ON BIVARIATE GEOMETRIC DISTRIBUTION. K. Jayakumar, D.A. Mundassery 1. INTRODUCTION

Size: px
Start display at page:

Download "ON BIVARIATE GEOMETRIC DISTRIBUTION. K. Jayakumar, D.A. Mundassery 1. INTRODUCTION"

Transcription

1 STATISTICA, ao LXVII, 4, 007 O BIVARIATE GEOMETRIC DISTRIBUTIO ITRODUCTIO Probablty dstrbutos of radom sums of deedetly ad detcally dstrbuted radom varables are maly aled modelg ractcal roblems that deal wth certa heomea whch the resectve mathematcal models are sums of radom umber of deedet radom varables A lot of such stuatos arse actuaral scece, queug theory ad uclear hyscs Gedeko ad Korolev (996) gave a umber of stuatos where we usually come across radom summato, esecally geometrc summato ad descrbe the modelg of such stuatos wth resectve hyscal termology Kozubowsk ad Paorska (999) aled the dstrbuto of geometrc sums facal ortfolo modelg Kozubowsk ad Rachev (994) used geometrc sums as a adequate devce to model the foreg currecy exchage rate data I ths aer our am s to obta characterzatos of bvarate geometrc dstrbuto usg geometrc comoudg We troduce ew bvarate geometrc dstrbutos usg the geometrc sums of deedetly ad detcally dstrbuted radom varables These bvarate geometrc dstrbutos are closed uder geometrc summato Therefore the robablty dstrbutos troduced ths study may be arorate modelg bvarate data sets whch are closed uder geometrc summato It s well kow that bvarate aalogues of uvarate dstrbutos ca be obtaed by extedg ther geeratg fuctos arorately Cosder a sequece of deedet Beroull trals whch the robablty of success each tral s, 0< < Let X be the umber of falures recedg frst success The X follows geometrc dstrbuto wth robablty geeratg fucto (gf) Ps ( ) + c( s) where c A atural exteso of Ps ( ) gves the followg bvarate geometrc dstrbuto A o egatve teger valued bvarate radom varable ( XY, ) has bvarate geometrc dstrbuto ( BGD( c, c, θ )) f ts gf s

2 390 π( s, s ) ( ( ))( ( )) ( )( ) + c s + c s θ cc s s () where c, c > 0, 0 θ, s ad s ote that the comoets of ( XY, ) have uvarate geometrc dstrbuto Phatak ad Sreehar (98) cosdered a bvarate geometrc dstrbuto whch could be terreted as a shock model Assume that two comoets are affected by shocks, wth robablty, the frst comoet survves, wth robablty, the secod comoet survves ad wth robablty 0 both comoets fal Let ad be the umber of shocks to the frst ad secod comoets resectvely before the frst falure of the system The (, ) has the followg jot robablty dstrbuto 0 (, ) + P Its gf s π ( s, s) + ( s ) + ( s ) 0 0 ote that (, ) has BGD( c, c,) where, 0 + +,, 0,,, 3, c ad 0 c 0 I order to obta characterzatos of BGD( c, c,) usg geometrc comoudg, we make use of the oerator ' ' defed as follows: Let X be radom varable wth gf π ( s ) X s defed ( dstrbuto) by X the gf π( + s) or X Z where PZ ( ) PZ ( 0), all radom varables j j Z j beg deedet A bvarate exteso of ths result s cosdered If (X, Y) has gf π ( s, s) the the dstrbuto of ( X, Y) s defed by the gf π( + s, + s ) Let {( X, Y ), } be a sequece of deedetly ad detcally dstrbuted radom varables wth gf π ( s, s) Defe ad U X + X + + X V Y + Y + + Y () j j

3 O bvarate geometrc dstrbuto 39 where s deedet of ( X, Y), ad follows geometrc dstrbuto such that P( ) ( ),,,3,, (3) The the gf of ( U, V ) s gve by U V η ( s, s ) E( s s ) ( π( s, s )) P( ) π( s, s ) ( ) π( s, s ) (4) Block (977) cosdered a comoudg scheme usg bvarate geometrc dstrbuto A radom varable (, ) has bvarate geometrc dstrbuto wth arameters 00, 0, 0 ad f ts survval fucto s F (, ) P ( >, > ) + f f ( 0 ) ( 0 + ) (5) where , 0 + <, 0 + < ad,,, 3, Cosder a sequece of deedetly ad detcally dstrbuted radom varables {( X, Y), } whch s also deedet of (, ) where (, ) follows the bvarate geometrc dstrbuto (5) Defe (6) U X ad V Y Block (977) obtaed the Lalace trasform of ( U, V ) Its dscrete aalogue s η( s, s ) π( s, s )( + η( s,) + η(, s ) + η( s, s )) (7) From (7) we get, ( ) π( s,) η( s,) ( + ) π( s,) 0

