Tan Matthias Hwai Yong School of Data Science City University of Hong Kong

Size: px
Start display at page:

Download "Tan Matthias Hwai Yong School of Data Science City University of Hong Kong"

Transcription

1 Gaussian Process Modeling of Solutions to Partial Differential Equation Models with Information from Boundary and Initial Conditions Tan Matthias Hwai Yong School of Data Science City University of Hong Kong 1

2 Introduction Consider building Gaussian process (GP) emulators for time-consuming finite element simulators that use information from Dirichlet boundary and initial conditions. Finite element method: numerical method used to solve a system of partial differential equations (PDEs) with initial and boundary conditions, which is often called an initial-boundary value problem. It is a deterministic method.

3 Physical modeling: PDE with initial and boundary conditions Heat equation: standard PDE model for heat conduction. Parameters h = convective heat transfer coefficient =ambient temperature = thermal conductivity = volumetric specific heat

4 Physical modeling: PDE with initial and boundary conditions PDE: the heat equation, =, 2h,, [0,]. Dirichlet BCs, =! ", $ ", (0,],, =! &, $ &, (0,], Neumann BC ' ( ",( &, = 0 ), (0,], Robin BC ' ( ",( &, = h, *, (0,], Initial condition,0 =! + $.

5 Finite element method: illustration Approximate PDE solution with a piecewise polynomial, i.e., a polynomial (linear, quadratic) within each element. Use spatial nodes ",, - to generate functional bases. For piecewise linear polynomials, nodes are the vertices of the elements. PDE solution:, = - 02" / 0 1 0, where the 1 0 s are the tent basis functions = 4 1,6 = 7 0,6 8 7.Thus, 0, = / 0. Time nodes ",, :. ; 0 0 = 1,; 0 3 = 0, Output at, :, = - : 02" 32" 0, ; 3. Solve a system of algebraic equations for at time points ",, :, which gives 0, 3,7 = 1,,<,6 = 1,,=.

6 Finite element method: solving the heat equation

7 Computer experiments with varying Dirichlet boundary and initial conditions Uncertainty quantification problem: quantify the effect of uncertainty in the Dirichlet boundary and initial conditions on the PDE solution. Time-consuming PDE emulator. Change the Dirichlet boundary and initial conditions (and other inputs), represented by input vector $, in a computer experiment, use data to approximate relationship between Dirichlet boundary and initial conditions, and the PDE solution? $,. Assume that the Dirichlet boundary! ", $, ", (0,]and initial condition! + $, are cheap-tocompute/ known.

8 Computer experiments with varying Dirichlet boundary and initial conditions Know that PDE solution? satisfies? $,, =! ", $, ", (0,],? $,,0 =! + $,. Propose a GP $,, that gives predictions that are exactly equal to the Dirichlet boundary and initial conditions at the space-time boundaries, $,, =? $,, =! ", $, ", $,,0 =? $,,0 =! + $,. Helps improve prediction accuracy. Proposed GP model is tractable when? $, is observed on a large node set.

9 Example: heat equation ( ",0, = D " B D & ( " =! ", $, ( ",1, = D ) B D * ( " =! &, $ ( ",0, = 30 B 5( ", ( ",1, = 35 5( " ( ",0, = 30 B 0( ", ( ",1, = 30 B 5( "

10 Example Szasz, A., Szasz, N., and Szasz, O. (2010). Hyperthermia results and challenges, InOncothermia: Principles and Practices(pp ). Springer, Dordrecht. PDEs: Pennes eq. Maxwell s eqs. 2D model Monsalvo, J. F., García, M. J., Millwater, H., and Feng, Y. (2017). Sensitivity analysis for radiofrequency induced thermal therapies using the complex finite element method.finite Elements in Analysis and Design, 135, D model

