Solving DC Programs that Promote Group 1-Sparsity

Size: px
Start display at page:

Download "Solving DC Programs that Promote Group 1-Sparsity"

Transcription

1 Solving DC Programs that Promote Group 1-Sparsity Ernie Esser Contains joint work with Xiaoqun Zhang, Yifei Lou and Jack Xin SIAM Conference on Imaging Science Hong Kong Baptist University May / 22

2 A General Convex Problem min u N F i=1 F i (A i u b i )+G(u) s.t. A i u = b i, i = N F +1,..., N (P) F i : R m i (, ], G : R m (, ] convex Can include indicator functions for convex sets dened by { 0 u C ι C (u) = otherwise 2 / 22

3 Algorithms Many primal dual methods can eectively solve (P) as long as the functions F i, G or their conjugates F i, G have simple proximal mappings or have Lipschitz continuous gradients: Alternating Direction Method of Multipliers (ADMM) Split Inexact Uzawa [Zhang, Burger, Osher 2010] Modied PDHG [Chambolle, Pock 2010], [He, Yuan 2012], [Esser, Zhang, Chan 2010] Bregman ADMM [Wang, Banerjee 2013] Accelerated Linearized ADMM [Ouyang, Chen, Lan, Pasiliao 2014] Bregman Operator Splitting (BOS) [Zhang, Burger, Bresson, Osher 2010] BOSVS [Chen, Hager, Yashtini, Ye, Zhang 2012] What if G is not convex? 3 / 22

4 Dierence of Convex, Majorization/Minimization Strategy Linearize the nonconvex part and possibly add and subtract a strongly convex term to dene G(u, u n ) G(u) such that G is strongly convex and G(u n, u n ) = G(u n ) Then solve a sequence of convex problems u n+1 = arg min u N F i=1 s.t. A i u = b i, F i (A i u b i ) + G(u, u n ) i = N F + 1,..., N 4 / 22

5 Nonconvex Penalties to Promote Group 1-Sparsity An interesting class of applications are problems requiring group 1-sparsity such as x 1 µ min x 2 b [ ] A 1... A N. x N s.t. x i 0, x i 0 1 One eective strategy is to replace x i 0 1 with γ( x i 1 x i 2 ) or γ( x i 1 x i 2 ) and use the DC majorization/minimization strategy. Details in A Method for Finding Structured Sparse Solutions to Non-negative Least Squares Problems with Applications, with Yifei Lou and Jack Xin, / 22

6 A Binary Group 1-Sparsity Model Many applications additionally require the elements of x i to be 0 or 1. A dierence of convex model for this is to constrain each x i to the unit simplex x S := {x : x 0, x i 1 = 1} i = 1,..., N and minimize a concave quadratic γ x 2. Some imaging applications of binary labeling models: Image segmentation Nonlocal patch-based image inpainting Linear unmixing for hyperspectral images Point matching for image registration Phase Unwrapping 6 / 22

7 DC versus Direct Application of Convex Optimization Methods The dierence of convex approach can guarantee limit points are stationary points. If the convex subproblem is expensive, solving a sequence of them may cost too much. Direct application of convex optimization methods such as modied PDHG to nonconvex problems lacks convergence guarantees in general but works well for some applications. 7 / 22

8 Modied PDHG To simplify notation, let F i = ι {0} for i = N F + 1,..., N and consider N min F i (A i u b i ) + G(u) u F i (A i u b i ) = F i i=1 (A i u b i ) = sup p i, A i u b i F i (p i ) p i Find saddle point of min u sup F (p)+ p, Au b +G(u) by iterating p u k+1 = arg min u G(u) A T p k, u + 1 2α u uk 2 M 1 p k+1 = arg min p F (p) + p, A(2u k+1 u k ) b + 1 2δ p pk 2 where αδ 1 AMA T (Can also derive via linearized ADMM or SIU) 8 / 22

9 Modied PDHG for Binary Labeling Problems Suppose we want u to be 1-sparse and binary. Let G(u) = ι S (u) γ u 2 and let M = γ 0 2αγ I γ 0 (0, 1) ) Then u k+1 1 = Π S (( )(u k αma T p k ) 1 γ 0 The only change in the nonconvex version is to lengthen u k αma T p k slightly before projecting onto the simplex. This empirically works if γ 0 is small and γ is large. If not, iterates can oscillate. More algorithm details are in Nonlocal Patch-Based Imaging Inpainting Through Minimization of a Sparsity Promoting Nonconvex Functional with Xiaoqun Zhang (preprint). 9 / 22

