can be solved analytically for the

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

B-spline-based complex-rotation method with spin-dependent interaction

B-spline-based complex-rotation method with spin-dependent interaction B-spline-based complex-rotation method with spin-dependent interaction T. K. Fang 1 and T. N. Chang 2,3 1 Department of Physics, Fu Jen Catholic University, Taipei, Taiwan 242, ROC 2 Department of Physics

More information

T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model

T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model M. S. Pindzola, D. Mitnik, and F. Robicheaux Department of Physics, Auburn University, Auburn, Alabama 36849

More information

MOLECULES. ENERGY LEVELS electronic vibrational rotational

MOLECULES. ENERGY LEVELS electronic vibrational rotational MOLECULES BONDS Ionic: closed shell (+) or open shell (-) Covalent: both open shells neutral ( share e) Other (skip): van der Waals (He-He) Hydrogen bonds (in DNA, proteins, etc) ENERGY LEVELS electronic

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

Semi-Classical perturbation theory Coulomb only First-order most used

Semi-Classical perturbation theory Coulomb only First-order most used direct reactions Models for breakup Semi-Classical perturbation theory Coulomb only First-order most used TDSE (Time Dependent Schrodinger Equation) Coulomb + Nuclear Semi-classical orbit needed DWBA (Distorted

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf Sfb 658 Colloquium 11 May 2006 Part II Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy Martin Wolf Motivation: Electron transfer across interfaces key step for interfacial and surface dynamics

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Systematics of the α-decay fine structure in even-even nuclei

Systematics of the α-decay fine structure in even-even nuclei Systematics of the α-decay fine structure in even-even nuclei A. Dumitrescu 1,4, D. S. Delion 1,2,3 1 Department of Theoretical Physics, NIPNE-HH 2 Academy of Romanian Scientists 3 Bioterra University

More information

Molecular energy levels and spectroscopy

Molecular energy levels and spectroscopy Molecular energy levels and spectroscopy 1. Translational energy levels The translational energy levels of a molecule are usually taken to be those of a particle in a three-dimensional box: n x E(n x,n

More information

SCA calculations of the proton induced alignment using relativistic Hartree-Fock wavefunctions

SCA calculations of the proton induced alignment using relativistic Hartree-Fock wavefunctions SCA calculations of the proton induced alignment using relativistic Hartree-Fock wavefunctions Z.Halabuka, W.Perger and D.Trautmann Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland

More information

Why use pseudo potentials?

Why use pseudo potentials? Pseudo potentials Why use pseudo potentials? Reduction of basis set size effective speedup of calculation Reduction of number of electrons reduces the number of degrees of freedom For example in Pt: 10

More information

CHEM 301: Homework assignment #5

CHEM 301: Homework assignment #5 CHEM 30: Homework assignment #5 Solutions. A point mass rotates in a circle with l =. Calculate the magnitude of its angular momentum and all possible projections of the angular momentum on the z-axis.

More information

CONVERGENCE STUDIES OF THE DOUBLE PHOTOIONIZATION OF Li + AND He

CONVERGENCE STUDIES OF THE DOUBLE PHOTOIONIZATION OF Li + AND He INTERNATIONAL REVIEW OF ATOMIC AND MOLECULAR PHYSICS (IRAMP) Volume 1, No. 2, July-December 2010, pp. 161-167, International Science Press, ISSN: 2229-3159 RESEARCH ARTICLE CONVERGENCE STUDIES OF THE DOUBLE

More information

Conical Intersections. Spiridoula Matsika

Conical Intersections. Spiridoula Matsika Conical Intersections Spiridoula Matsika The Born-Oppenheimer approximation Energy TS Nuclear coordinate R ν The study of chemical systems is based on the separation of nuclear and electronic motion The

More information

Relativistic Strong Field Ionization and Compton Harmonics Generation

Relativistic Strong Field Ionization and Compton Harmonics Generation Relativistic Strong Field Ionization and Compton Harmonics Generation Farhad Faisal Fakultaet fuer Physik Universitiaet Bielefeld Germany Collaborators: G. Schlegel, U. Schwengelbeck, Sujata Bhattacharyya,

More information

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis Humboldt Kolleg entitled "Interacting Structure and Reaction Dynamics in the Synthesis of the Heaviest Nuclei" Quasifission and dynamical extra-push in heavy and superheavy elements synthesis Lu Guo University

More information

Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras

Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras Select/Special Topics in Atomic Physics Prof. P. C. Deshmukh Department of Physics Indian Institute of Technology, Madras Lecture - 34 Atomic Photoionization Cross-Sections, Angular Distribution of Photoelectrons