4 39 ad η(, s ) ( + ) π(, s ) ( ) π(, s ) 00 0 (8) + 0 Usg geometrc comoudg, secto we obta characterzatos of BGD( c, c,) I secto 3, autoregressve models wth BGD( c, c,) margals are develoed Dfferet bvarate geometrc dstrbutos are troduced secto 4 usg bvarate geometrc comoudg CHARACTERIZATIO OF BIVARIATE GEOMETRIC DISTRIBUTIO The followg theorem gves a characterzato of BGD( c, c,) Theorem Let {( X, Y ), } be a sequece of deedetly ad detcally dstrbuted radom varables ad be deedet of ( X, Y ), Suose that follows the geometrc dstrbuto (3) ad, U ad V are as defed () The ( U, V ) ad ( X, Y ), are detcally dstrbuted f ad oly f ( X, Y), follow BGD( c, c,) Proof Let π ( s, s ) be the gf of ( X, Y), Usg (4), the gf of ( U, V ) s η( s, s ) π( + s, + s ) ( ) π( s, s ) (9) + + Assumg that ( X, Y), follow BGD( c, c,) Substtutg π ( s, s) (9) ad smlfyg, we get η ( s, s) + c ( s ) + c ( s ) Coversely, assume that ( U, V ) follows BGD( c, c,) The from (9) we have π( + s, + s) + c ( s ) + c ( s ) ( ) π( + s, + s ) Solvg we get, π ( s, s) + c ( s ) + c ( s ) ow we obta BGD( c, c, θ ) as a geometrc comoud of deedetly ad detcally dstrbuted radom varables

5 O bvarate geometrc dstrbuto 393 Theorem Cosder a sequece {( X, Y), } of deedetly ad detcally dstrbuted radom varables, also deedet of whch has the geometrc dstrbuto (3) Let U ad V be as defed () The ( U, V ) follows BGD( c, c, q ) where q - f ad oly f ( X, Y), have BGD( c, c,0) Proof Suose that ( X, Y ), have gf π ( s, s) ( + c ( s ))( + c ( s )) From (9), the gf of ( U, V ) s η ( s, s ) ( + c ( s ))( + c ( s )) + + c ( s ) + c ( s ) + c c ( s )( s ) Comarg wth (), we get θ q Hece ( U, V ) follows BGD( c, c, q ) To rove the coverse of the theorem, substtutg the gf of ( U, V ) (9), we get π( + s, + s) + c ( s ) + c ( s ) + c c ( s )( s ) ( ) π( + s, + s ) Solvg, we obta π ( s, s) ( + c ( s ))( + c ( s )) A characterzato of geometrc dstrbuto s obtaed the followg theorem Theorem 3 Suose that {( X, Y), } s a sequece of deedetly ad detcally dstrbuted radom varables accordg to BGD( c, c,) The ( U, V ) ad ( X, Y), are detcally dstrbuted f ad oly f s geometrc where U ad V are as defed () Proof The f art of the theorem s roved theorem I order to rove the oly f art, assume that ( X, Y ), ad ( U, V ) are detcally

6 394 dstrbuted as BGD( c, c,) Wthout loss of geeralty, takg c c The gf of ( U, V ) s η( s, s ) ( π( + s, + s )) P( ) From the assumto, we get P ( )( + ( s) + ( s)) + ( s) + ( s) Exadg wth resect to ad comarg the coeffcets of (( s ) + ( s )) j, we get ( + )( + )( + j ) P ( ) Cosder j! j, for j,,3, 3 E( t ) t t t + E ( ) + E ( ( + )) + E ( ( + )( + )) +!! 3! t ( ) ( ) t But E( t ) ( t) P( ) Therefore, P( ) ( ), for,, 3, Theorem 4 Let ad be two deedet radom varables followg geometrc dstrbuto gve (3) wth arameters a ad b resectvely ad {( X, Y ), } be a sequece of deedetly ad detcally dstrb- uted radom varables whch are also deedet of ad Let U X + X + + X ad V Y + Y + + Y, for, The

7 O bvarate geometrc dstrbuto 395 ( a U, a V ) ad ( b U, b V ) are detcally dstrbuted f ( X, Y), have BGD( c, c,) Proof Suose that ( X, Y), have BGD( c, c,) Therefore from (9) we obta the gf of ( a U, a V ) as η ( s, s) + c ( s ) + c ( s ) Smlarly, we ca show that ( b U, b V ) has also the same gf Hece the roof I the ext theorem we obta characterzato of BGD( c, c, θ ) usg bvarate geometrc comoudg Theorem 5 Let {( X, Y), } be a sequece of deedetly ad detcally dstrbuted radom varables Suose that (, ) has bvarate geometrc dstrbuto gve (5) ad deedet of ( X, Y), Take 00 0, 0 µ, 0 µ ad ( µ + µ ) The ( U, V ) follows c BGD c,,0 f ad oly f ( X, Y), follow BGD( c, c,) where U µ µ ad V are as gve (6) Proof Assume that ( X, Y), follow BGD( c, c,) Substtutg ts gf ad the values of 00, 0, 0, (7) The gf of ( U, V ) s ( s, s ) ( ) ( ) η + c s + c s c( s) c( s) µ + + µ + + ( µ µ ) η( s, s) µ µ Solvg we get, η( s, s) c( s) c( s) + + µ µ Coversely, assume that η( s, s) c( s) c( s) + + µ µ