10 Nonconvex Proximal Point Interpretation Let M = I and denote the normal cone of S by N S (u) = {s : s, v u 0 for all v S}. Then ( ) ( 0 F ) [ (p k+1 ) + Au k+1 b 1 ] ( ) 0 N S (u k+1 ) A T p k+1 2γu k+1 + δ I A p k+1 p k A T u k+1 u k where αδ 1 A T A. See [He, Yuan 2012] for the convex case. 1 α 10 / 22

11 Example: Phase Unwrapping d = (h mod 2π) + noise Assuming h is smooth, recover it from d. Example application: Interferometric Synthetic Aperture Radar for generating elevation maps (see [Richards 2007]) Measure wrapped phase at two nearby SAR apertures Obtain wrapped phase dierence by wrapping dierence of wrapped phases Use trigonometry to interpret as measurements of relative height modulo 2πa for some factor a 11 / 22

12 Numerical Experiment: Face Unwrapping Original image Original image as surface Wrapped image missing stripe With noise (SNR = 16.9) 12 / 22

13 Proposed Model unknown u = (x, y, s) x - denoised wrapped image y - unwrapped image s - 3 labels per edge X i - selects ith label from s s 0, X 1 s + X 2 s + X 3 s = 1 want s ij {0, 1} D - discrete gradient X 1 s - 1 if no jump X 2 s - 1 if jump by 2πa X 3 s - 1 if jump by 2πa X d - crops to where data dened X D - where dierences dened X 0 - reference no jump region min λ X 1s β x,y,s 2 Dy 2 + ι S (s) γ s 2 X d x d 2 ɛ Dy (π η)a X D Dy = X D Dx + 2πa(X 3 s X 2 s) X 0 y = X 0 x 13 / 22

14 Parameters 1 γ = 200, γ 0 =.002, β =.1, λ = 100, αδ < AMA T Let M = I I M 3 I, M 3 = γ 0 (For the convex case, let γ = 0 and dene M 3 independently.) ɛ and η for the constraints X d x d 2 ɛ and Dy (π η)a reect assumptions about the noise and sampling respectively. 2αγ 14 / 22

15 Primal Iterates x k+1 = x k + α( X T d pk 3 D T XD T pk 4 X T 0 pk 5 ) y k+1 = y k + α( D T p k 2 + D T XD T pk 4 + X T 0 pk 5 ) ) s k+1 1 = Π S (( )(s k αm 3 X T 1 1 γ pk 1 + 2πaαM 3 (X T 2 X T 3 )p k 4 ) 0 15 / 22

16 Dual Iterates p k+1 1 = Π 1(p k 1 + δx 1 (2s k+1 s k ) δ) p k+1 2 = p k 2 + δd(2y k+1 y k ) δπ a(π η) ( ) p k 2 + δd(2y k+1 y k ) β + δ Note this combines β 2 z 2 + ι (π η)a(z) by observing it is the conjugate of the Huber norm. p k+1 3 = p k 3 + δ(x d (2x k+1 x k ) d) Π 2 ɛδ(p k 3 + δ(x d (2x k+1 x k ) d)) p k+1 4 = p 4 δ(x D D(2y k+1 y k 2x k+1 + x k ) + 2πa(X 2 X 3 )(2s k+1 s k )) p k+1 5 = p k 5 δ(x 0 (2y k+1 y k 2x k+1 + x k )) 16 / 22

17 Unwrapped Images Convex, no noise Convex, with noise Nonconvex, no noise Nonconvex, with noise 17 / 22

18 Recovered 1D Slice Convex, no noise Convex, with noise Nonconvex, no noise Nonconvex, with noise 18 / 22

19 Recovery Error Convex, no noise Convex, with noise Nonconvex, no noise Nonconvex, with noise 19 / 22

20 Estimated Jump Set Convex, no noise Convex, with noise Nonconvex, no noise Nonconvex, with noise 20 / 22

21 Sorted 'no jump' Labels Convex, no noise Convex, with noise Nonconvex, no noise Nonconvex, with noise 21 / 22

22 Conclusions and Open Questions Modied PDHG can empirically nd good local minima for some nonconvex problems where the nonconvexity is of the form of ι S (s) γ s 2 (maximizing the l 2 norm of s over a unit simplex). An application to 2D phase unwrapping was demonstrated. Are there conditions on the parameters that can guarantee at least that limit points are stationary points? 22 / 22

Adaptive Primal Dual Optimization for Image Processing and Learning

Adaptive Primal Dual Optimization for Image Processing and Learning Adaptive Primal Dual Optimization for Image Processing and Learning Tom Goldstein Rice University tag7@rice.edu Ernie Esser University of British Columbia eesser@eos.ubc.ca Richard Baraniuk Rice University

