CARLEMAN ESTIMATE AND NULL CONTROLLABILITY OF A CASCADE DEGENERATE PARABOLIC SYSTEM WITH GENERAL CONVECTION TERMS

Size: px
Start display at page:

Download "CARLEMAN ESTIMATE AND NULL CONTROLLABILITY OF A CASCADE DEGENERATE PARABOLIC SYSTEM WITH GENERAL CONVECTION TERMS"

Transcription

1 Electronic Journal of Differential Equations, Vol ), No. 195, pp ISSN: URL: or CARLEMAN ESTIMATE AND NULL CONTROLLABILITY OF A CASCADE DEGENERATE PARABOLIC SYSTEM WITH GENERAL CONVECTION TERMS JIANING XU, CHUNPENG WANG, YUANYUAN NIE Abstract. This article shows Carleman estimate and null controllability of a cascade control system governed by the semilinear degenerate parabolic equations with the general convection terms. The semilinear parabolic equations are weakly degenerate on the boundary and the convection terms cannot be controlled by the diffusion terms. We establish the Carleman estimate and the observability inequality for the linear conjugate system, and prove that the control system is null controllable. 1. Introduction In this article, we study the Carleman estimate and the null controllability of the cascade semilinear degenerate parabolic system with convection terms u t x α u x ) x P 1 x, t, u)) x F 1 x, t, u) = hx, t)χ ω, x, t) Q T, 1.1) v t x α v x ) x P 2 x, t, v)) x F 2 x, t, u, v) =, x, t) Q T, 1.2) u, t) = v, t) =, u1, t) = v1, t) =, t, T ), 1.3) ux, ) = u x), vx, ) = v x), x, 1), 1.4) where < α < 1/2, Q T =, 1), T ), h is the control function, ω, 1) is an interval, χ ω is the characteristic function of ω, u, v L 2, 1), and P 1, P 2, F 1, F 2 are measurable functions. It is noted that 1.1) and 1.2) are degenerate at the boundary x =. The cascade system 1.1) and 1.2) arises in some models from mathematical biology and physics, such as the Keller-Segel model [6] and the Lotka- Volterra model [25]. Controllability theory has been widely investigated for nondegenerate parabolic equations and systems over the last forty years and the known results are almost complete see [3, 4, 5, 16, 18, 19, 2, 21, 22] and the references therein). Recently, controllability theory for degenerate ones has been studied and there have been many results see [1, 2, 7, 8, 9, 1, 11, 12, 13, 14, 15, 17, 23, 24, 26, 27, 28, 29, 31]). But it is far from being solved. The null controllability of the following system, governed by a degenerate diffusion equation, is already investigated u t x α u x ) x cx, t)u = hx, t)χ ω, x, t) Q T, 1.5) 21 Mathematics Subject Classification. 93B5, 93C2, 35K67. Key words and phrases. Carleman estimate; null controllability; convection; degenerate parabolic system. c 218 Texas State University. Submitted April 2, 218. Published December 6,