11 Examples in the literature Groundwater flow with random Dirichlet boundary conditions representing random hydraulic heads Shi, L., Yang, J., and Zhang, D. (2009). A stochastic approach to nonlinear unconfined flow subject to multiple random fields.stochastic Environmental Research and Risk Assessment, 23(6), Power transistor model with random Dirichlet boundary conditions representing random potentials at the drains and source pads termaten, E. J. W., Putek, P. A., Günther, M., Pulch, R., Tischendorf, C., Strohm, C.,... and Feng, L. (2016). Nanoelectronic COupledproblems solutions-nanocops: modelling, multirate, model order reduction, uncertainty quantification, fast fault simulation.journal of Mathematics in Industry, 7(1), 2. 11

12 Examples in the literature Burgers equation with initial conditions generated from a Gaussian process Cho, H., Venturi, D., and Karniadakis, G. E. (2014). Statistical analysis and simulation of random shocks in stochastic Burgers equation.proc. R. Soc. A,470(2171),

13 GP modeling of functional outputs $ =vector of inputs to simulator Output is a function? $, (solution to the PDE) defined on a space-time domain E. Observations on? $, at the points in the set M = ",, G are used as data. Abusing notation, can refer to a spatial coordinate (for time-independent problems), or a space-time coordinate (for time-dependent problems). M is the set of nodes or Cartesian product of nodes and time grid. Experiment design: H = $ ",,$ I K.

14 Standard separable GP model for functional outputs Stationary and separable GP prior L $,. Prior covariance function: cov L $,,L $, = Q R & S ", T " S & $,$ T &. Q R & is the variance, S " and S & are stationary correlation functions with parameters T " and T &. Prior mean function: U L $, = /. Experiment data: V = L $ ", ",,L $ ", G,,L $ I, ",,L $ I, G Distribution of V(used to derive likelihood): V~Y /Z IG,Q & R [ & [ " W

15 Standard separable GP model for functional outputs Computationally efficient formulas for the posterior mean and variance functions, and the MLEs can be obtained using Kronecker product matrix algebra formulas: [ ]" = [ & ]" [ " ]" and [ = [ & G [ " I However, because Y can be very large, computing [ " ]" can be very time consuming, which makes use of the standard separable GP model time consuming.

16 KL-GP model (KL=Karhunen Loève) We shall consider a GP model given by the collection of random variables W ^ $ $, ",,@ $, G :$ K only interested to predict PDE solution at M = ",, G E instead of all E. Justification: The simulator output is? $, = 02"? $, To match with simulator, our model should be $, = $, Assumption: ` = cov ^ $ and a = U ^ $ do not depend on $. Denote the eigendecomposition of `by ` = bcb W. bis an Y Y matrix with the 7thcolumn given by the 7thorthonormal W eigenvector b 0 = ; 0 ",,; 0 G, and c = diag h",,h G is the diagonal matrix of eigenvalues. G

17 KL-GP model Model: ^ $ = a B bc "/& c ]"/& b W ^ $ a = a B bc "/& j $. a = U ^ $ = k ",,k G W. j $ = c ]"/& b W ^ $ a = l " $,,l G $ W is a vector of independent standard normal random variables for any fixed $. l ",,l G are independent GP s defined on Kand l 0 has correlation function denoted by R 0, n 0, where n 0 is a vector of parameters. Covariance function: cov ^ $,^ $ = G W 02" h 0 R 0 $,$ n 0 b 0 b 0. cov ^ $,^ $ is separable with respect to $and if and only if all R 0 s are the same.

18 KL-GP model Estimation method Notation: ^0 $ 0, ",,@ $ 0, G W, ^ = ^",,^I. ap = ^q = ^ Z/r. I `s = t = " I ^0 W 02" ^q ^0 ^q = " I ^ u ZZ W /r ^ W. Eigendecompositionof sample covariance matrix: t = bscsbs W estimates of eigenvalues and eigenvectors. l 0 $ 3 = h 0 ]"/& ^3 a W b 0. js 0 = lv 0 $ ",,lv 0 $ I W = h v 0 ]"/& ^ ^qz W W bs 0, if hv 0 > 0. hv 0 = 0, lv 0 $ 3 is arbitrary.