More information

A General Framework for a Class of Primal-Dual Algorithms for TV Minimization

A General Framework for a Class of Primal-Dual Algorithms for TV Minimization A General Framework for a Class of Primal-Dual Algorithms for TV Minimization Ernie Esser UCLA 1 Outline A Model Convex Minimization Problem Main Idea Behind the Primal Dual Hybrid Gradient (PDHG) Method

More information

Accelerated primal-dual methods for linearly constrained convex problems

Accelerated primal-dual methods for linearly constrained convex problems Accelerated primal-dual methods for linearly constrained convex problems Yangyang Xu SIAM Conference on Optimization May 24, 2017 1 / 23 Accelerated proximal gradient For convex composite problem: minimize

More information

Primal Dual Methods in Imaging Science

Primal Dual Methods in Imaging Science Primal Dual Methods in Imaging Science Ernie Esser UC Irvine Joint work with Xiaoqun Zhang (Shanghai Jiaotong University) and Tony Chan (HKUST) ICIAM 2011 1 Outline Motivation to Study Primal Dual Methods

More information

A Primal-dual Three-operator Splitting Scheme

A Primal-dual Three-operator Splitting Scheme Noname manuscript No. (will be inserted by the editor) A Primal-dual Three-operator Splitting Scheme Ming Yan Received: date / Accepted: date Abstract In this paper, we propose a new primal-dual algorithm

More information

A GENERAL FRAMEWORK FOR A CLASS OF FIRST ORDER PRIMAL-DUAL ALGORITHMS FOR CONVEX OPTIMIZATION IN IMAGING SCIENCE

A GENERAL FRAMEWORK FOR A CLASS OF FIRST ORDER PRIMAL-DUAL ALGORITHMS FOR CONVEX OPTIMIZATION IN IMAGING SCIENCE A GENERAL FRAMEWORK FOR A CLASS OF FIRST ORDER PRIMAL-DUAL ALGORITHMS FOR CONVEX OPTIMIZATION IN IMAGING SCIENCE ERNIE ESSER XIAOQUN ZHANG TONY CHAN Abstract. We generalize the primal-dual hybrid gradient

More information

Coordinate Update Algorithm Short Course Operator Splitting

Coordinate Update Algorithm Short Course Operator Splitting Coordinate Update Algorithm Short Course Operator Splitting Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 25 Operator splitting pipeline 1. Formulate a problem as 0 A(x) + B(x) with monotone operators

More information

A GENERAL FRAMEWORK FOR A CLASS OF FIRST ORDER PRIMAL-DUAL ALGORITHMS FOR TV MINIMIZATION

A GENERAL FRAMEWORK FOR A CLASS OF FIRST ORDER PRIMAL-DUAL ALGORITHMS FOR TV MINIMIZATION A GENERAL FRAMEWORK FOR A CLASS OF FIRST ORDER PRIMAL-DUAL ALGORITHMS FOR TV MINIMIZATION ERNIE ESSER XIAOQUN ZHANG TONY CHAN Abstract. We generalize the primal-dual hybrid gradient (PDHG) algorithm proposed

More information

Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization

Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization Hongchao Zhang hozhang@math.lsu.edu Department of Mathematics Center for Computation and Technology Louisiana State

More information

Sparse Optimization Lecture: Dual Methods, Part I

Sparse Optimization Lecture: Dual Methods, Part I Sparse Optimization Lecture: Dual Methods, Part I Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know dual (sub)gradient iteration augmented l 1 iteration

More information

Minimizing the Difference of L 1 and L 2 Norms with Applications

Minimizing the Difference of L 1 and L 2 Norms with Applications 1/36 Minimizing the Difference of L 1 and L 2 Norms with Department of Mathematical Sciences University of Texas Dallas May 31, 2017 Partially supported by NSF DMS 1522786 2/36 Outline 1 A nonconvex approach:

More information

Primal-dual fixed point algorithms for separable minimization problems and their applications in imaging

Primal-dual fixed point algorithms for separable minimization problems and their applications in imaging 1/38 Primal-dual fixed point algorithms for separable minimization problems and their applications in imaging Xiaoqun Zhang Department of Mathematics and Institute of Natural Sciences Shanghai Jiao Tong

More information

On Stochastic Primal-Dual Hybrid Gradient Approach for Compositely Regularized Minimization

