Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis

Size: px
Start display at page:

Download "Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis"

Transcription

1 Journal of Natural Gas Chemistry 14(2005) Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis Wei Zhou 1,2, Shengying Liu 1, Yulan Wang 1, Kegong Fang 1, Jiangang Chen 1, Yuhan Sun 1 1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan , China 2. Graduate School of Chinese Academy of Sciences, Beijing , China [Manuscript received September 29, 2005; revised November 17, 2005] Abstract: Synthesis gas derived from methanol cracking (SGMC) was applied as simulating feedstock of Fischer-Tropsch synthesis (FTS) in laboratory. With MS and GC detector, a trifle of sulfur compounds, a small amount of oxygenates including H 2O, CH 3OH, DME and CO 2 as well as a few of low carbon alkanes were found in the SGMC. After purification, the sulfur compounds, H 2O, CH 3OH and DME could be eliminated efficiently from the SGMC while CO 2 and the low carbon alkanes were partly removed. When the unpurified SGMC, the desufurized SGMC and the totally purified SGMC were sequentially applied in cobalt-based FTS, the catalytic performance of Co/ZrO 2/SiO 2 catalyst was gradually improved corresponding to the degree of purification. The untreated SGMC led to the serious deactivation of the cobalt catalyst, the partially treated SGMC slowed down the deactivation rate and the totally purified SGMC resulted in little deactivation of the catalyst, which was similar to what the pure synthesis gas (the mixture of pure H 2 and CO) did. The results indicated that the SGMC should be purified and the purification course used in this paper was effective for the SGMC. Furthermore, the totally purified SGMC could substitute for the pure synthesis gas in cobalt FTS. Key words: Fischer-Tropsch synthesis, synthesis gas, methanol cracking, purification 1. Introduction Fischer-Tropsch synthesis (FTS) has gained industrial attention for converting synthesis gas to highboiling points waxes that can be further converted to sulfur-free motor fuels by hydrogenation or hydrocracking as alternative resources to the limited crude oil. In the Fischer-Tropsch synthesis processes, synthesis gas is first generated, then the F-T reaction forms in the second step, in which synthesis gas is converted into the hydrocarbons over the catalysts. In the final step, the hydrocarbons undergo further hydrogenation or hydrocracking to yield clean middle distillates as products [1,2]. Among the above three stages, the manufacture of synthesis gas is by far the most capital-intensive stage [2]. Generally, synthesis gas is manufactured by partial oxidation of natural gas or gasification of coal in industry, while it is produced by mixing the pure CO and H 2 or decomposing methanol in laboratory [3 8]. Thereof, synthesis gas derived from methanol cracking (SGMC) has particular advantages such as higher contents of effective components (CO+H 2 >95%) relative to coal-based synthesis gas (CO+H 2 >85%), more suitable stoichiometric ratio of H 2 to CO (2:1) than coal-based synthesis gas (H 2 /CO= ) and nat- Corresponding author. Tel: (0351) ; Fax: (0351) ; yhsun@sxicc.ac.cn. Financial supported from National Natural Foundation of China ( and ) and State Key Foundation Program for Development and Research of China (2005cb221402).

2 194 Wei Zhou et al./ Journal of Natural Gas Chemistry Vol. 14 No ural gas-based synthesis gas (H 2 /CO>2) [3] and much cheaper than the mixture of pure CO and H 2. Therefore, the SGMC is applied widely in many laboratories [6 8] and even was used in AMSTG course, which was one modified FT technology in Japan several years ago [3]. With respect to the catalyst for FTS, supported cobalt catalysts are highly attractive due to their high activity, high yields of long-chain paraffins and low activity for the water-gas shift reaction [9 11]. However, when the SGMC is applied in cobalt-based FTS, the feed gas must be kept very pure for the active metallic cobalt was inclined to be poisoned. Though the SGMC is used widely, the purifying course has not been reported so far. Therefore, this paper mainly investigated the purifying course of the SGMC on the reaction behavior of cobalt-based FTS. 2. Experimental 2.1. Analysis system The analysis system consisted of one mass spectrometer (MS, HPR-20) and two sets of gas chromatograph (GC). One GC was equipped with thermal conductivity detector (TCD) and a carbon molecular sieve column, while the other was set with flame ionization detector (FID) and a Porapak-Q column. Ar was the carrier gas for GC. The sulfur contents were monitored by the HC-2 Sulfur Analyzer. The SGMC was routed on-line into the MS, GC and Sulfur Analyzer, separately Catalyst preparation The Co/ZrO 2 /SiO 2 catalyst was applied in this paper for its good catalytic performance in FTS [1,12 14]. A 15% Co/10% ZrO 2 /SiO 2 catalyst was prepared by sequentially incipient wetness impregnation method with drying at 303 K after each impregnation. Sol-gel derived SiO 2 (278 m 2 /g) was used as the support. The zirconium and cobalt precursors were zirconium (IV) nitrate and cobalt (II) nitrate, respectively [15]. The catalyst impregnated with zirconium was first calcined at 773 K for 4 h in the air and then impregnated with the cobalt solution, redried and then calcined with the same procedure as mentioned above. The cobalt loading was verified by using an inductively coupled plasma atomic emission spectrometer (ICP-AES) analysis method F-T reaction A series of experiments were carried out on the SGMC, the partially purified SGMC, the totally purified SGMC and the pure synthesis gas (the mixture of pure H 2 and CO), respectively. 1 ml catalyst was diluted with 4 ml SiO 2 to minimize the temperature gradients. Then the catalyst activation was conducted in pure hydrogen at 673 K, 0.5 MPa and 2000 h 1 for 6 h in a fixed bed reactor of i.d. 10 mm. After the activation period, the reactor temperature was decreased to the room temperature and the synthesis gas (H 2 /CO=2.0) was introduced. The F-T reaction proceeded at 493 K, 2.0 MPa and 1500 h 1. Liquid products and wax were obtained through a cold trap keeping at 273 K and a hot trap keeping at 413 K, respectively. The products analysis was just the same as previous work [16]. All reported data were measured after 72 h time-on-stream in order to ensure steady-state behavior of the reaction. The mass and carbon balance of all the reactions both maintained between 95% and 105%. 3. Results and discussion 3.1. Analysis of the SGMC The SGMC was admitted into mass spectrometer and Sulfur Analyzer (see Figure 1 and Table 1). The result suggested that there were a trifle of sulfur compounds including H 2 S and COS and a small amount of oxygenates including H 2 O, CO 2, CH 3 OH, and DME in the SGMC (see Figure 1). Table 1. MS analyses results of the synthesis gas by cracking of methanol before and after purifying Compound in Before After the SGMC purifying (%) purifying (%) H CO CO CH H 2 S COS CH 3 OH DME H 2 O * The contents were monitored by the sulfur analyzer