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS) As part of the course Characterization of Catalysts and Surfaces Prof. Dr. Markus Ammann Paul Scherrer Institut markus.ammann@psi.ch Resource for further reading:

More information

Dissociative ionization of H 2 by 400 ev circularly polarized photons

Dissociative ionization of H 2 by 400 ev circularly polarized photons Dissociative ionization of H 2 by 400 ev circularly polarized photons Vladislav V. Serov 1 and A. S. Kheifets 2 1 Department of Theoretical Physics, Saratov State University, 83 Astrakhanskaya, Saratov

More information

Constraints on Neutrino Electromagnetic Properties via Atomic Ionizations with Germanium Detectors at sub-kev Sensitivities

Constraints on Neutrino Electromagnetic Properties via Atomic Ionizations with Germanium Detectors at sub-kev Sensitivities Constraints on Neutrino Electromagnetic Properties via Atomic Ionizations with Germanium Detectors at sub-kev Sensitivities Chih-Pan Wu National Taiwan University Collaborators: Jiunn-Wei Chen, Chih-Liang

More information

Stability Peninsulas at the Neutron Drip Line

Stability Peninsulas at the Neutron Drip Line Stability Peninsulas at the Neutron Drip Line Dmitry Gridnev 1, in collaboration with v. n. tarasov 3, s. schramm, k. A. gridnev, x. viñas 4 and walter greiner 1 Saint Petersburg State University, St.

More information

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton Yuqing Mao Ph.D. Defense November 10, 2014 Dept. of Physics and Astronomy, USC Supported in part

More information

CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 2 APRIL Ming-Keh Chen

CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 2 APRIL Ming-Keh Chen CHINESE JOURNAL OF PHYSICS VOL. 43, NO. 2 APRIL 2004 Doubly Excited 1,3 P e Resonances in He Between the N=2 and 3 He + Thresholds Ming-Keh Chen Department of Physics, National Chung-Hsing University,

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

A study of φ-meson spin alignment with the AMPT model

A study of φ-meson spin alignment with the AMPT model A study of φ-meson spin alignment with the AMPT model Shaowei Lan 1 Zi-Wei Lin 1,2, Shusu Shi 1, Xu Sun 1 1 Central China Normal University 2 East Carolina University Outline Introduction Modified AMPT

More information

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Pavel Soldán, Marko T. Cvitaš and Jeremy M. Hutson University of Durham with Jean-Michel

More information

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook PART 2 Electronic Structure and the Periodic Table Reference: Chapter 7 8 in textbook 1 Experiment to Discover Atom Structure -particle: He 2+ mass number = 4 Nucleus and Electron Model 2 Atomic Structure

More information

Neutrino and Dark Matter Detections via Atomic Ionizations at sub-kev Sensitivities

Neutrino and Dark Matter Detections via Atomic Ionizations at sub-kev Sensitivities Neutrino and Dark Matter Detections via Atomic Ionizations at sub-kev Sensitivities Chih-Pan Wu Dept. of Physics, National Taiwan University Collaborators: Jiunn-Wei Chen, Chih-Liang Wu (NTU) Chen-Pang

More information

Rotational-resolved pulsed field ionization photoelectron study of NO a 3,v 0 16 in the energy range of ev

Rotational-resolved pulsed field ionization photoelectron study of NO a 3,v 0 16 in the energy range of ev JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 5 1 AUGUST 1999 Rotational-resolved pulsed field ionization photoelectron study of NO a 3,v 0 16 in the energy range of 15.6 18.2 ev G. K. Jarvis Chemical

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 ATOMS Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 Spectroscopic notation: 2S+1 L J (Z 40) L is total orbital angular momentum

More information

Multiple Scattering approach for the emission of correlated electron pairs

Multiple Scattering approach for the emission of correlated electron pairs Multiple Scattering approach for the emission of correlated electron pairs F.Da Pieve Physics Dep. University Roma Tre, Rome R.Gotter TASC, ELETTRA, Trieste A.Ruocco, Physics Dep. University Roma Tre,

More information

Velocity Mapping Studies of Molecular Photodissociation and... 25

Velocity Mapping Studies of Molecular Photodissociation and... 25 Velocity Mapping Studies of Molecular Photodissociation and... 25 Other capabilities of velocity imaging have been described in previous articles. 20,21 An interesting demonstration is the imaging of D

More information

Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation

Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 PCCP- Electronic Supplementary Information Electron scattering in large water clusters

More information