On Stochastic Primal-Dual Hybrid Gradient Approach for Compositely Regularized Minimization On Stochastic Primal-Dual Hybrid Gradient Approach for Compositely Regularized Minimization Linbo Qiao, and Tianyi Lin 3 and Yu-Gang Jiang and Fan Yang 5 and Wei Liu 6 and Xicheng Lu, Abstract We consider

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems)

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Donghwan Kim and Jeffrey A. Fessler EECS Department, University of Michigan

More information

NONLOCAL PATCH-BASED IMAGE INPAINTING THROUGH MINIMIZATION OF A SPARSITY PROMOTING NONCONVEX FUNCTIONAL

NONLOCAL PATCH-BASED IMAGE INPAINTING THROUGH MINIMIZATION OF A SPARSITY PROMOTING NONCONVEX FUNCTIONAL NONLOCAL PATCH-BASED IMAGE INPAINTING THROUGH MINIMIZATION OF A SPARSITY PROMOTING NONCONVEX FUNCTIONAL ERNIE ESSER XIAOQUN ZHANG Abstract. We propose a convex model for nonlocal image inpainting that

More information

On convergence rate of the Douglas-Rachford operator splitting method

On convergence rate of the Douglas-Rachford operator splitting method On convergence rate of the Douglas-Rachford operator splitting method Bingsheng He and Xiaoming Yuan 2 Abstract. This note provides a simple proof on a O(/k) convergence rate for the Douglas- Rachford

More information

Distributed and Consensus Optimization for Non-smooth Image Reconstruction

Distributed and Consensus Optimization for Non-smooth Image Reconstruction J. Oper. Res. Soc. China (2015) 3:117 138 DOI 10.1007/s40305-015-0073-3 Distributed and Consensus Optimization for Non-smooth Image Reconstruction Xiao-Jing Ye Received: 10 October 2014 / Revised: 13 January

More information

An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems

An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems An Algorithmic Framework of Generalized Primal-Dual Hybrid Gradient Methods for Saddle Point Problems Bingsheng He Feng Ma 2 Xiaoming Yuan 3 January 30, 206 Abstract. The primal-dual hybrid gradient method

More information

First-order methods for structured nonsmooth optimization

First-order methods for structured nonsmooth optimization First-order methods for structured nonsmooth optimization Sangwoon Yun Department of Mathematics Education Sungkyunkwan University Oct 19, 2016 Center for Mathematical Analysis & Computation, Yonsei University

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

Asymmetric Cheeger cut and application to multi-class unsupervised clustering

Asymmetric Cheeger cut and application to multi-class unsupervised clustering Asymmetric Cheeger cut and application to multi-class unsupervised clustering Xavier Bresson Thomas Laurent April 8, 0 Abstract Cheeger cut has recently been shown to provide excellent classification results

More information

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong 2014 Workshop

More information

A General Framework for a Class of First Order Primal Dual Algorithms for Convex Optimization in Imaging Science

A General Framework for a Class of First Order Primal Dual Algorithms for Convex Optimization in Imaging Science A General Framework for a Class of First Order Primal Dual Algorithms for Convex Optimization in Imaging Science Ernie Esser (UCI) Georgia Tech Applied and Computational Mathematics Seminar 11-8-2010 Joint

More information

Variational Image Restoration

Variational Image Restoration Variational Image Restoration Yuling Jiao yljiaostatistics@znufe.edu.cn School of and Statistics and Mathematics ZNUFE Dec 30, 2014 Outline 1 1 Classical Variational Restoration Models and Algorithms 1.1

More information

A primal-dual fixed point algorithm for multi-block convex minimization *

A primal-dual fixed point algorithm for multi-block convex minimization * Journal of Computational Mathematics Vol.xx, No.x, 201x, 1 16. http://www.global-sci.org/jcm doi:?? A primal-dual fixed point algorithm for multi-block convex minimization * Peijun Chen School of Mathematical

More information

ADMM algorithm for demosaicking deblurring denoising

ADMM algorithm for demosaicking deblurring denoising ADMM algorithm for demosaicking deblurring denoising DANIELE GRAZIANI MORPHEME CNRS/UNS I3s 2000 route des Lucioles BP 121 93 06903 SOPHIA ANTIPOLIS CEDEX, FRANCE e.mail:graziani@i3s.unice.fr LAURE BLANC-FÉRAUD

More information

arxiv: v3 [math.oc] 29 Jun 2016

arxiv: v3 [math.oc] 29 Jun 2016 MOCCA: mirrored convex/concave optimization for nonconvex composite functions Rina Foygel Barber and Emil Y. Sidky arxiv:50.0884v3 [math.oc] 9 Jun 06 04.3.6 Abstract Many optimization problems arising