3 Journal of Natural Gas Chemistry Vol. 14 No Figure 1. MS detection results of the SGMC (a) Unpurified SGMC, (b) Purified SGMC after desulfurizing, (c) Purified SGMC after desulfurizing and oxygenates-removing GC results (see Figure 2 and Table 2) proved CO 2 and DME existed in the SGMC. Moreover, a trace of low carbon alkanes was also detected in the SGMC through MS and GC. Figure 2. GC detection results of the SGMC (1) Unpurified synthesis gas, (2) Purified synthesis gas

4 196 Wei Zhou et al./ Journal of Natural Gas Chemistry Vol. 14 No Table 2. GC analyses results of the synthesis gas by cracking of methanol before and after purifying Compound in Before After the SGMC purifying (%) purifying (%) H CO CO CH C 2 H C 3 H C 4 H DME Purification of SGMC It was well known that the sulfur compounds could poison metallic cobalt and lead to the deactivation of the catalyst [17]. So the removal of sulfur compounds from the SGMC was crucial. H 2 O was also one species that could make cobalt catalyst deactivate in FTS [4,5,18 30]. It was found that water could result in the reoxidation of cobalt [18 23], formation of interacting species [24 26] and sintering [27 30]. Schanke et al. [18] thought that the oxidation of surface cobalt atoms or highly dispersed cobalt phases by water on alumina supported cobalt catalysts was responsible for the catalyst deactivation. Krishnamoorthy et al. [23] proved that water could reoxidize the surface cobalt of Co/SiO 2 catalyst at H 2 O/H 2 ratio greater than 0.8. In addition, the formation of interaction species between cobalt and Al 2 O 3 or SiO 2 supports under hydrothermal conditions had been reported[24 26]. As for the sintering, Bartholomew [27] pointed that water vapor would increase the sintering rate of supported metals. The sintering had been proved on cobalt catalysts at high water partial pressure, which was thought from the oxidation-reduction cycles induced by water in F-T reaction [28 30]. Therefore, the synthesis gas must be kept dry. As for other oxygenates, such as, CH 3 OH and DME, no report is published whether they were harmful to cobalt catalyst. Moreover, CO 2 was found to incorrelate with the deactivation of cobalt in FTS if CO 2 content was lower than 19% [31]. Considering the oxidation effects, the oxygenates should be cleaned up. However, a small amount of low carbon alkanes, which would be produced in FTS, could be ignored for having no report about the negative effects of the alkanes on the cobalt catalyst. The purification courses should be simple and could not induce side-reactions. ZnO catalyst (T305) was a good choice for removing sulfur compounds for it was widely used in the purification of the synthesis gas when the content of the sulfur compounds was small [27,32]. In addition, blue silica gel was good at absorbing water while 5A molecular sieve was a good oxide adsorbent for its uniform reticulate structure [33]. Therefore, T305, blue silica gel and 5A molecular sieve were applied in the SGMC purification courses. T305 catalyst was put into a desulfurizing container that was set in a heating furnace. The mixture of the blue silica gel and 5A molecular sieve (mixing ratio was 1/1) was sent into the other vessel. The desulfurizing course was carried out at 500 h 1 and 230 and the second course was at 500 h 1 and room temperature. The purification effects for the SGMC are shown in Figures 1, 2 and Tables 1, 2. The MS and Sulfur Analyzer results exhibited that the amount of the sulfur compounds decreased by one order of magnitude after desulfurizing and the amount of the CH 3 OH and DME decreased by two orders of magnitude after total purification. However, the amount of H 2 O and CO 2 decreased not significantly according to the MS results. Furthermore, GC results showed that the DME could not be detected any more and the amount of CO 2 as well as the low carbon alkanes decreased in part after the purification courses. It demonstrated that the removal of the sulfur compounds, CH 3 OH and DME from the SGMC were efficient, while CO 2 and the low carbon alkanes could be partly absorbed in the purification course. To assess the water absorption in the mixture of blue silica gel and 5A molecular sieve, the SGMC was introduced at 500 h 1 and ambient temperature. After one month, about 1/5 blue silica gel turned pink. It proved that the existence of water in the SGMC and the validity of the water removal in the purification course. Thus it could be seen that a part of water and carbon dioxide detected by MS might come from the residual atmosphere in the ultra-high vacuum house of MS. In brief, the sulfur compounds, methanol, DME and water in the SGMC could be eliminated efficiently and CO 2 and the low carbon alkanes could be removed partly through the purified courses F-T synthesis performance of SGMC over the Co catalyst The reaction results of F-T synthesis were graphed in Figure 3. For the experiment that was