2 2 J. XU, C. WANG, Y. NIE EJDE-218/195 u, t) = u1, t) = if < α < 1, t, T ), x α u x ), t) = u1, t) = if α 1, t, T ), 1.6) ux, ) = u x), x, 1), 1.7) where α >, c L Q T ). It was shown that the system 1.5) 1.7) is null controllable if < α < 2 [1, 1, 11, 24], while not if α 2 [9]. Although system 1.5) 1.7) is not null controllable for α 2, it was proved in [14, 26, 27, 28] and [7, 8, 9] that it is approximately controllable in L 2, 1) and regional null controllable for each α >, respectively. Flores and Teresa [17] studied the degenerate convection-diffusion equation u t x α u x ) x x α/2 bx, t)u x cx, t)u = hx, t)χ ω, x, t) Q T 1.8) with b L Q T ) and proved that the system 1.8), 1.6) and 1.7) is null controllable for < α < 2. Clearly, the convection term can be controlled by the diffusion term in 1.8). Wang and Du [29] considered the degenerate convection-diffusion equation u t x α u x ) x bx, t)u) x cx, t)u = hx, t)χ ω, x, t) Q T, 1.9) and proved that system 1.9), 1.6) and 1.7) is null controllable if < α < 1/2. Here < α < 1/2 is optimal when one establishes the Carleman estimate in such a way as in [29]. Since 1.9) is degenerate, the convection term can cause essential differences. For example, problem 1.9), 1.6) and 1.7) is well-posed in the weakly degenerate case < α < 1), while may be ill-posed in the strongly degenerate case α 1) see [3, 32]). Moreover, the system u t x α u x ) x bx, t)u x cx, t)u = hx, t)χ ω, x, t) Q T with 1.6) and 1.7) was shown to be null controllable for < α < 1 if b, b x, b xx, b t L Q T ) in [31]. As for systems, the authors in [2] studied the null controllability of system 1.1) 1.4) without convection term, i.e. the case that P 1 = P 2 =. It was shown in [2] that the system is null controllable if < α < 2 a different boundary condition at x = is prescribed if 1 α < 2). Du and Xu [15] considered the linear case of system 1.1) 1.4) when the convection terms can be controlled by the diffusion terms. Furthermore, the Carleman estimate in [15] depends on the derivatives of the coefficients of the convection terms and cannot be used to treat the semilinear case. In this article, we consider the more general system 1.1) 1.4) where the convection terms are independent of the diffusion terms. More precisely, we assume that P 1, P 2, F 1, F 2 are measurable functions satisfying F 2x, t, y, z) y P 1 x, t, ) = P 2 x, t, ) = F 1 x, t, ) = F 2 x, t,, ) =, F 2 x, t,, ) C 1 R 2 ), x, t) Q T, P 1 x, t, y 1 ) P 1 x, t, y 2 ) K y 1 y 2, P 2 x, t, z 1 ) P 2 x, t, z 2 ) K z 1 z 2, F 1 x, t, y 1 ) F 1 x, t, y 2 ) K y 1 y 2, 1.1) 1.11) x, t) Q T, y 1, y 2, z 1, z 2 R, K, x, t) QT, y, z R, 1.12) K, F 2 x, t, y, z) z

3 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY 3 F 2 y c or x,x 1),T ) R 2 F 2 y c, 1.13) x,x 1),T ) R 2 where K >, c > and < x < x 1 < 1 such that x, x 1 ) ω. Since 1.1) and 1.2) are degenerate at the boundary x =, the classical solution may not exist and weak solution should be considered. The key to prove the null controllability of system 1.1) 1.4) is the Carleman estimate for its linear conjugate problem. The degeneracy of the equations and the existence of the general convection terms cause essential difficulties for the Carleman estimate. In order to establish the needed Carleman estimate for the degenerate parabolic system, we use the Carleman estimate for a single degenerate parabolic equation in [29], where the auxiliary functions for the Carleman estimate were chosen by the method of undetermined coefficients and it was turned out that only the case < α < 1/2 can be treated in such a way. Using the Carleman estimate in [29] and the classical Carleman estimate, together with some other energy estimates, we establish the Carleman estimate for the linear conjugate problem of problem 1.1) 1.4). Some technical difficulties caused by the degeneracy of the equations and the existence of the general convection terms have to be overcome. After the Carleman estimate, we establish the observability inequality and further prove the null controllability of system 1.1) 1.4). This article is organized as follows. In 2, we introduce the well-posedness of problem 1.1) 1.4) and some a priori estimates. The Carleman estimate and the observability inequality are established in 3. Finally, the null controllability of system 1.1) 1.4) is shown in Well-posedness and some a priori estimates Consider the linear nondegenerate parabolic problem u η t x η) α u η x) x c 1 x, t)u η ) x c 3 x, t)u η c 4 x, t)v η = f 1 x, t), x, t) Q T, v η t x η) α v η x) x c 2 x, t)v η ) x c 5 x, t)u η c 6 x, t)v η = f 2 x, t), x, t) Q T, 2.1) 2.2) u η, t) = v η, t) =, u η 1, t) = v η 1, t) =, t, T ), 2.3) u η x, ) = u x), v η x, ) = v x), x, 1), 2.4) where < α < 1, < η < 1, c i L Q T ) 1 i 6), f 1, f 2 L 2 Q T ), and u, v L 2, 1). The problem 2.1) 2.4) admits a unique solution u η, v η ) with u η, v η L, T ; L 2, 1)) L 2, T ; H 1, 1)). Moreover, u η, v η ) satisfies the following a priori estimates. Lemma 2.1. Assume that < α < 1, < η < 1, c i L Q T ) with c i L Q T ) K 1 i 6), f 1, f 2 L 2 Q T ), and u, v L 2, 1). Then the solution u η, v η ) to problem 2.1) 2.4) satisfies u η L,T ;L 2,1)) x η) α/2 u η x L 2 Q T ) v η L,T ;L 2,1)) x η) α/2 v η x L 2 Q T ) N f 1 L2 Q T ) f 2 L2 Q T ) u L2,1) v L2,1)), 2.5)