8 396 Therefore from (7) c( s) c( s) + + µ µ ( s, s ) π c( s) c( s) c( s) c( s) µ µ µ µ Substtutg the values of 00, 0, 0 ad we get π ( s, s) + c ( s ) + c ( s ) Theorem 6 Cosder a sequece of deedetly ad detcally dstrbuted radom varables {( X, Y), } Suose that (, ) s deedet of ( X, Y ), ad follows the bvarate geometrc dstrbuto (5) such that, +, + ad 00 0 The 0 0 ( q U, q V ) has BGD( c, c,0) f ad oly f ( X, Y), have BGD( c, c,) where q Proof Usg (7) the gf of ( q U, q V ) s 0( ) π( s,) 0( ) π(, s ) π( s, s) + ( 0 + ) π( s,) ( 0 + ) π(, s ) η( s, s) π( s, s ) where π ( s, s) s the gf of ( X, Y), Assume that ( X, Y), have BGD( c, c,) The we get qq cq s cq s η ( s, s) + ( ) + ( ) + + cq( s) + cq( s ) O smlfcato, we get

9 O bvarate geometrc dstrbuto 397 η ( s, s) ( + c ( s ))( + c ( s )) Coversely suose that (7) we have ( q U, q V ) follows BGD( c, c,0) The from π( q + qs, q + qs) ( + c ( s ))( + c ( s )) π ( q + q s, q + q s ) q q + + c( s) + c( s) Solvg, we get π ( s, s) + c ( s ) + c ( s ) Theorem 7 Let {( X, Y), } be a sequece of deedetly ad detcally dstrbuted radom varables Suose that (, ) s deedet of ( X, Y ), ad has bvarate geometrc dstrbuto, as stated theorem 6 The ( q U, q V ) has gf BGD( qq,,0) f ad oly f ( X, Y ), have gf BGD( q, q,) where q - Proof Suose that ( X, Y), have BGD( q, q,) Substtutg (7), we get the gf of ( q U, q V ) as η( s, s ) qq q q( s ) + q q( s ) + q q( s ) + q q( s ) + O smlfcato we get η ( s, s) ( + q( s ))( + q( s )) Coversely, take that ( q U, q V ) follows BGD( qq,,0) From (9), we have ( + q( s ))( + q( s )) π( q+ qs, q+ qs) q q + π( q+ qs, q+ qs) + q( s) + q( s)

10 398 Smlfyg, we get π ( s, s) + q ( s ) + q ( s ) 3 BIVARIATE AUTOREGRESSIVE GEOMETRIC PROCESS There are may stuatos whch dscrete tme seres arse, ofte as couts of evets, objects or dvduals cosecutve tervals For examle, umber of road accdets that occur o atoal hghways of a coutry o a day, umber of customers watg a tcket bookg couter that recorded every oe hour durato, umber of calls receved a fre rescue cetre a week, etc Moreover such data ca also be obtaed by dscretzato of cotuous varate tme seres Recetly, much focus s gve o develog teger valued statoary autoregressve rocesses (see, Jayakumar (995)) Here we develo frst order autoregressve rocess wth margals as bvarate geometrc dstrbuto Cosder a autoregressve rocess ( X, Y ),, wth structure ( X0, Y0) d( U, V ) ad for,, 3, ( X, Y ) ( ρ X + U, ρ Y + V ), 0< ρ < (0) where ( U, V), are deedetly ad detcally dstrbuted radom varables satsfyg ( U, V) d( Iε, Iψ ) { I, } ad {( ε, ψ), } are two deedet sequeces of deedetly ad detcally dstrbuted radom varables ad ( I, ) have Beroull dstrbuto wth PI ( 0) PI ( ) ρ The followg theorem gves a ecessary ad suffcet codto for a statoary autoregressve rocess to have BGD( c, c,) margals Theorem 3 Let ( X, Y), be a frst order bvarate autoregressve rocess wth structure (0) The rocess s statoary wth BGD( c, c,) margals f ad oly f ( ε, ψ), follow BGD( c, c,) Proof The gf of (0) s π ( s, s ) π ( ρ + ρs, ρ + ρs ) π ε ψ ( s, s ) () X, Y X, Y, Suose that the rocess s statoary wth BGD( c, c,) margals, the we have π + c ( s ) + c ( s ) + c ρ( s ) + c ρ( s ) ( s, s ) UV,