5 Journal of Natural Gas Chemistry Vol. 14 No run in the SGMC, the catalyst activity and the selectivities for CH 4 and C 5+ decreased rapidly, implying that the impurities in the SGMC were harmful to the cobalt catalyst in the F-T reaction. When the SGMC was desulfurized, the catalyst activity and the selectivities for CH 4 and C 5+ were improved evidently. Still, after the SGMC was purified by T305 and the mixture of blue silica and molecular sieves, sequentially, the catalyst didn t deactivate for at least 550 h, indicating that the SGMC should be purified and the purification method for the SGMC in this paper was efficient. In addition, the catalyst showed an excellent performance though a few of carbon dioxide and low carbon alkanes existed in the totally purified SGMC, which implied that the existence of a few of carbon dioxide and low carbon alkanes did not affect the performance of the cobalt catalyst in F-T synthesis. Figure 3 also illuminated that the catalyst showed nearly the same reaction performance whether in the pure synthesis gas or in the purified SGMC, implying that the purified SGMC could substitute for the pure synthesis gas in the evaluation of the cobalt catalyst. 4. Conclusions A trifle of sulfur compounds, a small amount of oxygenates consisting of water, methanol, DME and CO 2 as well as a trace of low carbon alkanes were detected in the synthesis gas derived from methanol cracking. After two step purification, the sulfur compounds, water, methanol and DME were eliminated efficiently, while CO 2 and low carbon alkanes were removed partly. When the unpurified synthesis gas was applied in the cobalt F-T reaction, the Co/ZrO 2 /SiO 2 catalyst deactivated severely. Next when the desulfurized synthesis gas was used, the cobalt catalyst showed an amendatory performance. At last, when the totally purified synthesis gas through the desulfurizing and oxygenates-removing courses was employed in the F-T reaction, the cobalt catalyst exhibited good performance and stability, which was nearly the same as in the pure synthesis gas. It proved that: (1) the SGMC should be purified; (2) the purification method for the SGMC in this paper was efficient; (3) the purified SGMC could substitute for the pure synthesis gas in cobalt-based FTS. Acknowledgements The authors acknowledge the financial support from National Natural Foundation of China ( and ) and State Key Foundation Program for Development and Research of China (2005cb221402). References Figure 3. F-T synthesis performance in different synthesis gases over Co/ZrO 2 /SiO 2 catalyst (1) Unpurified SGMS, (2) Purified SGMS after desulfurizing, (3) Purified SGMS after desulfurizing and oxygenatesremoving, (4) Pure synthesis gas [1] Dry M E. Catal Today, 2002, 71: 227 [2] Geerlings J J C, Wilson J H, Kramer G J et al. Appl Catal A, 1999, 186: 27 [3] Zhou J L, Zhang Z X, Zhang B J. J Fuel Chem Tech, 1999, 27(suppl): 58 [4] Li J L, Jacobs G, Das T K et al. Appl Catal A, 2002, 236: 67 [5] Li J L, Zhan X D, Zhang Y Q et al. Appl Catal A, 2002, 228: 203

6 198 Wei Zhou et al./ Journal of Natural Gas Chemistry Vol. 14 No [6] Qi H J, Li D B, Ma Y G et al. J Fuel Chem Tech, 2003, 31(2): 119 [7] Liu Y, Zhong B, Peng S Y et al. Cuihua Xuebao (Chin J Catal), 1998, 19(2): 107 [8] Zhang Y Q, Zhong B, Wang Q. Feizi Cuihua (J Mol Catal), 1997, 11(3): 204 [9] Chen J G, Xiang H W, Li Y W et al. Huagong Xuebao (J Chem Ind Eng), 2003, 54(4): 516 [10] Yin D H, Li W H, Yang W S et al. Prog Chem, 2001, 13(2): 118 [11] Zhang J L, Chen J G, Li Y W et al. J Natural Gas Chem, 2002, 11(3-4): 99 [12] Post, Martin F M. ESP , 1986 [13] Ali S, Chen B, Goodwin J G Jr. J Catal, 1995, 157: 35 [14] Chen J G, Xiang H W, Wang X Z et al. Cuihua Xuebao (Chin J Catal), 2000, 21(4): 359 [15] Chen J G, Xiang H W, Sun Y H. Cuihua Xuebao (Chin J Catal), 2000, 21(2): 169 [16] Chen J G, Xiang H W, Gao H Y et al. React Kinet Catal Lett, 2001, 73(1): 169 [17] Espinoza R L, Steynberg A P, Jager B et al. Appl Catal A, 1999, 186: 13 [18] Schanke D, Hilmen A M, Bergene E et al. Catal Lett, 1995, 34: 269 [19] Hilmen A M, Schanke D, Hanssen K F et al. Appl Catal A, 1999, 186: 169 [20] Berge P J van, Loosdrecht J van de, Barradas S et al. Catal Today, 2000, 58: 321 [21] Jacobs G, Patterson P M, Zhang Y Q et al. Appl Catal A, 2002, 233: 215 [22] Li J L, Davis B H. Stud Surf Sci Catal, 2004, 147: 307 [23] Krishnamoorthy S, Tu M, Ojeda M et al. J Catal, 2002, 211: 422 [24] Zhang Y L, Wei D G, Hammache S et al. J Catal, 1999, 188: 281 [25] Kiss G, Kliewer C E, DeMartin G J et al. J Catal, 2003, 217: 127 [26] Chen J G, Wang X Z, Xiang H W et al. Stud Surf Sci Catal, 2001: 525 [27] Bartholomew C H. Appl Catal A, 2001, 212: 17 [28] Bertole C J, Mims C A, Kiss G. J Catal, 2002, 210: 84 [29] Das T K, Jacobs G, Patterson P M et al. Fuel, 2003, 82: 805 [30] Jacobs G, Patterson P M, Das T K et al. Appl Catal A, 2004, 270: 65 [31] Freide J J H M F, Gamlin T D, Hensman J R. J Natural Gas Chem, 2004, 13(1): 1 [32] Zhang B J. Coal-Based Liquid Fuel. Taiyuan: Shanxi Science and Technology Press, 1993, 30 [33] Hersh C K. Molecular Sieves. Chen E transl. Beijing: Chinese Industry Press, 1965, 46