4 4 J. XU, C. WANG, Y. NIE EJDE-218/195 u η x, t 2 ) u η x, t 1 ))ςx) dx Nt 2 t 1 f 1 L2 Q T ) f 2 L2 Q T ) u L2,1) v η x, t 2 ) v η x, t 1 ))ςx) dx v L 2,1)) ς H 1,1), t 1 < t 2 T, ς H 1, 1), δ δ u η x, τ δ) u η x, τ)) 2 dx dτ v η x, τ δ) v η x, τ)) 2 dx dτ Nδ 1/2 f 1 2 L 2 Q T ) f 2 2 L 2 Q T ) u 2 L 2,1) v 2 L 2,1) ), < δ < T, 2.6) 2.7) where N > depends only on K, T, and α. Proof. Without loss of generality, it is assumed that u η, v η ) is a smooth solution. Otherwise, one can mollify c i 1 i 6), f 1, f 2, u, v, and prove the lemma by a standard limit process. For convenience, u η and v η are abbreviated as u and v, respectively, in this proof. For < s < T, multiplying 2.1) and 2.2) by u and v, respectively, then integrating over, 1), s) by parts and summing up, we obtain 1 2 = s s K 1 2 Therefore, s s s s u 2 ) t v 2 ) t ) dx dt c 1 uu x c 2 vv x ) dx dt f 1 u f 2 v) dx dt s s uu x vv x ) dx dt 2K f 1 u f 2 v ) dx dt x η) α u 2 x v 2 x) dx dt c 3 u 2 c 4 c 5 )uv c 6 v 2 ) dx dt s x η) α u 2 x v 2 x) dx dt 1 2 K2 s 2K 1 ) s 2 u 2 v 2 ) dx dt 1 2 u 2 v 2 ) dx dt s x η) α u 2 v 2 ) dx dt f 2 1 f 2 2 ) dx dt. u 2 x, s) v 2 x, s)) dx s u 2 x) v 2 x)) dx K 2 s κ α K 2 4K 1) x η) α u 2 x v 2 x) dx dt κ s x η) α u 2 v 2 ) dx dt u 2 v 2 ) dx dt s f 2 1 f 2 2 ) dx dt, 2.8)

5 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY 5 where < κ < 1 will be determined. It follows from 2.3) and < α < 1 that s κ s κ = s κ 1 1 α x η) α u 2 x, t) dx dt x η) α x 2 u x x, t) d x) dx dt κ x η) α x ) x ) x η) α d x x η) α u 2 x x, t) d x dx dt x η) 1 2α dx κ η)2 2α η 2 2α 21 α) 2 Similarly, it holds that s κ s κ s x η) α v 2 x, t) dx dt κ η)2 2α η 2 2α 21 α) 2 Take < κ < 1 so small that K 2 Substituting 2.9) 2.11) into 2.8) yields u 2 x, s) v 2 x, s)) dx 1 2 s x η) α u 2 xx, t) dx dt x η) α u 2 xx, t) dx dt. s x η) α v 2 xx, t) dx dt. 2.9) 2.1) max κ γ 1 γ)2 2α γ 2 2α ) 1 α) ) s u 2 x) v 2 x)) dx κ α K 2 4K 1) f 2 1 f 2 2 ) dx dt. x η) α u 2 x v 2 x) dx dt s u 2 v 2 ) dx dt 2.12) Then, 2.5) follows from 2.12) and the Gronwall inequality. For t 1 < t 2 T and ς H 1, 1), multiplying 2.1) and 2.2) by ς, and then integrating over, 1) t 1, t 2 ) by parts, we obtain ux, t 2 ) ux, t 1 ))ςx) dx t2 = t 1 t2 = x η) α u x ς x c 1 uς x c 3 uς c 4 vς f 1 ς) dx dt, vx, t 2 ) vx, t 1 ))ςx) dx t 1 x η) α v x ς x c 2 vς x c 5 uς c 6 vς f 2 ς) dx dt, which, together with the Hölder inequality and 2.5), lead to 2.6). It remains to prove 2.7). For < δ < T and < τ < T δ, multiplying 2.1) and 2.2) by ux, τ δ) ux, τ) and vx, τ δ) vx, τ), respectively, then integrating over