19 KL-GP model Fit independent GP models to the data lv 0 $ ",,lv 0 $ I,7 = 1,,Y. Interpolation $ 3, y = kz y B G 02" hv 0 lv 0 $ 3 ;{ 0 y. Orthonormal eigenvectors (the b 0 s) are unique only up to a change in sign if the eigenvalues (the h 0 ) are unique (no duplicity). Changing the sign of b 0 and bs 0 leads to a change in sign of l 0 and lv 0 but no change in model predictions. Leads to essentially the same PCA approach used by Higdon et al. (2008) and Fricker et al. (2013), but these authors did not give a statistical model for the procedure.

20 KL-GP model The mean square convergence rates of `sand ap are both r ]" under increasing domain asymptotics. Small sample performance in estimating aand `can be poor. However, due to interpolation property, prediction performance of KL-GP model is good even when sample size is small. Computationally efficient for large Ybecause we only need to compute the eigendecompositionof tonce and fit a small number of independent GP models with rdata points. For standard GP model, need to compute the Y Y matrix [ " ]" many times when optimizing the likelihood.

21 Proposed model Dirichlet boundary and initial conditions are defined on a subset of the space-time boundary. Let the boundary nodes be denoted by B = ~ ",,~. Then, the Dirichlet boundary and initial conditions can be written compactly as? $,, = $,, $ K,, B M. Note that Kis an uncountable set cannot update standard GP model with this information.

22 Inverse distance interpolator of boundary and initial conditions Use an inverse distance interpolator of Dirichlet boundary and initial conditions $,, = & 02" $,~ 0 / ƒ,,~ 0 / 02" 1/ & ƒ,,~ 0, where ƒ is a distance metric with parameter h: & ƒ,,, = & 02" ( 0 ( 0ˆ B h &. Select h by minimizing sum of squared difference between the interpolator and the experiment data, i.e., values of? $,, observed on H M.

23 Proposed model (Modified KL-GP) Model the difference between the data and this interpolator with the KL- GP $,, =? $,, $,,. Proposed model $,, B $,,. $,, B $,, =? $,, = $,, $ K,, B, i.e., it satisfies the Dirichlet boundary and initial conditions. Standard GP/ KL-GP models do not. Use of $,, is reasonable even though the data points for this interpolator is only at parts of the boundary (large portions of the spacetime domain without interpolation points) because $,, is a convex combination of the values $,~ ",, $,~ won t give unreasonable values. ( ",0, = 30 B 5( ", ( ",1, = 35 5( "

24 Example: Electromagnetic heating of a tissue containing tumor Heating of a tissue containing tumor subjected to an electromagnetic field, which has applications in cancer treatment via hyperthermia (Thiebaut and Lemonnier, 2002; Lv et al., 2005), can be modeled via the Pennesequation and the potential equation. Objective: find conditions under which the temperature in the tumor exceeds 42 and the temperature in the healthy tissue does not exceed 42. PennesEq: 2h B Q /2 1 & & B U = 0 Potential Eq: Š 1 = 0 We shall consider only steady state, time-independent case.

25 Example: Electromagnetic heating of a tissue containing tumor D " is the frequency of the electromagnetic wave. Q D " and Š D " are the conductivity and dielectric permittivity, which are functions of D ". Cole-Cole models: Q Œ Ž = 1/ 3.31 B ( )/ 1 B D " / )*, Q š = 1/ 1.94 B ( )/ 1 B D " / ). For healthy tissue: Q D " = real Q Œ Ž For healthy tissue: Š D " = imag Q Œ Ž. / 2ŸD " Similarly for tumor.

26 Example: Electromagnetic heating of a tissue containing tumor Spatial domain and mesh Tumor represented by red square Electrodes represented by two thick black lines. Rest of the domain are healthy tissue. D & =potential difference of electrodes D ) =temperature at top boundary, D * =temperature at bottom boundary D,D =thermal conductivity of healthy tissue and tumor D,D =value of 2h (product of perfusion rate and volumetric specific heat of blood) for healthy tissue and tumor Ranges of variables in experiment: D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 Minimum Maximum

27 Example: Electromagnetic heating of a tissue containing tumor Inverse distance interpolator $, of Dirichlet boundary condition depends on D ) and D * but not on other D 0 s. Left figure plots $, when D ) = 36 and D * = 28.