More information

Dual and primal-dual methods

Dual and primal-dual methods ELE 538B: Large-Scale Optimization for Data Science Dual and primal-dual methods Yuxin Chen Princeton University, Spring 2018 Outline Dual proximal gradient method Primal-dual proximal gradient method

More information

arxiv: v1 [cs.na] 29 Nov 2017

arxiv: v1 [cs.na] 29 Nov 2017 A fast nonconvex Compressed Sensing algorithm for highly low-sampled MR images reconstruction D. Lazzaro 1, E. Loli Piccolomini 1 and F. Zama 1 1 Department of Mathematics, University of Bologna, arxiv:1711.11075v1

More information

Primal-dual algorithms for the sum of two and three functions 1

Primal-dual algorithms for the sum of two and three functions 1 Primal-dual algorithms for the sum of two and three functions 1 Ming Yan Michigan State University, CMSE/Mathematics 1 This works is partially supported by NSF. optimization problems for primal-dual algorithms

More information

1 Sparsity and l 1 relaxation

1 Sparsity and l 1 relaxation 6.883 Learning with Combinatorial Structure Note for Lecture 2 Author: Chiyuan Zhang Sparsity and l relaxation Last time we talked about sparsity and characterized when an l relaxation could recover the

More information

Math 273a: Optimization Overview of First-Order Optimization Algorithms

Math 273a: Optimization Overview of First-Order Optimization Algorithms Math 273a: Optimization Overview of First-Order Optimization Algorithms Wotao Yin Department of Mathematics, UCLA online discussions on piazza.com 1 / 9 Typical flow of numerical optimization Optimization

More information

ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING

ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING YANGYANG XU Abstract. Motivated by big data applications, first-order methods have been extremely

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Sparse Regularization via Convex Analysis

Sparse Regularization via Convex Analysis Sparse Regularization via Convex Analysis Ivan Selesnick Electrical and Computer Engineering Tandon School of Engineering New York University Brooklyn, New York, USA 29 / 66 Convex or non-convex: Which

More information

arxiv: v3 [math.oc] 19 Oct 2017

arxiv: v3 [math.oc] 19 Oct 2017 Gradient descent with nonconvex constraints: local concavity determines convergence Rina Foygel Barber and Wooseok Ha arxiv:703.07755v3 [math.oc] 9 Oct 207 0.7.7 Abstract Many problems in high-dimensional

More information

A Tutorial on Primal-Dual Algorithm

A Tutorial on Primal-Dual Algorithm A Tutorial on Primal-Dual Algorithm Shenlong Wang University of Toronto March 31, 2016 1 / 34 Energy minimization MAP Inference for MRFs Typical energies consist of a regularization term and a data term.

More information

Multi-Block ADMM and its Convergence

Multi-Block ADMM and its Convergence Multi-Block ADMM and its Convergence Yinyu Ye Department of Management Science and Engineering Stanford University Email: yyye@stanford.edu We show that the direct extension of alternating direction method

More information

Convergence of Bregman Alternating Direction Method with Multipliers for Nonconvex Composite Problems

Convergence of Bregman Alternating Direction Method with Multipliers for Nonconvex Composite Problems Convergence of Bregman Alternating Direction Method with Multipliers for Nonconvex Composite Problems Fenghui Wang, Zongben Xu, and Hong-Kun Xu arxiv:40.8625v3 [math.oc] 5 Dec 204 Abstract The alternating

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information

A convex model for non-negative matrix factorization and dimensionality reduction on physical space

A convex model for non-negative matrix factorization and dimensionality reduction on physical space A convex model for non-negative matrix factorization and dimensionality reduction on physical space Ernie Esser Joint work with Michael Möller, Stan Osher, Guillermo Sapiro and Jack Xin University of California

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 XVI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 A slightly changed ADMM for convex optimization with three separable operators Bingsheng He Department of

More information

Contraction Methods for Convex Optimization and monotone variational inequalities No.12

Contraction Methods for Convex Optimization and monotone variational inequalities No.12 XII - 1 Contraction Methods for Convex Optimization and monotone variational inequalities No.12 Linearized alternating direction methods of multipliers for separable convex programming Bingsheng He Department

More information

ADMM and Fast Gradient Methods for Distributed Optimization

ADMM and Fast Gradient Methods for Distributed Optimization ADMM and Fast Gradient Methods for Distributed Optimization João Xavier Instituto Sistemas e Robótica (ISR), Instituto Superior Técnico (IST) European Control Conference, ECC 13 July 16, 013 Joint work