11 O bvarate geometrc dstrbuto 399 Solvg we get, UV, ( s, s ρ π ) ρ + + c ( s ) + c ( s ) To rove the coverse assume that ( ε, ψ, ) follow BGD( c, c,) Takg (), we get π ( s, s ) π ( ρ + ρs, ρ + ρs ) π ( s, s ) X, Y X0, Y0 U, V Uder the assumto, π ρ (, ) ρ + ( ) ( ) ( ) ( ) X, Y s s + cρ s + cρ s + c s + c s + c ( s ) + c ( s ) Hece the rocess s statoary wth margals follow BGD( c, c,) ow cosder a frst order radom coeffcet autoregressve model wth followg structure ( X, Y ) d( ε, ψ ) ( X, Y ) ( V X + V ε, V Y + V ψ ), () where {( ε, ψ, )} ad { V, } are two deedet sequeces of deedetly ad detcally dstrbuted radom varables such that V, have uform dstrbuto o (0, ) The followg theorem gves a ecessary ad suffcet codto for the rocess () to be statoary Theorem 3 Cosder a autoregressve rocess ( X, Y), gve () It s a statoary frst order autoregressve rocess wth BGD( c, c,) margals f ad oly f ( ε0, ψ 0)d BGD( c, c,) Proof The gf of () s V X V V Y V X, Y s s E s + ε s + ψ π (, ) ( ) πx, Y ( v + vs, v + vs ) π, ( v + vs, ε ψ v + vs) dv 0 If ( X, Y ), s statoary, we have

12 400 π XY, ( s, s) π XY, ( v + vs, v + vs ) dv 0 Let πxy, s s γxy, s s γ (, ) (, ) The we get XY, s s γxy, 0 (, ) ( vs, vs ) dv (3) Takg s j δ s for j, j XY, s XY, 0 γ (( δ, δ ) ) γ (( δ, δ ) sv) dv If sv t, the s XY, XY, 0 sγ (( δ, δ ) s) γ (( δ, δ ) t) dt XY, Dfferetatg wth resect to s ad the dvdg by γ (( δ, δ ) s ), we get ' XY, XY, sγ (( δ, δ ) s) + γ (( δ, δ ) s ) γ (( δ, δ ) s ) XY, Wrtg γxy, (( δ, δ) s ) + ω(( δ, δ ) s ), we get ω(( δ, δ ) s) µ s where µ s a fucto of ( δ, δ ) That s, γxy, (( δ, δ) s ) + µ s + cs + cs Thus π XY, ( s, s ) + c( s) + c( s) ad hece we obta ( ε0, ψ 0)d BGD( c, c,) Coversely, suose that ( X0, Y0) d( ε0, ψ 0) ad ( ε0, ψ 0) has BGD( c, c,) From (3), we have

13 O bvarate geometrc dstrbuto 40,, 0 γx Y( s, s ) γ ε ψ ( vs, vs ) dv cs + cs Therefore, ( s, s ) ( ) ( ) π X, Y + c s + c s Thus ( X, Y ) s dstrbuted as bvarate geometrc dstrbuto By ducto we get ( X, Y), follow BGD( c, c,) Hece the rocess s statoary 4 BIVARIATE GEOMETRIC DISTRIBUTIO I ths secto we costruct varous bvarate geometrc dstrbutos usg the bvarate geometrc comoudg We dscuss the dscrete aalogues of may mortat bvarate exoetal dstrbutos lke, Marshall-Olk s (967) bvarate exoetal, Dowto s (970) bvarate exoetal ad Hawkes (97) bvarate exoetal Theorem 4 Let {( X, Y), } be a sequece of deedetly ad detcally dstrbuted radom varables accordg to BGD( c, c,) ad (, ) follow, deedet of ( X, Y),, the bvarate geometrc dstrbuto gve (5) Choose 00 µ, 0 µ, 0 µ µ ad µ µ + µ + µ Defe U ad V as gve (6) The ( U, V ) follows bvarate geometrc dstrbuto whch s the dscrete aalogue of Marshall-Olk s bvarate exoetal Proof Let ( X, Y), have gf π ( s, s) Substtutg the values of 00, 0, 0, ad π ( s, s) (7), we get η ( s, s ) ( µ + µ η ( s,) + µη (, s ) + ( µ ) η( s, s )) + c( s) + c( s) Solvg for η ( s,) ad η (, s ), we get (4) η( s,) µ + µ µ + µ + c ( s ) (, ) µ + µ ( ) ad η s µ + µ + c s