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas , July 5-7, 2017, London, U.K. Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas Ditlhobolo Seanokeng, Achtar Iloy, Kalala Jalama Abstract This study aimed at investigating

More information

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas Journal of Natural Gas Chemistry 12(2003)205 209 Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas Haitao Wang, Zhenhua Li, Shuxun Tian School of Chemical Engineering

More information

Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins

Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-2 September 27 Hydrogenation of

More information

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization Journal of Natural Gas Chemistry 13(2004)36 40 Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization Qun Dong 1, Xiaofei Zhao 1, Jian Wang 1, M Ichikawa 2 1. Department of Petrochemical Engineering,

More information

Manganese promotion in cobalt-based Fischer-Tropsch catalysis

Manganese promotion in cobalt-based Fischer-Tropsch catalysis Manganese promotion in cobalt-based Fischer-Tropsch catalysis F. Morales Cano, O.L.J. Gijzeman, F.M.F. de Groot and B.M. Weckhuysen Department of Inorganic Chemistry and Catalysis, Debye Institute, Utrecht

More information

Synthesis of isoalkanes over core (Fe-Zn-Zr)-shell (zeolite) catalyst

Synthesis of isoalkanes over core (Fe-Zn-Zr)-shell (zeolite) catalyst Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Synthesis of isoalkanes over core (Fe-Zn-Zr)-shell (zeolite)

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Hangzhou , PR China

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Hangzhou , PR China 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Influence of Ni based catalysts on CH 4 -CO 2 reforming reaction Hangjie Li 1, Dongming Shen 2, Xikun Gai 3,

More information

Mechanistic Study of Selective Catalytic Reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in Situ DRIFTS

Mechanistic Study of Selective Catalytic Reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in Situ DRIFTS CHINESE JOURNAL OF CATALYSIS Volume 27, Issue 11, November 2006 Online English edition of the Chinese language journal Cite this article as: Chin J Catal, 2006, 27(11): 993 998. RESEARCH PAPER Mechanistic

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

Simultaneous Removal of COS and H 2 S at Low Temperatures over Nanoparticle α-feooh Based Catalysts

Simultaneous Removal of COS and H 2 S at Low Temperatures over Nanoparticle α-feooh Based Catalysts Journal of Natural Gas Chemistry 12(2003)37 42 Simultaneous Removal of COS and H 2 S at Low Temperatures over Nanoparticle α-feooh Based Catalysts Zhihua Gao, Chunhu Li, Kechang Xie State Key Lab of C1

More information

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction Center for Sustainable Technologies Indian Institute of Science Bangalore IDF presentation

More information

RKCL5155 PREPARATION AND EVALUATION OF AMMONIA DECOMPOSITION CATALYSTS BY HIGH-THROUGHPUT TECHNIQUE

RKCL5155 PREPARATION AND EVALUATION OF AMMONIA DECOMPOSITION CATALYSTS BY HIGH-THROUGHPUT TECHNIQUE Jointly published by React.Kinet.Catal.Lett. Akadémiai Kiadó, Budapest Vol. 93, No. 1, 11 17 (2008) and Springer, Dordrecht 10.1007/s11144-008-5155-3 RKCL5155 PREPARATION AND EVALUATION OF AMMONIA DECOMPOSITION

More information

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate

Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate Supporting Information High Activity and Selectivity of Ag/SiO 2 Catalyst for Hydrogenation of Dimethyloxalate An-Yuan Yin, Xiao-Yang Guo, Wei-Lin Dai*, Kang-Nian Fan Shanghai Key Laboratory of Molecular

More information

Aviation Fuel Production from Lipids by a Single-Step Route using

Aviation Fuel Production from Lipids by a Single-Step Route using Aviation Fuel Production from Lipids by a Single-Step Route using Hierarchical Mesoporous Zeolites Deepak Verma, Rohit Kumar, Bharat S. Rana, Anil K. Sinha* CSIR-Indian Institute of Petroleum, Dehradun-2485,

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Multi-scale promoting effects

More information

Supporting Information

Supporting Information Supporting Information Synthesis of Robust MOF-derived Cu/SiO 2 Catalyst with Low Copper Loading via Sol-gel Method for the Dimethyl Oxalate Hydrogenation Reaction Run-Ping Ye,,, # Ling Lin, # Chong-Chong

More information

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1 The term fractional distillation refers to a physical method used to separate various components of crude oil. Fractional distillation uses the different boiling temperatures of each component, or fraction,

More information

A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge

A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge Journal of the Chinese Chemical Society, 2007, 54, 823-828 823 Communication A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge Antonius Indarto, a,b * Jae-Wook Choi,

More information

Effect of metal oxide additives on the properties of

Effect of metal oxide additives on the properties of Effect of metal oxide additives on the properties of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-20 September 2007 Effect of metal oxide additives on the properties of Cu/ZnO/Al 2

More information

Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen Journal of Natural Gas Chemistry 11(2002)145 150 Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen Fandong Meng 1,2, Genhui Xu 1, Zhenhua Li 1, Pa Du 1 1. State

More information

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information Synthesis of jet fuel range cycloalkanes with diacetone alcohol from

More information

One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34 Catalyzed in-situ Halogenation

One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34 Catalyzed in-situ Halogenation S1 Supporting Information One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34 Catalyzed in-situ Halogenation Patrice T. D. Batamack, Thomas Mathew, G. K. Surya Prakash*