More information

Gauge optimization and duality

Gauge optimization and duality 1 / 54 Gauge optimization and duality Junfeng Yang Department of Mathematics Nanjing University Joint with Shiqian Ma, CUHK September, 2015 2 / 54 Outline Introduction Duality Lagrange duality Fenchel

More information

A Parallel Block-Coordinate Approach for Primal-Dual Splitting with Arbitrary Random Block Selection

A Parallel Block-Coordinate Approach for Primal-Dual Splitting with Arbitrary Random Block Selection EUSIPCO 2015 1/19 A Parallel Block-Coordinate Approach for Primal-Dual Splitting with Arbitrary Random Block Selection Jean-Christophe Pesquet Laboratoire d Informatique Gaspard Monge - CNRS Univ. Paris-Est

More information

Adaptive discretization and first-order methods for nonsmooth inverse problems for PDEs

Adaptive discretization and first-order methods for nonsmooth inverse problems for PDEs Adaptive discretization and first-order methods for nonsmooth inverse problems for PDEs Christian Clason Faculty of Mathematics, Universität Duisburg-Essen joint work with Barbara Kaltenbacher, Tuomo Valkonen,

More information

Optimal Linearized Alternating Direction Method of Multipliers for Convex Programming 1

Optimal Linearized Alternating Direction Method of Multipliers for Convex Programming 1 Optimal Linearized Alternating Direction Method of Multipliers for Convex Programming Bingsheng He 2 Feng Ma 3 Xiaoming Yuan 4 October 4, 207 Abstract. The alternating direction method of multipliers ADMM

More information

Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization

Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization Mathematical Programming manuscript No. (will be inserted by the editor) Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization Wei Bian Xiaojun Chen Yinyu Ye July

More information

Lecture: Smoothing.

Lecture: Smoothing. Lecture: Smoothing http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Smoothing 2/26 introduction smoothing via conjugate

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11 XI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11 Alternating direction methods of multipliers for separable convex programming Bingsheng He Department of Mathematics

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Proximal-Gradient Mark Schmidt University of British Columbia Winter 2018 Admin Auditting/registration forms: Pick up after class today. Assignment 1: 2 late days to hand in

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem Kangkang Deng, Zheng Peng Abstract: The main task of genetic regulatory networks is to construct a

More information

Bias-free Sparse Regression with Guaranteed Consistency

Bias-free Sparse Regression with Guaranteed Consistency Bias-free Sparse Regression with Guaranteed Consistency Wotao Yin (UCLA Math) joint with: Stanley Osher, Ming Yan (UCLA) Feng Ruan, Jiechao Xiong, Yuan Yao (Peking U) UC Riverside, STATS Department March

More information

arxiv: v1 [math.oc] 1 Jul 2016

arxiv: v1 [math.oc] 1 Jul 2016 Convergence Rate of Frank-Wolfe for Non-Convex Objectives Simon Lacoste-Julien INRIA - SIERRA team ENS, Paris June 8, 016 Abstract arxiv:1607.00345v1 [math.oc] 1 Jul 016 We give a simple proof that the

More information

Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of L 1 and L 2

Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of L 1 and L 2 Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of L and L 2 Yifei Lou, Penghang Yin, Qi He and Jack Xin Abstract We study analytical and numerical properties of the

More information

OWL to the rescue of LASSO

OWL to the rescue of LASSO OWL to the rescue of LASSO IISc IBM day 2018 Joint Work R. Sankaran and Francis Bach AISTATS 17 Chiranjib Bhattacharyya Professor, Department of Computer Science and Automation Indian Institute of Science,

More information

FAST ALTERNATING DIRECTION OPTIMIZATION METHODS

FAST ALTERNATING DIRECTION OPTIMIZATION METHODS FAST ALTERNATING DIRECTION OPTIMIZATION METHODS TOM GOLDSTEIN, BRENDAN O DONOGHUE, SIMON SETZER, AND RICHARD BARANIUK Abstract. Alternating direction methods are a common tool for general mathematical

More information

Introduction to Alternating Direction Method of Multipliers

Introduction to Alternating Direction Method of Multipliers Introduction to Alternating Direction Method of Multipliers Yale Chang Machine Learning Group Meeting September 29, 2016 Yale Chang (Machine Learning Group Meeting) Introduction to Alternating Direction

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

SPARSE SIGNAL RESTORATION. 1. Introduction

SPARSE SIGNAL RESTORATION. 1. Introduction SPARSE SIGNAL RESTORATION IVAN W. SELESNICK 1. Introduction These notes describe an approach for the restoration of degraded signals using sparsity. This approach, which has become quite popular, is useful