28 Example: Electromagnetic heating of a tissue containing tumor Proposed model= Modified KL-GP

29 Matthias Tan Thank you!

Non-invasive Thermometry for the Thermal. a Computational Methodology. Ablation of Liver Tumor: M. E. Mognaschi, A. Savini

Non-invasive Thermometry for the Thermal. a Computational Methodology. Ablation of Liver Tumor: M. E. Mognaschi, A. Savini Non-invasive Thermometry for the Thermal Ablation of Liver Tumor: a Computational Methodology V. D Ambrosio *, P. Di Barba, F. Dughiero *, M. E. Mognaschi, A. Savini * Department of Electrical Engineering

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

Bayesian Dynamic Linear Modelling for. Complex Computer Models

Bayesian Dynamic Linear Modelling for. Complex Computer Models Bayesian Dynamic Linear Modelling for Complex Computer Models Fei Liu, Liang Zhang, Mike West Abstract Computer models may have functional outputs. With no loss of generality, we assume that a single computer

More information

Lecture 18 Finite Element Methods (FEM): Functional Spaces and Splines. Songting Luo. Department of Mathematics Iowa State University

Lecture 18 Finite Element Methods (FEM): Functional Spaces and Splines. Songting Luo. Department of Mathematics Iowa State University Lecture 18 Finite Element Methods (FEM): Functional Spaces and Splines Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Draft Songting

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

A Novel Vibration-Based Two-Stage Bayesian System Identification Method

A Novel Vibration-Based Two-Stage Bayesian System Identification Method A Novel Vibration-Based Two-Stage Bayesian System Identification Method *Feng-Liang Zhang 1) and Siu-Kui Au 2) 1) Research Institute of Structural Engineering and isaster Reduction, Tongji University,

More information

4 Derivations of the Discrete-Time Kalman Filter

4 Derivations of the Discrete-Time Kalman Filter Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof N Shimkin 4 Derivations of the Discrete-Time

More information

Solving the stochastic steady-state diffusion problem using multigrid

Solving the stochastic steady-state diffusion problem using multigrid IMA Journal of Numerical Analysis (2007) 27, 675 688 doi:10.1093/imanum/drm006 Advance Access publication on April 9, 2007 Solving the stochastic steady-state diffusion problem using multigrid HOWARD ELMAN

More information

arxiv: v2 [math.na] 5 Dec 2013

arxiv: v2 [math.na] 5 Dec 2013 ACTIVE SUBSPACE METHODS IN THEORY AND PRACTICE: APPLICATIONS TO KRIGING SURFACES PAUL G. CONSTANTINE, ERIC DOW, AND QIQI WANG arxiv:1304.2070v2 [math.na 5 Dec 2013 Abstract. Many multivariate functions

More information

A Numerical Study on. Microwave Coagulation Therapy

A Numerical Study on. Microwave Coagulation Therapy Applied Mathematical Sciences, Vol. 7, 2013, no. 104, 5151-5164 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37392 A Numerical Study on Microwave Coagulation Therapy Amy J. Liu, Hong

More information

ADAPTIVE SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS WITH APPLICATION TO HYPERTHERMIA TREATMENTS

ADAPTIVE SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS WITH APPLICATION TO HYPERTHERMIA TREATMENTS ADAPTIVE SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS WITH APPLICATION TO HYPERTHERMIA TREATMENTS Bodo Erdmann, Jens Lang, Martin Seebaß Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 14195

More information

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT

GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT GRAPH SIGNAL PROCESSING: A STATISTICAL VIEWPOINT Cha Zhang Joint work with Dinei Florêncio and Philip A. Chou Microsoft Research Outline Gaussian Markov Random Field Graph construction Graph transform