More information

Elucidation of the Influence of Ni-Co Catalytic Properties on Dry Methane Reforming Performance

Elucidation of the Influence of Ni-Co Catalytic Properties on Dry Methane Reforming Performance 925 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 43, 2015 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-34-1; ISSN 2283-9216 The Italian

More information

Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method

Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method Hydrogen production by DME steam reforming over copper catalysts prepared using the sol-gel method Kaoru TAKEISHI (武石 薫) E-mail: tcktake ipc.shizuoka.ac.jp Faculty of Engineering, Shizuoka University (Japan)

More information

KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp , 2016

KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp , 2016 KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 255 259, 216 Research Article Effect of Strong Metal Support Interactions of Supported Ni and Ni-Co Catalyst on Metal Dispersion and Catalytic Activity

More information

Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5

Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5 Journal of Natural Gas Chemistry 14(2005)129 139 Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5 Hongtao Ma, Ryoichi

More information

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting information Tuned Depositing Ag clusters on ZrO 2 Nanocrystals from Silver Mirror

More information

Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al 2 o 3 Catalyst

Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al 2 o 3 Catalyst Kinetics of the Fischer-Tropsch Reaction over a Ru- Promoted Co/Al o 3 Catalyst Tejas Bhatelia 1, Wenping Ma, Burtron Davis, Gary Jacobs and Dragomir Bukur 1* 1 Department of Chemical Engineering, Texas

More information

Time-resolved XANES studies on used silica supported cobalt catalysts

Time-resolved XANES studies on used silica supported cobalt catalysts Article Time-resolved XANES studies on used silica supported cobalt catalysts Siwaruk Chotiwan 1, Sutasinee Kityakarn 1, *, Yingyot Poo-arporn 2, and Pinsuda Viravathana 1 1 Department of Chemistry, Faculty

More information

Catalytic activity of liquid phase prepared Cu-Zn-Al catalyst for CO hydrogenation in a fixed bed reactor

Catalytic activity of liquid phase prepared Cu-Zn-Al catalyst for CO hydrogenation in a fixed bed reactor Indian Journal of Chemistry Vol. 51A, December 2012, pp. 1663-1668 Catalytic activity of liquid phase prepared Cu-Zn-Al catalyst for CO hydrogenation in a fixed bed reactor Chunhui Luan a, b, Anrong Zhang

More information

Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere

Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Journal of Natural Gas Chemistry 12(2003)43 48 Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Huiling Fan, Chunhu Li, Hanxian Guo, Kechang Xie State Key Lab of C1

More information

Supporting Information

Supporting Information Supporting Information Remarkable performance of Ir 1 /FeO x single-atom catalyst in water gas shift reaction Jian Lin, Aiqin Wang, Botao Qiao, Xiaoyan Liu, Xiaofeng Yang, Xiaodong Wang, Jinxia Liang,

More information

Thermodynamic Analysis of Formation of Low-carbon Olefins via Coal Gasification Coupling C 1 Reaction

Thermodynamic Analysis of Formation of Low-carbon Olefins via Coal Gasification Coupling C 1 Reaction Process Research China Petroleum Processing and Petrochemical Technology 2018, Vol. 20, No. 3, pp 24-31 September 30, 2018 Thermodynamic Analysis of Formation of Low-carbon Olefins via Coal Gasification

More information

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan Supporting Information Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan Guangyi Li, a,b Ning Li, a Shanshan Li, a,b Aiqin Wang, a Yu Cong, a Xiaodong Wang a and Tao Zhang a * a State

More information

Fischer-Tropsch Synthesis over Fe/Al 2 O 3 Catalyst with Low Fe Loading: Effect of Reaction Temperature

Fischer-Tropsch Synthesis over Fe/Al 2 O 3 Catalyst with Low Fe Loading: Effect of Reaction Temperature , July 5-7, 2017, London, U.K. Fischer-Tropsch Synthesis over Fe/Al 2 O 3 Catalyst with Low Fe Loading: Effect of Reaction Temperature Guida Muala, R. A. Iloy, Kalala Jalama Abstract The aim of this study

More information

Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring their strong acidity and acidity distribution

Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring their strong acidity and acidity distribution Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 115, No. 4, August 2003, pp 281 286 Indian Academy of Sciences Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring

More information

Propylene: key building block for the production of important petrochemicals

Propylene: key building block for the production of important petrochemicals Propylene production from 11-butene and ethylene catalytic cracking: Study of the performance of HZSMHZSM-5 zeolites and silicoaluminophosphates SAPO--34 and SAPOSAPO SAPO-18 E. Epelde Epelde*, *, A.G.

More information

A method for the Regeneration of used Fe-ZSM5 Catalyst in Fischer-Tropsch Synthesis

A method for the Regeneration of used Fe-ZSM5 Catalyst in Fischer-Tropsch Synthesis CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021175 1045

More information

Experimental analysis of removal of SO 2 and NOx for nano Mg-Al composite oxides

Experimental analysis of removal of SO 2 and NOx for nano Mg-Al composite oxides Bulgarian Chemical Communications, Volume 48, Special Issue D (pp. 172 176) 2016 Experimental analysis of removal of SO 2 and NOx for nano Mg-Al composite oxides 172 W. Cheng 1 *, Y. Zhang 2, S. Wei 3,

More information

Catalytic Aromatization of Methane

Catalytic Aromatization of Methane Catalytic Aromatization of Methane N.I.FAYZULLAYEV* 1, S.M.TUROBJONOV 2 1 Department of Natural Sciences, Division of Chemistry, Samarkand State University, Samarkand, Uzbekistan 2 Tashkent chemistry-technology