14 40 Substtutg η ( s,) ad η (, s ) (4), we get ( s, s ) ( ) ( ) η + c s + c s µ ( µ + µ ) µ ( µ + µ ) µ ( µ ) η( s, s) µ + µ + c( s) µ + µ + c( s) O smlfcato, c( s) c( s) η ( s, s) µ + µ + + µ + µ + c( s) + c( s) µ µ I the ext theorem, we gve the bvarate geometrc dstrbuto whch s aalogues to Dowto s bvarate exoetal dstrbuto Theorem 4 Suose that ( X, Y), are deedetly ad detcally dstrbuted radom varables wth gf c( s) c( s) π( s, s) + +, µ > 0 ad deedet of + µ + µ (, ) where (, ) follows the bvarate geometrc dstrbuto gve (5) Takg 00 ( + µ ), ad µ ( + µ ) The( U, V ) has bvarate geometrc dstrbuto whch s the dscrete aalogue of Dowto s bvarate exoetal dstrbuto where U ad V are as defed (6) Proof Suosg that ( X, Y), have gf π ( s, s) From (7) the gf of ( U, V ) s c( s) c( s) s s η ( s, s ) (( µ ) µ ( µ ) η(, )) + µ + µ c( s) c( s) ( + µ ) + µ + µ + + µ + µ ( µ ) ( µ ) ( ) ( µ ) ( ) ( )( ) µ ( µ ) c s + + c s + cc s s + ( + c ( s ))( + c ( s )) c c ( s )( s ) µ +µ

15 O bvarate geometrc dstrbuto 403 By comarg wth (), we ote that ( U, V ) follows BGD( c, c, θ ) where µ θ + µ The bvarate geometrc form of Hawkes bvarate exoetal dstrbuto s gve the followg theorem Theorem 43 Let {( X, Y), } be a sequece of deedetly ad detcally dstrbuted radom varables wth gf s π( s, s) ( + µ ( s))( + µ ( s)) Assume that (, ) follow bvarate geometrc dstrbuto gve (5) ad deedet of ( X, Y), Choose 0 0, γ ad γ The the dstrbuto of ( U, V ) s the bvarate geometrc form of Hawkes bvarate exoetal dstrbuto Proof From (8), we have η( s,) π( s,)( γ + ( γ ) π( s,)) Substtutg π ( s,) ad solvg η ( s,), we get η( s,) µ ( s) + γ Smlarly η(, s ) µ ( s ) + γ Aga from (7) η( s, s) ( + µ ( s ))( + µ ( s )) (, ) ( ) + s ( s) π µ µ s s + + γ γ µ ( s) µ ( s) µ µ ( s ) ( s) γ γ γ γ µ µ + ( s) + ( s) (( + µ ( s))( + µ ( s)) ) γ γ

16 404 Thus ( U, V ) have the bvarate geometrc form of Hawkes bvarate exoetal dstrbuto Deartmet of Statstcs Uversty of Calcut, Ida K JAYAKUMAR DAVIS ATOY MUDASSERY REFERECES H W BLOCK, (977), A famly of bvarate lfe dstrbutos Theory ad Alcatos of Relablty: Wth Emhass o Bayesa ad oarametrc Methods, C P Tsokos ad I Shm, eds, Academc Press, F DOWTO, (970), Bvarate exoetal dstrbutos relablty theory Joural of Royal Statstcal Socety, Seres B, 3, B V GEDEKO, V KOROLEV, (996), Radom summato: Lmt theorems ad alcatoscrc Press, ew York A G HAWKES, (97), A bvarate exoetal dstrbuto wth alcatos to relablty Joural of Royal Statstcal Socety, Seres B, 34, 9-3 K JAYAKUMAR, (995), The statoary soluto of a frst order teger valued autoregressve rocesses Statstca, LV, -8 T J KOZUBOWSKI, A K PAORSKA, (999), Multvarate geometrc stable dstrbuto facal alcatos Mathematcal ad Comuter Modelg, 9, 83-9 T J KOZUBOWSKI, S T RACHEV, (994), The theory of geometrc stable laws ad ts use modelg facal data Euroea Joural of Oeratos Research, 74, A W MARSHALL, I OLKI, (967), A multvarate exoetal dstrbuto Joural of the Amerca Statstcal Assocato, 6, A G PHATAK, M SREEHARI, (98), Some characterzatos of bvarate geometrc dstrbuto, Joural of Ida Statstcal Assocato, 9, 4-46 O bvarate geometrc dstrbuto SUMMARY Characterzatos of bvarate geometrc dstrbuto usg uvarate ad bvarate geometrc comoudg are obtaed Autoregressve models wth margals as bvarate geometrc dstrbuto are develoed Varous bvarate geometrc dstrbutos aalogous to mortat bvarate exoetal dstrbutos lke, Marshall-Olk s bvarate exoetal, Dowto s bvarate exoetal ad Hawkes bvarate exoetal are reseted

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have NM 7 Lecture 9 Some Useful Dscrete Dstrbutos Some Useful Dscrete Dstrbutos The observatos geerated by dfferet eermets have the same geeral tye of behavor. Cosequetly, radom varables assocated wth these