More information

arxiv: v4 [math.oc] 29 Jan 2018

arxiv: v4 [math.oc] 29 Jan 2018 Noname manuscript No. (will be inserted by the editor A new primal-dual algorithm for minimizing the sum of three functions with a linear operator Ming Yan arxiv:1611.09805v4 [math.oc] 29 Jan 2018 Received:

More information

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Davood Hajinezhad Iowa State University Davood Hajinezhad Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method 1 / 35 Co-Authors

More information

Accelerated Proximal Gradient Methods for Convex Optimization

Accelerated Proximal Gradient Methods for Convex Optimization Accelerated Proximal Gradient Methods for Convex Optimization Paul Tseng Mathematics, University of Washington Seattle MOPTA, University of Guelph August 18, 2008 ACCELERATED PROXIMAL GRADIENT METHODS

More information

arxiv: v1 [cs.it] 21 Feb 2013

arxiv: v1 [cs.it] 21 Feb 2013 q-ary Compressive Sensing arxiv:30.568v [cs.it] Feb 03 Youssef Mroueh,, Lorenzo Rosasco, CBCL, CSAIL, Massachusetts Institute of Technology LCSL, Istituto Italiano di Tecnologia and IIT@MIT lab, Istituto

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Convex Hodge Decomposition of Image Flows

Convex Hodge Decomposition of Image Flows Convex Hodge Decomposition of Image Flows Jing Yuan 1, Gabriele Steidl 2, Christoph Schnörr 1 1 Image and Pattern Analysis Group, Heidelberg Collaboratory for Image Processing, University of Heidelberg,

More information

Pavel Dvurechensky Alexander Gasnikov Alexander Tiurin. July 26, 2017

Pavel Dvurechensky Alexander Gasnikov Alexander Tiurin. July 26, 2017 Randomized Similar Triangles Method: A Unifying Framework for Accelerated Randomized Optimization Methods Coordinate Descent, Directional Search, Derivative-Free Method) Pavel Dvurechensky Alexander Gasnikov

More information

Complexity analysis of second-order algorithms based on line search for smooth nonconvex optimization

Complexity analysis of second-order algorithms based on line search for smooth nonconvex optimization Complexity analysis of second-order algorithms based on line search for smooth nonconvex optimization Clément Royer - University of Wisconsin-Madison Joint work with Stephen J. Wright MOPTA, Bethlehem,

More information

A Method for Finding Structured Sparse Solutions to Non-negative Least Squares Problems with Applications

A Method for Finding Structured Sparse Solutions to Non-negative Least Squares Problems with Applications A Method for Finding Structured Sparse Solutions to Non-negative Least Squares Problems with Applications Ernie Esser, Yifei Lou, Jack Xin Abstract Demixing problems in many areas such as hyperspectral

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

On the equivalence of the primal-dual hybrid gradient method and Douglas Rachford splitting

On the equivalence of the primal-dual hybrid gradient method and Douglas Rachford splitting Mathematical Programming manuscript No. (will be inserted by the editor) On the equivalence of the primal-dual hybrid gradient method and Douglas Rachford splitting Daniel O Connor Lieven Vandenberghe

More information

Adaptive Corrected Procedure for TVL1 Image Deblurring under Impulsive Noise

Adaptive Corrected Procedure for TVL1 Image Deblurring under Impulsive Noise Adaptive Corrected Procedure for TVL1 Image Deblurring under Impulsive Noise Minru Bai(x T) College of Mathematics and Econometrics Hunan University Joint work with Xiongjun Zhang, Qianqian Shao June 30,

More information

Adaptive Primal-Dual Hybrid Gradient Methods for Saddle-Point Problems

Adaptive Primal-Dual Hybrid Gradient Methods for Saddle-Point Problems Adaptive Primal-Dual Hybrid Gradient Methods for Saddle-Point Problems Tom Goldstein, Min Li, Xiaoming Yuan, Ernie Esser, Richard Baraniuk arxiv:3050546v2 [mathna] 24 Mar 205 Abstract The Primal-Dual hybrid

More information

Matrix Support Functional and its Applications

Matrix Support Functional and its Applications Matrix Support Functional and its Applications James V Burke Mathematics, University of Washington Joint work with Yuan Gao (UW) and Tim Hoheisel (McGill), CORS, Banff 2016 June 1, 2016 Connections What

More information

Newton s Method. Javier Peña Convex Optimization /36-725

Newton s Method. Javier Peña Convex Optimization /36-725 Newton s Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and

More information

A Linearly Convergent First-order Algorithm for Total Variation Minimization in Image Processing