More information

EFFECTS OF ADDITIONAL GASES ON THE CATALYTIC DECOMPOSITION OF N20 OVER Cu-ZSM-5

EFFECTS OF ADDITIONAL GASES ON THE CATALYTIC DECOMPOSITION OF N20 OVER Cu-ZSM-5 Jointly published by Elsevier Science B.V., Amsterdam and Akad~miai Kiad6, Budapest RKCL3296 Reaet.Kinet. Catal.Lett. Vol. 64, No. 2, 215-220 (1998) EFFECTS OF ADDITIONAL GASES ON THE CATALYTIC DECOMPOSITION

More information

Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure

Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure Co-Ni/Al 2 O 3 catalysts for CO 2 methanation at atmospheric pressure K. Nifantiev, O. Byeda, B. Mischanchuk, E. Ischenko a Taras Shevchenko National university of Kyiv, Kyiv, Ukraine knifantiev@gmail.com

More information

Comparison of acid catalysts for the dehydration of methanol to dimethyl ether

Comparison of acid catalysts for the dehydration of methanol to dimethyl ether Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-2 September 27 Comparison of acid catalysts for the dehydration of methanol to dimethyl ether I. Sierra, J. Ereña, A. T.

More information

University of Oulu, Dept. Process and Environmental Engineering, FI University of Oulu, P.O.Box 4300

University of Oulu, Dept. Process and Environmental Engineering, FI University of Oulu, P.O.Box 4300 42 Utilisation of isotopic oxygen exchange in the development of air-purification catalysts Satu Ojala 1 *, Nicolas Bion 2, Alexandre Baylet 2, Daniel Duprez 2 and Riitta L. Keiski 1 1 University of Oulu,

More information

Methanolysis of Poly(ethylene terephthalate) in Supercritical Phase

Methanolysis of Poly(ethylene terephthalate) in Supercritical Phase 1 1 Vol.1 No.1 21 1 The Chinese Journal of Process Engineering Jan. 21 Methanolysis of Poly(ethylene terephthalate) in Supercritical Phase YANG Yong ( ) XIANG Hong-wei ( ) YANG Ji-li ( ), XU Yuan-yuan

More information

Role of Re and Ru in Re Ru/C Bimetallic Catalysts for the

Role of Re and Ru in Re Ru/C Bimetallic Catalysts for the Role of Re and Ru in Re Ru/C Bimetallic Catalysts for the Aqueous Hydrogenation of Succinic Acid Xin Di a, Chuang Li a, Bingsen Zhang b, Ji Qi a, Wenzhen Li c, Dangsheng Su b, Changhai Liang a, * a Laboratory

More information

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as:

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: B C D Hydrogen bonding. Dipole-dipole interactions. Dispersion forces.

More information

Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc iron double oxide catalyst

Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc iron double oxide catalyst Journal of Chemical Technology and Biotechnology J Chem Technol Biotechnol 81:794 798 (2006) DOI: 10.1002/jctb.1412 Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc iron

More information

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm Supplementary Figure S1 Reactor setup Calcined catalyst (.4 g) and silicon carbide powder (.4g) were mixed thoroughly and inserted into a 4 mm diameter silica reactor (G). The powder mixture was sandwiched

More information

The effect of phase transition of methanol on the reaction rate in the alkylation of hydroquinone

The effect of phase transition of methanol on the reaction rate in the alkylation of hydroquinone Korean J. Chem. Eng., 26(3), 649-653 (2009) SHORT COMMUNICATION The effect of phase transition of methanol on the reaction rate in the alkylation of hydroquinone Jung Je Park*, Soo Chool Lee*, Sang Sung

More information

Production of Renewable 1,3-Pentadiene from Xylitol via Formic. Acid-Mediated Deoxydehydration and Palladium-Catalyzed

Production of Renewable 1,3-Pentadiene from Xylitol via Formic. Acid-Mediated Deoxydehydration and Palladium-Catalyzed Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Production of Renewable 1,3-Pentadiene from Xylitol via Formic Acid-Mediated Deoxydehydration

More information

Agilent J&W PoraBOND Q PT Analyzes Oxygenates in Mixed C4 Hydrocarbon Streams by GC/FID and GC/MSD

Agilent J&W PoraBOND Q PT Analyzes Oxygenates in Mixed C4 Hydrocarbon Streams by GC/FID and GC/MSD Agilent J&W PoraBOND Q PT Analyzes Oxygenates in Mixed C4 Hydrocarbon Streams by GC/FID and GC/MSD Application Note Energy & Fuels Authors Mingji Cao and Zhaoxia Liu Shanghai SECCO Petrochemical Co., Ltd.

More information

and mol of Cl 2 was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium.

and mol of Cl 2 was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium. Q1. When a mixture of 0.45 mol of PCl and 0.68 mol of Cl was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium. PCl + Cl PCl 5 H = 9 kj mol 1 At equilibrium,

More information

Supporting Information. Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic Compound Catalysts

Supporting Information. Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic Compound Catalysts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

A STUDY ON PRODUCTION OF OXIDANT BY DECOMPOSITION OF H 2

A STUDY ON PRODUCTION OF OXIDANT BY DECOMPOSITION OF H 2 Jr. of Industrial Pollution Control 34(1)(218) pp 1811-1817 www.icontrolpollution.com Research Article A STUDY ON PRODUCTION OF OXIDANT BY DECOMPOSITION OF ON MN BASED CATALYST AND NO OXIDATION JUNG HEE

More information

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core Chunzheng Wu, ab Zi-Yian Lim, a Chen Zhou, a Wei Guo Wang, a Shenghu Zhou,

More information

Studies on the Kinetics of Heavy Oil Catalytic Pyrolysis

Studies on the Kinetics of Heavy Oil Catalytic Pyrolysis 60 Ind. Eng. Chem. Res. 00, 4, 60-609 Studies on the Kinetics of Heavy Oil Catalytic Pyrolysis Meng Xiang-hai,* Xu Chun-ming, Li Li, and Gao Jin-sen State Key Laboratory of Heavy Oil Processing, University