More information

Parameter Selection Techniques and Surrogate Models

Parameter Selection Techniques and Surrogate Models Parameter Selection Techniques and Surrogate Models Model Reduction: Will discuss two forms Parameter space reduction Surrogate models to reduce model complexity Input Representation Local Sensitivity

More information

Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition Theddeus T. Akano, Omotayo A. Fakinlede Abstract The modelling of physical phenomena, such as the earth s free oscillations,

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides

Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Lecture 16: Small Sample Size Problems (Covariance Estimation) Many thanks to Carlos Thomaz who authored the original version of these slides Intelligent Data Analysis and Probabilistic Inference Lecture

More information

Notes on basis changes and matrix diagonalization

Notes on basis changes and matrix diagonalization Notes on basis changes and matrix diagonalization Howard E Haber Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 April 17, 2017 1 Coordinates of vectors and matrix

More information

Midterm. Introduction to Machine Learning. CS 189 Spring Please do not open the exam before you are instructed to do so.

Midterm. Introduction to Machine Learning. CS 189 Spring Please do not open the exam before you are instructed to do so. CS 89 Spring 07 Introduction to Machine Learning Midterm Please do not open the exam before you are instructed to do so. The exam is closed book, closed notes except your one-page cheat sheet. Electronic

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS First the X, then the AR, finally the MA Jan C. Willems, K.U. Leuven Workshop on Observation and Estimation Ben Gurion University, July 3, 2004 p./2 Joint

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

Methods for estimating the diagonal of matrix. functions. functions. Jesse Laeuchli Andreas Stathopoulos CSC 2016

Methods for estimating the diagonal of matrix. functions. functions. Jesse Laeuchli Andreas Stathopoulos CSC 2016 Jesse Laeuchli Andreas Stathopoulos CSC 216 1 / 24 The Problem Given a large A, and a function f, find diag(f(a)),or trace(f(a)) = n i=1 f(a) ii = n i=1 f(λ i) Some important examples of f f (A) = A 1

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations

Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Ensemble Kalman filter assimilation of transient groundwater flow data via stochastic moment equations Alberto Guadagnini (1,), Marco Panzeri (1), Monica Riva (1,), Shlomo P. Neuman () (1) Department of

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

On the positivity of linear weights in WENO approximations. Abstract

On the positivity of linear weights in WENO approximations. Abstract On the positivity of linear weights in WENO approximations Yuanyuan Liu, Chi-Wang Shu and Mengping Zhang 3 Abstract High order accurate weighted essentially non-oscillatory (WENO) schemes have been used

More information

QUANTIZATION FOR DISTRIBUTED ESTIMATION IN LARGE SCALE SENSOR NETWORKS

QUANTIZATION FOR DISTRIBUTED ESTIMATION IN LARGE SCALE SENSOR NETWORKS QUANTIZATION FOR DISTRIBUTED ESTIMATION IN LARGE SCALE SENSOR NETWORKS Parvathinathan Venkitasubramaniam, Gökhan Mergen, Lang Tong and Ananthram Swami ABSTRACT We study the problem of quantization for

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Sum-Power Iterative Watefilling Algorithm

Sum-Power Iterative Watefilling Algorithm Sum-Power Iterative Watefilling Algorithm Daniel P. Palomar Hong Kong University of Science and Technolgy (HKUST) ELEC547 - Convex Optimization Fall 2009-10, HKUST, Hong Kong November 11, 2009 Outline

More information

A Vector-Space Approach for Stochastic Finite Element Analysis

A Vector-Space Approach for Stochastic Finite Element Analysis A Vector-Space Approach for Stochastic Finite Element Analysis S Adhikari 1 1 Swansea University, UK CST2010: Valencia, Spain Adhikari (Swansea) Vector-Space Approach for SFEM 14-17 September, 2010 1 /