A Linearly Convergent First-order Algorithm for Total Variation Minimization in Image Processing A Linearly Convergent First-order Algorithm for Total Variation Minimization in Image Processing Cong D. Dang Kaiyu Dai Guanghui Lan October 9, 0 Abstract We introduce a new formulation for total variation

More information

Accelerated Gradient Method for Multi-Task Sparse Learning Problem

Accelerated Gradient Method for Multi-Task Sparse Learning Problem Accelerated Gradient Method for Multi-Task Sparse Learning Problem Xi Chen eike Pan James T. Kwok Jaime G. Carbonell School of Computer Science, Carnegie Mellon University Pittsburgh, U.S.A {xichen, jgc}@cs.cmu.edu

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Supplemental Figures: Results for Various Color-image Completion

Supplemental Figures: Results for Various Color-image Completion ANONYMOUS AUTHORS: SUPPLEMENTAL MATERIAL (NOVEMBER 7, 2017) 1 Supplemental Figures: Results for Various Color-image Completion Anonymous authors COMPARISON WITH VARIOUS METHODS IN COLOR-IMAGE COMPLETION

More information

arxiv: v7 [math.oc] 22 Feb 2018

arxiv: v7 [math.oc] 22 Feb 2018 A SMOOTH PRIMAL-DUAL OPTIMIZATION FRAMEWORK FOR NONSMOOTH COMPOSITE CONVEX MINIMIZATION QUOC TRAN-DINH, OLIVIER FERCOQ, AND VOLKAN CEVHER arxiv:1507.06243v7 [math.oc] 22 Feb 2018 Abstract. We propose a

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

In collaboration with J.-C. Pesquet A. Repetti EC (UPE) IFPEN 16 Dec / 29

In collaboration with J.-C. Pesquet A. Repetti EC (UPE) IFPEN 16 Dec / 29 A Random block-coordinate primal-dual proximal algorithm with application to 3D mesh denoising Emilie CHOUZENOUX Laboratoire d Informatique Gaspard Monge - CNRS Univ. Paris-Est, France Horizon Maths 2014

More information

Iteration-complexity of first-order penalty methods for convex programming

Iteration-complexity of first-order penalty methods for convex programming Iteration-complexity of first-order penalty methods for convex programming Guanghui Lan Renato D.C. Monteiro July 24, 2008 Abstract This paper considers a special but broad class of convex programing CP)

More information

Linearized Alternating Direction Method of Multipliers via Positive-Indefinite Proximal Regularization for Convex Programming.

Linearized Alternating Direction Method of Multipliers via Positive-Indefinite Proximal Regularization for Convex Programming. Linearized Alternating Direction Method of Multipliers via Positive-Indefinite Proximal Regularization for Convex Programming Bingsheng He Feng Ma 2 Xiaoming Yuan 3 July 3, 206 Abstract. The alternating

More information

Interpolation-Based Trust-Region Methods for DFO

Interpolation-Based Trust-Region Methods for DFO Interpolation-Based Trust-Region Methods for DFO Luis Nunes Vicente University of Coimbra (joint work with A. Bandeira, A. R. Conn, S. Gratton, and K. Scheinberg) July 27, 2010 ICCOPT, Santiago http//www.mat.uc.pt/~lnv

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

Variational methods for restoration of phase or orientation data

Variational methods for restoration of phase or orientation data Variational methods for restoration of phase or orientation data Martin Storath joint works with Laurent Demaret, Michael Unser, Andreas Weinmann Image Analysis and Learning Group Universität Heidelberg

More information

Lecture: Algorithms for Compressed Sensing

Lecture: Algorithms for Compressed Sensing 1/56 Lecture: Algorithms for Compressed Sensing Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Decomposition Methods for Large Scale LP Decoding

Decomposition Methods for Large Scale LP Decoding Decomposition Methods for Large Scale LP Decoding Siddharth Barman Joint work with Xishuo Liu, Stark Draper, and Ben Recht Outline Background and Problem Setup LP Decoding Formulation Optimization Framework

More information

A Convex Model for Image Registration

A Convex Model for Image Registration A Convex Model for Image Registration Ernie Esser January 010 Abstract Variational methods for image registration generally involve minimizing a nonconvex functional with respect to the unknown displacement

More information

The paper will focus on the following form for H which arises in image reconstruction problems:

The paper will focus on the following form for H which arises in image reconstruction problems: AN O(1/K) CONVERGENCE RATE FOR THE VARIABLE STEPSIZE BREGMAN OPERATOR SPLITTING ALGORITHM WILLIAM W. HAGER, MARYAM YASHTINI, AND HONGCHAO ZHANG Abstract. An earlier paper proved the convergence of a variable

More information