More information

Supports, Zeolites, Mesoporous Materials - Chapter 9

Supports, Zeolites, Mesoporous Materials - Chapter 9 Supports, Zeolites, Mesoporous Materials - Chapter 9 Krijn P. de Jong Inorganic Chemistry and Catalysis Utrecht University NIOK CAIA Course, Schiermonnikoog, December 4 th, 2009 1 Overview of lecture Introduction

More information

Sintering-resistant Ni-based Reforming Catalysts via. the Nanoconfinement Effect

Sintering-resistant Ni-based Reforming Catalysts via. the Nanoconfinement Effect Supporting Information Sintering-resistant Ni-based Reforming Catalysts via the Nanoconfinement Effect Chengxi Zhang a,b, Wancheng Zhu c, Shuirong Li a,b, Gaowei Wu a,b, Xinbin Ma a,b, Xun Wang c, and

More information

Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor

Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor Catalysis Today 63 (2000) 471 478 Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor Moses O. Adebajo, Russell F. Howe, Mervyn A. Long School of Chemistry, University

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

Second International Seminar on Environmental Chemistry and Toxicology, April 26-27, 2005, Jogjakarta, Indonesia

Second International Seminar on Environmental Chemistry and Toxicology, April 26-27, 2005, Jogjakarta, Indonesia Optimization of Catalytic degradation of Plastic to Aromatics Over HY Zeolite Didi Dwi Anggoro Chemical Engineering Department, Diponegoro University Jl. Prof Sudharto SH, Tembalang, Semarang 50239, Indonesia

More information

Catalysts Applied in Low-Temperature Methane Oxidation

Catalysts Applied in Low-Temperature Methane Oxidation Polish J of Environ Stud Vol 17, No 3 (2008), 433-437 Original Research Catalytic Properties of Ag/ Catalysts Applied in Low-Temperature Methane Oxidation A Lewandowska*, I Kocemba, J Rynkowski Institute

More information

HANDBOOK SECOND EDITION. Edited by

HANDBOOK SECOND EDITION. Edited by HANDBOOK SECOND EDITION Edited by Martyn V. Twigg BSc, PhD, CChem., FRSC Catalytic Systems Division Johnson Matthey Plc. Formerly at the Catalysis Centre ICI Chemicals & Polymers Ltd MANSON PUBLISHING

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information Merging visible-light photoredox and copper catalysis

More information

Selective oxidation of methane to carbon monoxide on supported palladium catalyst

Selective oxidation of methane to carbon monoxide on supported palladium catalyst Applied Catalysis A: General, 80 (1992) Ll-L5 Elsevier Science Publishers B.V., Amsterdam Ll APCAT 2187 Selective oxidation of methane to carbon monoxide on supported palladium catalyst A.K. Bhattacharya*,

More information

Enhancing Stability of Platinum on Silica by Surface Modification - Application to CO Oxidation -

Enhancing Stability of Platinum on Silica by Surface Modification - Application to CO Oxidation - 2012 CLEERS Workshop Enhancing Stability of Platinum on Silica by Surface Modification - Application to CO Oxidation - Mi-Young Kim, Jae-Soon Choi, Todd J. Toops Emissions and Catalysis Research Group

More information

OCR Chemistry Checklist

OCR Chemistry Checklist Topic 1. Particles Video: The Particle Model Describe the main features of the particle model in terms of states of matter. Explain in terms of the particle model the distinction between physical changes

More information

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity

Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity Supporting Information Direct Synthesis of H 2 O 2 on AgPt Octahedra: The Importance of Ag-Pt Coordination for High H 2 O 2 Selectivity Neil M. Wilson, 1 Yung-Tin Pan, 1 Yu-Tsun Shao, 2 Jian-Min Zuo, 2

More information

Edexcel Chemistry Checklist

Edexcel Chemistry Checklist Topic 1. Key concepts in chemistry Video: Developing the atomic model Describe how and why the atomic model has changed over time. Describe the difference between the plum-pudding model of the atom and

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Glycerol as a Source for Fuels and Chemicals by Low-Temperature Catalytic Processing Ricardo R. Soares, Dante A. Simonetti, and James A. Dumesic*

More information

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide Modern Applied Science April, 29 Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide Xiujuan Chu & Hua Zhang (Corresponding author) Tianjin Municipal Key Lab of Fibres Modification and

More information

and their Maneuverable Application in Water Treatment

and their Maneuverable Application in Water Treatment Hierarchical Films of Layered Double Hydroxides by Using a Sol-Gel Process and their Maneuverable Application in Water Treatment Yufei Zhao, Shan He, Min Wei,* David G. Evans, Xue Duan State Key Laboratory

More information

Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol

Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol Masatoshi SUGIOKA* and Fujimi KIMURA Faculty of Engineering, Hokkaido University, North 13,

More information

Zn/H-ZSM-5 zeolite as catalyst for benzene alkylation with isobutane

Zn/H-ZSM-5 zeolite as catalyst for benzene alkylation with isobutane Prog. Catal, Vol. 13, No. 1-2, pp. 35-41 (24) Prog. Catal. Zn/H-ZSM-5 zeolite as catalyst for benzene alkylation with isobutane Adriana Urdă *, Ioan Săndulescu, Ioan-Cezar Marcu University of Bucharest,

More information

Hydrogen addition to the Andrussow process for HCN synthesis

Hydrogen addition to the Andrussow process for HCN synthesis Applied Catalysis A: General 201 (2000) 13 22 Hydrogen addition to the Andrussow process for HCN synthesis A.S. Bodke, D.A. Olschki, L.D. Schmidt Department of Chemical Engineering and Materials Science,

More information

Page 2. Q1.Which of these substances does not contribute to the greenhouse effect? Unburned hydrocarbons. Carbon dioxide. Water vapour. Nitrogen.