More information

Application of Generating Functions to the Theory of Success Runs

Application of Generating Functions to the Theory of Success Runs Aled Mathematcal Sceces, Vol. 10, 2016, o. 50, 2491-2495 HIKARI Ltd, www.m-hkar.com htt://dx.do.org/10.12988/ams.2016.66197 Alcato of Geeratg Fuctos to the Theory of Success Rus B.M. Bekker, O.A. Ivaov

More information

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution Global Joural of Pure ad Appled Mathematcs. ISSN 0973-768 Volume 3, Number 9 (207), pp. 55-528 Research Ida Publcatos http://www.rpublcato.com Comparg Dfferet Estmators of three Parameters for Trasmuted

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

IS 709/809: Computational Methods in IS Research. Simple Markovian Queueing Model

IS 709/809: Computational Methods in IS Research. Simple Markovian Queueing Model IS 79/89: Comutatoal Methods IS Research Smle Marova Queueg Model Nrmalya Roy Deartmet of Iformato Systems Uversty of Marylad Baltmore Couty www.umbc.edu Queueg Theory Software QtsPlus software The software

More information

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory Chael Models wth Memory Chael Models wth Memory Hayder radha Electrcal ad Comuter Egeerg Mchga State Uversty I may ractcal etworkg scearos (cludg the Iteret ad wreless etworks), the uderlyg chaels are

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp THE PUBLISHIN HOUSE PROCEEDINS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/8, THE UNITS IN Stela Corelu ANDRONESCU Uversty of Pteşt, Deartmet of Mathematcs, Târgu Vale

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Two Fuzzy Probability Measures

Two Fuzzy Probability Measures Two Fuzzy robablty Measures Zdeěk Karíšek Isttute of Mathematcs Faculty of Mechacal Egeerg Bro Uversty of Techology Techcká 2 66 69 Bro Czech Reublc e-mal: karsek@umfmevutbrcz Karel Slavíček System dmstrato

More information

Minimizing Total Completion Time in a Flow-shop Scheduling Problems with a Single Server

Minimizing Total Completion Time in a Flow-shop Scheduling Problems with a Single Server Joural of Aled Mathematcs & Boformatcs vol. o.3 0 33-38 SSN: 79-660 (rt) 79-6939 (ole) Sceress Ltd 0 Mmzg Total omleto Tme a Flow-sho Schedulg Problems wth a Sgle Server Sh lg ad heg xue-guag Abstract

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

Bivariate Zero-Inflated Power Series Distribution

Bivariate Zero-Inflated Power Series Distribution Appled athematcs 84-89 do:.436/am..7 ublshed Ole July (http://www.scr.org/joural/am) Bvarate Zero-Iflated ower Seres Dstrbuto Abstract atl arut Krsha Shrke Dgambar Tukaram Departmet of Statstcs. V.. ahavdyalaya

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables A^VÇÚO 1 32 ò 1 5 Ï 2016 c 10 Chese Joural of Appled Probablty ad Statstcs Oct., 2016, Vol. 32, No. 5, pp. 489-498 do: 10.3969/j.ss.1001-4268.2016.05.005 Complete Covergece for Weghted Sums of Arrays of

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

NONPARAMETRIC ESTIMATION IN RANDOM SUM MODELS

NONPARAMETRIC ESTIMATION IN RANDOM SUM MODELS STATISTICA, ao LXIX,., 009 NONPARAMETRIC ESTIMATION IN RANDOM SUM MODELS. INTRODUCTION The motvato for ths paper arses from the fact that the radom sum models are wdely used rsk theory, queueg systems,

More information

Journal Of Inequalities And Applications, 2008, v. 2008, p

Journal Of Inequalities And Applications, 2008, v. 2008, p Ttle O verse Hlbert-tye equaltes Authors Chagja, Z; Cheug, WS Ctato Joural Of Iequaltes Ad Alcatos, 2008, v. 2008,. 693248 Issued Date 2008 URL htt://hdl.hadle.et/0722/56208 Rghts Ths work s lcesed uder

More information

Chain Rules for Entropy

Chain Rules for Entropy Cha Rules for Etroy The etroy of a collecto of radom varables s the sum of codtoal etroes. Theorem: Let be radom varables havg the mass robablty x x.x. The...... The roof s obtaed by reeatg the alcato

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function 7659, Eglad, UK Joural of Iformato ad Computg Scece Vol. 2, No. 3, 2007, pp. 9-96 Geeratg Multvarate Noormal Dstrbuto Radom Numbers Based o Copula Fucto Xaopg Hu +, Jam He ad Hogsheg Ly School of Ecoomcs

More information

Analysis of a Repairable (n-1)-out-of-n: G System with Failure and Repair Times Arbitrarily Distributed