More information

Introduction to emulators - the what, the when, the why

Introduction to emulators - the what, the when, the why School of Earth and Environment INSTITUTE FOR CLIMATE & ATMOSPHERIC SCIENCE Introduction to emulators - the what, the when, the why Dr Lindsay Lee 1 What is a simulator? A simulator is a computer code

More information

Feb 21 and 25: Local weighted least squares: Quadratic loess smoother

Feb 21 and 25: Local weighted least squares: Quadratic loess smoother Feb 1 and 5: Local weighted least squares: Quadratic loess smoother An example of weighted least squares fitting of data to a simple model for the purposes of simultaneous smoothing and interpolation is

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation

Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation Won Chang Post Doctoral Scholar, Department of Statistics, University of Chicago Oct 15, 2014 Thesis Advisors: Murali

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015

Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015 Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015 A good reference is Global Sensitivity Analysis: The Primer. Saltelli, et al. (2008) Paul Constantine Colorado School of Mines

More information

A brief introduction to finite element methods

A brief introduction to finite element methods CHAPTER A brief introduction to finite element methods 1. Two-point boundary value problem and the variational formulation 1.1. The model problem. Consider the two-point boundary value problem: Given a

More information

Monitoring Wafer Geometric Quality using Additive Gaussian Process

Monitoring Wafer Geometric Quality using Additive Gaussian Process Monitoring Wafer Geometric Quality using Additive Gaussian Process Linmiao Zhang 1 Kaibo Wang 2 Nan Chen 1 1 Department of Industrial and Systems Engineering, National University of Singapore 2 Department

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

Stochastic Solvers for the Euler Equations

Stochastic Solvers for the Euler Equations 43rd AIAA Aerospace Sciences Meeting and Exhibit 1-13 January 5, Reno, Nevada 5-873 Stochastic Solvers for the Euler Equations G. Lin, C.-H. Su and G.E. Karniadakis Division of Applied Mathematics Brown

More information

Linear Algebra in Computer Vision. Lecture2: Basic Linear Algebra & Probability. Vector. Vector Operations

Linear Algebra in Computer Vision. Lecture2: Basic Linear Algebra & Probability. Vector. Vector Operations Linear Algebra in Computer Vision CSED441:Introduction to Computer Vision (2017F Lecture2: Basic Linear Algebra & Probability Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Mathematics in vector space Linear

More information

ACTIVE SUBSPACE METHODS IN THEORY AND PRACTICE: APPLICATIONS TO KRIGING SURFACES

ACTIVE SUBSPACE METHODS IN THEORY AND PRACTICE: APPLICATIONS TO KRIGING SURFACES ACTIVE SUBSPACE METHODS IN THEORY AND PRACTICE: APPLICATIONS TO KRIGING SURFACES PAUL G. CONSTANTINE, ERIC DOW, AND QIQI WANG Abstract. Many multivariate functions encountered in practical engineering

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA Introduction to Finite and Spectral Element Methods Using MATLAB Second Edition C. Pozrikidis University of Massachusetts Amherst, USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

Lecture 3. Jan C. Willems. University of Leuven, Belgium. Minicourse ECC 2003 Cambridge, UK, September 2, 2003

Lecture 3. Jan C. Willems. University of Leuven, Belgium. Minicourse ECC 2003 Cambridge, UK, September 2, 2003 Lecture 3 The ELIMINATION Problem Jan C. Willems University of Leuven, Belgium Minicourse ECC 2003 Cambridge, UK, September 2, 2003 Lecture 3 The ELIMINATION Problem p.1/22 Problematique Develop a theory

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Sliding Modes in Control and Optimization

Sliding Modes in Control and Optimization Vadim I. Utkin Sliding Modes in Control and Optimization With 24 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Parti. Mathematical Tools 1

More information

Uncertainty Quantification in Discrete Fracture Network Models

Uncertainty Quantification in Discrete Fracture Network Models Uncertainty Quantification in Discrete Fracture Network Models Claudio Canuto Dipartimento di Scienze Matematiche, Politecnico di Torino claudio.canuto@polito.it Joint work with Stefano Berrone, Sandra