Page 2. Q1.Which of these substances does not contribute to the greenhouse effect? Unburned hydrocarbons. Carbon dioxide. Water vapour. Nitrogen. Q1.Which of these substances does not contribute to the greenhouse effect? A B C D Unburned hydrocarbons. Carbon dioxide. Water vapour. Nitrogen. (Total 1 mark) Q2.(a) The hydrocarbon but-1-ene (C 4H 8)

More information

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially 3.2 Alkanes Refining crude oil Fractional Distillation: Industrially Petroleum is a mixture consisting mainly of alkane hydrocarbons Petroleum fraction: mixture of hydrocarbons with a similar chain length

More information

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts N.D. Charisiou 1,2, A. Baklavaridis 1, V.G. Papadakis 2, M.A. Goula 1 1 Department of Environmental

More information

Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen

Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen Supporting Information for xidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen Zhongtian Du, a Jiping Ma, a,b Feng Wang, a Junxia Liu, a,b and Jie Xu a, * a State Key Laboratory

More information

A mini review on the chemistry and catalysis of the water gas shift reaction

A mini review on the chemistry and catalysis of the water gas shift reaction A mini review on the chemistry and catalysis of the water gas shift reaction Abstract: Bifunctional/bimetallic catalysts are a set of important catalytic materials that find their applications in many

More information

Personalised Learning Checklists AQA Chemistry Paper 2

Personalised Learning Checklists AQA Chemistry Paper 2 AQA Chemistry (8462) from 2016 Topics C4.6 The rate and extent of chemical change Calculate the rate of a chemical reaction over time, using either the quantity of reactant used or the quantity of product

More information

Strategic Estimation of Kinetic Parameters in VGO Cracking

Strategic Estimation of Kinetic Parameters in VGO Cracking Copyright 2009 Tech Science Press CMC, vol.9, no.1, pp.41-50, 2009 Strategic Estimation of Kinetic Parameters in VGO Cracking Praveen Ch. 1 and Shishir Sinha 1,2 Abstract: Fluid catalytic cracking (FCC)

More information

Effect of Alkali Metal Impurities on Co Re Catalysts for Fischer Tropsch Synthesis from Biomass-Derived Syngas

Effect of Alkali Metal Impurities on Co Re Catalysts for Fischer Tropsch Synthesis from Biomass-Derived Syngas Catal Lett (2010) 138:8 13 DOI 10.1007/s10562-010-0366-4 Effect of Alkali Metal Impurities on Co Re Catalysts for Fischer Tropsch Synthesis from Biomass-Derived Syngas Christine M. Balonek Andreas H. Lillebø

More information

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits.

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits. Fred Meunier fcm@ircelyon.univ-lyon1.fr Institut de Recherche sur la Catalyse et l Environnement de Lyon Villeurbanne,

More information

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Supporting Information for Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries Zhu-Yin Sui, Pei-Ying Zhang,, Meng-Ying Xu,

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Investigation of benzene and cycloparaffin containing hexane fractions skeletal isomerization on Pt/sulphated metal-oxide catalyst

Investigation of benzene and cycloparaffin containing hexane fractions skeletal isomerization on Pt/sulphated metal-oxide catalyst Investigation of benzene and cycloparaffin containing hexane fractions skeletal isomerization on Pt/sulphated metal-oxide catalyst Zsolt Szoboszlai*, Jenő Hancsók* *University of Pannonia, Institute of

More information

Acetylene hydrochlorination over 13X zeolite. catalyst at high temperature

Acetylene hydrochlorination over 13X zeolite. catalyst at high temperature Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Acetylene hydrochlorination over 13X zeolite catalyst at high temperature Zhijia Song, ab

More information

AQA Chemistry Checklist

AQA Chemistry Checklist Topic 1. Atomic structure Video: Atoms, elements, compounds, mixtures Use the names and symbols of the first 20 elements in the periodic table, the elements in Groups 1 and 7, and other elements in this

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Simulation of Methanol Production Process and Determination of Optimum Conditions

Simulation of Methanol Production Process and Determination of Optimum Conditions Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 145-151 Simulation

More information

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Supplementary Information ZIF-8 Immobilized Ni() Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Pei-Zhou Li, a,b Kengo Aranishi, a and Qiang Xu* a,b

More information

Initial carbon carbon bond formation during synthesis gas conversion to higher alcohols on K Cu Mg 5 CeO x catalysts

Initial carbon carbon bond formation during synthesis gas conversion to higher alcohols on K Cu Mg 5 CeO x catalysts Catalysis Letters 51 (1998) 47 52 47 Initial carbon carbon bond formation during synthesis gas conversion to higher alcohols on K Cu Mg 5 CeO x catalysts Mingting Xu and Enrique Iglesia Department of Chemical

More information

Catalytic Hydrodesulfurisation

Catalytic Hydrodesulfurisation CHAPTER 2 Catalytic Hydrodesulfurisation 1 The Process Although some of the organic sulfur compounds found in oil and other feedstocks can be removed by the absorption, adsorption and oxidation processes

More information

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Supporting Information (SI) A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Xiaoya Li, Mingming Yu, Faliu Yang, Xingjiang

More information

Assessment Schedule 2015 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932)

Assessment Schedule 2015 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932) NCEA Level 1 Chemistry (90932) 2015 page 1 of 6 Assessment Schedule 2015 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932) Evidence Statement Q Evidence Achievement Merit Excellence

More information

OH, is an important feedstock for the chemical industry.

OH, is an important feedstock for the chemical industry. 1 Methanol, CH 3 OH, is an important feedstock for the chemical industry. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction shown below. CO 2 (g)

More information