Analysis of a Repairable (n-1)-out-of-n: G System with Failure and Repair Times Arbitrarily Distributed Amerca Joural of Mathematcs ad Statstcs. ; (: -8 DOI:.593/j.ajms.. Aalyss of a Reparable (--out-of-: G System wth Falure ad Repar Tmes Arbtrarly Dstrbuted M. Gherda, M. Boushaba, Departmet of Mathematcs,

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Some identities involving the partial sum of q-binomial coefficients

Some identities involving the partial sum of q-binomial coefficients Some dettes volvg the partal sum of -bomal coeffcets Bg He Departmet of Mathematcs, Shagha Key Laboratory of PMMP East Cha Normal Uversty 500 Dogchua Road, Shagha 20024, People s Republc of Cha yuhe00@foxmal.com

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Measures of Entropy based upon Statistical Constants

Measures of Entropy based upon Statistical Constants Proceedgs of the World Cogress o Egeerg 07 Vol I WCE 07, July 5-7, 07, Lodo, UK Measures of Etroy based uo Statstcal Costats GSButtar, Member, IAENG Abstract---The reset artcle deals wth mortat vestgatos

More information

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables Iteratoal Joural of Cotemporary Mathematcal Sceces Vol. 07 o. 8 9-05 HIKARI Ltd www.m-hkar.com https://do.org/0.988/jcms.07.799 A ew Famly of Dstrbutos Usg the pdf of the rth Order Statstc from Idepedet

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Pr[X (p + t)n] e D KL(p+t p)n.

Pr[X (p + t)n] e D KL(p+t p)n. Cheroff Bouds Wolfgag Mulzer 1 The Geeral Boud Let P 1,..., m ) ad Q q 1,..., q m ) be two dstrbutos o m elemets,.e.,, q 0, for 1,..., m, ad m 1 m 1 q 1. The Kullback-Lebler dvergece or relatve etroy of

More information

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data Joural of Sceces, Islamc Reublc of Ira 23(2): 7-77 (22) Uversty of Tehra, ISSN 6-4 htt://jsceces.ut.ac.r Asymtotc Behavors of the Lorez Curve for Left Trucated ad Deedet Data M. Bolbola Ghalbaf,,* V. akoor,

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Modified Cosine Similarity Measure between Intuitionistic Fuzzy Sets

Modified Cosine Similarity Measure between Intuitionistic Fuzzy Sets Modfed ose mlarty Measure betwee Itutostc Fuzzy ets hao-mg wag ad M-he Yag,* Deartmet of led Mathematcs, hese ulture Uversty, Tae, Tawa Deartmet of led Mathematcs, hug Yua hrsta Uversty, hug-l, Tawa msyag@math.cycu.edu.tw

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Diagnosing Problems of Distribution-Free Multivariate Control Chart

Diagnosing Problems of Distribution-Free Multivariate Control Chart Advaced Materals Research Ole: 4-6-5 ISSN: 66-8985, Vols. 97-973, 6-66 do:.48/www.scetfc.et/amr.97-973.6 4 ras ech Publcatos, Swtzerlad Dagosg Problems of Dstrbuto-Free Multvarate Cotrol Chart Wel Sh,

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN EXTENDED LOG-LOGISTIC DISTRIBUTION FROM PROGRESSIVELY CENSORED SAMPLES

ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN EXTENDED LOG-LOGISTIC DISTRIBUTION FROM PROGRESSIVELY CENSORED SAMPLES ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN EXTENDED LOG-LOGISTIC DISTRIBUTION FROM PROGRESSIVELY CENSORED SAMPLES Mahmoud Rad Mahmoud Isttute of Statstcs, Caro Uversty Suza Mahmoud Mohammed Faculty

More information

On the characteristics of partial differential equations

On the characteristics of partial differential equations Sur les caractérstques des équatos au dérvées artelles Bull Soc Math Frace 5 (897) 8- O the characterstcs of artal dfferetal equatos By JULES BEUDON Traslated by D H Delhech I a ote that was reseted to

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved. VOL., NO., November 0 ISSN 5-77 ARPN Joural of Scece ad Techology 0-0. All rghts reserved. http://www.ejouralofscece.org Usg Square-Root Iverted Gamma Dstrbuto as Pror to Draw Iferece o the Raylegh Dstrbuto

More information

Entropy, Relative Entropy and Mutual Information

Entropy, Relative Entropy and Mutual Information Etro Relatve Etro ad Mutual Iformato rof. Ja-Lg Wu Deartmet of Comuter Scece ad Iformato Egeerg Natoal Tawa Uverst Defto: The Etro of a dscrete radom varable s defed b : base : 0 0 0 as bts 0 : addg terms