More information

SURROGATE PREPOSTERIOR ANALYSES FOR PREDICTING AND ENHANCING IDENTIFIABILITY IN MODEL CALIBRATION

SURROGATE PREPOSTERIOR ANALYSES FOR PREDICTING AND ENHANCING IDENTIFIABILITY IN MODEL CALIBRATION International Journal for Uncertainty Quantification, ():xxx xxx, 0 SURROGATE PREPOSTERIOR ANALYSES FOR PREDICTING AND ENHANCING IDENTIFIABILITY IN MODEL CALIBRATION Zhen Jiang, Daniel W. Apley, & Wei

More information

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2 Index advection equation, 29 in three dimensions, 446 advection-diffusion equation, 31 aluminum, 200 angle between two vectors, 58 area integral, 439 automatic step control, 119 back substitution, 604

More information

Information Propagation Analysis of Social Network Using the Universality of Random Matrix

Information Propagation Analysis of Social Network Using the Universality of Random Matrix Information Propagation Analysis of Social Network Using the Universality of Random Matrix Yusuke Sakumoto, Tsukasa Kameyama, Chisa Takano and Masaki Aida Tokyo Metropolitan University, 6-6 Asahigaoka,

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Numerical Analysis of Electromagnetic Fields

Numerical Analysis of Electromagnetic Fields Pei-bai Zhou Numerical Analysis of Electromagnetic Fields With 157 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Part 1 Universal Concepts

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Fixed-domain Asymptotics of Covariance Matrices and Preconditioning

Fixed-domain Asymptotics of Covariance Matrices and Preconditioning Fixed-domain Asymptotics of Covariance Matrices and Preconditioning Jie Chen IBM Thomas J. Watson Research Center Presented at Preconditioning Conference, August 1, 2017 Jie Chen (IBM Research) Covariance

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

Reliability Theory of Dynamically Loaded Structures (cont.)

Reliability Theory of Dynamically Loaded Structures (cont.) Outline of Reliability Theory of Dynamically Loaded Structures (cont.) Probability Density Function of Local Maxima in a Stationary Gaussian Process. Distribution of Extreme Values. Monte Carlo Simulation

More information

Dipartimento di Scienze Matematiche

Dipartimento di Scienze Matematiche Exploiting parallel computing in Discrete Fracture Network simulations: an inherently parallel optimization approach Stefano Berrone stefano.berrone@polito.it Team: Matìas Benedetto, Andrea Borio, Claudio

More information

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations

A Non-Intrusive Polynomial Chaos Method For Uncertainty Propagation in CFD Simulations An Extended Abstract submitted for the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada January 26 Preferred Session Topic: Uncertainty quantification and stochastic methods for CFD A Non-Intrusive

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Previously Monte Carlo Integration

Previously Monte Carlo Integration Previously Simulation, sampling Monte Carlo Simulations Inverse cdf method Rejection sampling Today: sampling cont., Bayesian inference via sampling Eigenvalues and Eigenvectors Markov processes, PageRank

More information

Applying Bayesian Estimation to Noisy Simulation Optimization

Applying Bayesian Estimation to Noisy Simulation Optimization Applying Bayesian Estimation to Noisy Simulation Optimization Geng Deng Michael C. Ferris University of Wisconsin-Madison INFORMS Annual Meeting Pittsburgh 2006 Simulation-based optimization problem Computer

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

A Stochastic Collocation based. for Data Assimilation

A Stochastic Collocation based. for Data Assimilation A Stochastic Collocation based Kalman Filter (SCKF) for Data Assimilation Lingzao Zeng and Dongxiao Zhang University of Southern California August 11, 2009 Los Angeles Outline Introduction SCKF Algorithm

More information

variability and their application for environment protection

variability and their application for environment protection Main factors of climate variability and their application for environment protection problems in Siberia Vladimir i Penenko & Elena Tsvetova Institute of Computational Mathematics and Mathematical Geophysics