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

A New Measure of Probabilistic Entropy. and its Properties

A New Measure of Probabilistic Entropy. and its Properties Appled Mathematcal Sceces, Vol. 4, 200, o. 28, 387-394 A New Measure of Probablstc Etropy ad ts Propertes Rajeesh Kumar Departmet of Mathematcs Kurukshetra Uversty Kurukshetra, Ida rajeesh_kuk@redffmal.com

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

Miin-Jye Wen National Cheng Kung University, City Tainan, Taiwan, R.O.C. Key words: general moment, multivariate survival function, set partition

Miin-Jye Wen National Cheng Kung University, City Tainan, Taiwan, R.O.C. Key words: general moment, multivariate survival function, set partition A Multvarate Webull Dstrbuto Cheg K. Lee chegl@uab.edu Charlotte, North Carola, USA M-Jye We Natoal Cheg Kug Uversty, Cty Taa, Tawa, R.O.C. Summary. A multvarate survval fucto of Webull Dstrbuto s developed

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotuous Radom Varables: Codtog, xectato ad Ideedece Berl Che Deartmet o Comuter cece & Iormato geerg atoal Tawa ormal Uverst Reerece: - D.. Bertsekas, J.. Tstskls, Itroducto to robablt, ectos 3.4-3.5 Codtog

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

A Markov Chain Competition Model

A Markov Chain Competition Model Academc Forum 3 5-6 A Marov Cha Competto Model Mchael Lloyd, Ph.D. Mathematcs ad Computer Scece Abstract A brth ad death cha for two or more speces s examed aalytcally ad umercally. Descrpto of the Model

More information

Probability and Statistics. What is probability? What is statistics?

Probability and Statistics. What is probability? What is statistics? robablt ad Statstcs What s robablt? What s statstcs? robablt ad Statstcs robablt Formall defed usg a set of aoms Seeks to determe the lkelhood that a gve evet or observato or measuremet wll or has haeed

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION Iteratoal Joural of Mathematcs ad Statstcs Studes Vol.4, No.3, pp.5-39, Jue 06 Publshed by Europea Cetre for Research Trag ad Developmet UK (www.eajourals.org BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL

More information

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK.

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK. adom Varate Geerato ENM 307 SIMULATION Aadolu Üverstes, Edüstr Mühedslğ Bölümü Yrd. Doç. Dr. Gürka ÖZTÜK 0 adom Varate Geerato adom varate geerato s about procedures for samplg from a varety of wdely-used

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

On the introductory notes on Artin s Conjecture

On the introductory notes on Artin s Conjecture O the troductory otes o Art s Cojecture The urose of ths ote s to make the surveys [5 ad [6 more accessble to bachelor studets. We rovde some further relmares ad some exercses. We also reset the calculatos

More information

Eulerian numbers revisited : Slices of hypercube

Eulerian numbers revisited : Slices of hypercube Eulera umbers revsted : Slces of hypercube Kgo Kobayash, Hajme Sato, Mamoru Hosh, ad Hroyosh Morta Abstract I ths talk, we provde a smple proof o a terestg equalty coectg the umber of permutatos of,...,

More information

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3 IOSR Joural of Mathematcs IOSR-JM e-issn: 78-578, p-issn: 9-765X. Volume, Issue Ver. II Ja - Feb. 05, PP 4- www.osrjourals.org Bayesa Ifereces for Two Parameter Webull Dstrbuto Kpkoech W. Cheruyot, Abel

More information

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions.

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions. It. Joural of Math. Aalyss, Vol. 8, 204, o. 4, 87-93 HIKARI Ltd, www.m-hkar.com http://dx.do.org/0.2988/jma.204.30252 Mult Objectve Fuzzy Ivetory Model wth Demad Depedet Ut Cost ad Lead Tme Costrats A

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

Some queue models with different service rates. Július REBO, Žilinská univerzita, DP Prievidza

Some queue models with different service rates. Július REBO, Žilinská univerzita, DP Prievidza Some queue models wth dfferet servce rates Júlus REBO, Žlsá uverzta, DP Prevdza Itroducto: They are well ow models the queue theory Kedall s classfcato deoted as M/M//N wth equal rates of servce each servce

More information

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates Joural of Moder Appled Statstcal Methods Volume Issue Artcle 8 --03 Comparso of Parameters of Logormal Dstrbuto Based O the Classcal ad Posteror Estmates Raja Sulta Uversty of Kashmr, Sragar, Ida, hamzasulta8@yahoo.com

More information

A be a probability space. A random vector

A be a probability space. A random vector Statstcs 1: Probablty Theory II 8 1 JOINT AND MARGINAL DISTRIBUTIONS I Probablty Theory I we formulate the cocept of a (real) radom varable ad descrbe the probablstc behavor of ths radom varable by the

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 3 o BST 63: Statstcal Theory I Ku Zhag, /6/006 Revew for the revous lecture Cocets: radom samle, samle mea, samle varace Theorems: roertes of a radom samle, samle mea, samle varace Examles: how

More information