More information

Mathematics for Economics and Finance

Mathematics for Economics and Finance Mathematics for Economics and Finance Michael Harrison and Patrick Waldron B 375482 Routledge Taylor & Francis Croup LONDON AND NEW YORK Contents List of figures ix List of tables xi Foreword xiii Preface

More information

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 21 Symmetric matrices An n n

More information

Advanced Engineering Statistics - Section 5 - Jay Liu Dept. Chemical Engineering PKNU

Advanced Engineering Statistics - Section 5 - Jay Liu Dept. Chemical Engineering PKNU Advanced Engineering Statistics - Section 5 - Jay Liu Dept. Chemical Engineering PKNU Least squares regression What we will cover Box, G.E.P., Use and abuse of regression, Technometrics, 8 (4), 625-629,

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

OPTIMAL DESIGN INPUTS FOR EXPERIMENTAL CHAPTER 17. Organization of chapter in ISSO. Background. Linear models

OPTIMAL DESIGN INPUTS FOR EXPERIMENTAL CHAPTER 17. Organization of chapter in ISSO. Background. Linear models CHAPTER 17 Slides for Introduction to Stochastic Search and Optimization (ISSO)by J. C. Spall OPTIMAL DESIGN FOR EXPERIMENTAL INPUTS Organization of chapter in ISSO Background Motivation Finite sample

More information

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION P. DOSTERT, Y. EFENDIEV, AND T.Y. HOU Abstract. In this paper, we study multiscale

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

Circular Pseudo-Point Approximations for Scaling Gaussian Processes

Circular Pseudo-Point Approximations for Scaling Gaussian Processes Circular Pseudo-Point Approximations for Scaling Gaussian Processes Will Tebbutt Invenia Labs, Cambridge, UK will.tebbutt@invenialabs.co.uk Thang D. Bui University of Cambridge tdb4@cam.ac.uk Richard E.

More information

Optimizing Gaia s Photometric System: Thoughts on distance measure and figure of merit

Optimizing Gaia s Photometric System: Thoughts on distance measure and figure of merit Optimizing Gaia s Photometric System: Thoughts on distance measure and figure of merit L. Lindegren GAIA LL 047 (11 October 2003) Abstract. This note summarizes my considerations on certain aspects of

More information

Resampling techniques for statistical modeling

Resampling techniques for statistical modeling Resampling techniques for statistical modeling Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Resampling techniques p.1/33 Beyond the empirical error

More information

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments

Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Sequential Importance Sampling for Rare Event Estimation with Computer Experiments Brian Williams and Rick Picard LA-UR-12-22467 Statistical Sciences Group, Los Alamos National Laboratory Abstract Importance

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION ABSTRACT Presented in this paper is an approach to fault diagnosis based on a unifying review of linear Gaussian models. The unifying review draws together different algorithms such as PCA, factor analysis,

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Matrix square root and interpolation spaces

Matrix square root and interpolation spaces Matrix square root and interpolation spaces Mario Arioli and Daniel Loghin m.arioli@rl.ac.uk STFC-Rutherford Appleton Laboratory, and University of Birmingham Sparse Days,CERFACS, Toulouse, 2008 p.1/30

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Hierarchical sparse Bayesian learning for structural health monitoring. with incomplete modal data

Hierarchical sparse Bayesian learning for structural health monitoring. with incomplete modal data Hierarchical sparse Bayesian learning for structural health monitoring with incomplete modal data Yong Huang and James L. Beck* Division of Engineering and Applied Science, California Institute of Technology,

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

ERROR CONVERGENCE ANALYSIS FOR LOCAL HYPERTHERMIA APPLICATIONS

ERROR CONVERGENCE ANALYSIS FOR LOCAL HYPERTHERMIA APPLICATIONS Journal of Engineering Science and Technology Vol. 11, No. 1 (2016) 060-067 School of Engineering, Taylor s University ERROR CONVERGENCE ANALYSIS FOR LOCAL HYPERTHERMIA APPLICATIONS NEERU MALHOTRA 1, *,

More information