6 6 J. XU, C. WANG, Y. NIE EJDE-218/195 τ, τ δ) with respect to t and summing up, we obtain ux, τ δ) ux, τ)) 2 vx, τ δ) vx, τ)) 2 = τδ τ τδ τ τδ τ τδ τ τδ τ x η) α u x ) x ux, τ δ) ux, τ)) dt x η) α v x ) x vx, τ δ) vx, τ)) dt c 1 u) x ux, τ δ) ux, τ)) dt τδ f 1 c 3 u c 4 v)ux, τ δ) ux, τ)) dt f 2 c 5 u c 6 v)vx, τ δ) vx, τ)) dt. Integrating this equality by parts, over, 1), T δ), yields δ = ux, τ δ) ux, τ)) 2 dx dτ δ τδ τ δ τδ τ δ τδ τ δ τδ τ δ τδ τ ux, τ δ) ux, τ)) dt dx dτ δ τδ τ vx, τ δ) vx, τ)) dt dx dτ τδ T x η) α u 2 x dx dt δ T δ K T τ δ τδ τ δ τδ τ τ δ c 2 v) x vx, τ δ) vx, τ)) dt vx, τ δ) vx, τ)) 2 dx dτ x η) α u x x, t)u x x, τ δ) u x x, τ)) dt dx dτ x η) α v x x, t)v x x, τ δ) v x x, τ)) dt dx dτ c 1 x, t)ux, t)u x x, τ δ) u x x, τ)) dt dx dτ c 2 x, t)vx, t)v x x, τ δ) v x x, τ)) dt dx dτ f 1 x, t) c 3 x, t)ux, t) c 4 x, t)vx, t)) f 2 x, t) c 5 x, t)ux, t) c 6 x, t)vx, t)) x η) α u x x, τ δ) u x x, τ)) 2 dx dτ x η) α v 2 x dx dt x η) α v x x, τ δ) v x x, τ)) 2 dx dτ x η) α u 2 dx dt

7 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY 7 δ K T δ T δ T δ δ τδ τ δ τδ τ δ τδ τ δ 2T δ x η) α u x x, τ δ) u x x, τ)) 2 dx dτ x η) α v 2 dx dt x η) α v x x, τ δ) v x x, τ)) 2 dx dτ f 1 K u K v ) 2 dx dt ux, τ δ) ux, τ)) 2 dx dτ f 2 K u K v ) 2 dx dt vx, τ δ) vx, τ)) 2 dx dτ 2KT δ 2KT δ 23T δ 23T δ x η) α u 2 x dx dt 2T δ x η) α u 2 dx dt x η) α v 2 dx dt f1 2 K 2 u 2 K 2 v 2 ) dx dt f2 2 K 2 u 2 K 2 v 2 ) dx dt x η) α v 2 x dx dt x η) α u 2 x dx dt x η) α v 2 x dx dt For < κ < 1 satisfying 2.11), it follows from 2.9) and 2.1) that 1 2K 2 1 2K 2 x η) α u 2 dx dt x η) α u 2 x dx dt κ α x η) α v 2 dx dt x η) α v 2 x dx dt κ α Then, 2.7) follows from 2.13) 2.15) and 2.5). u 2 dx dt, v 2 dx dt. u 2 dx dt v 2 dx dt. 2.13) 2.14) 2.15) Using the a priori estimates in Lemma 2.1, one can prove the well-posedness of problem 1.1) 1.4). Proposition 2.2. Assume that < α < 1, and P 1, P 2, F 1, F 2 satisfy 1.1) 1.13). For h L 2 Q T ) and u, v L 2, 1), problem 1.1) 1.4) admits a unique solution u, v) H α Q T ) H α Q T ). Furthermore, u, v L, T ; L 2, 1))

8 8 J. XU, C. WANG, Y. NIE EJDE-218/195 C w [, T ]; L 2, 1)). Here, H α Q T ) = { w L 2 Q T ) : x α/2 w x L 2 Q T ) } and a function ξ C w [, T ]; L 2, 1)) means that ξx, t)γx) dx C[, T ]) for each γ L 2, 1). The proof of Proposition 2.2 is standard and is omitted here. We refer to [29, Theorem 2.1] for the single equation case. 3. Uniform Carleman estimate and observability inequality In this section, we prove the uniform Carleman estimate and the observability inequality for the linear nondegenerate conjugate system U η t x η) α U η x ) x c 1 x, t)u η x c 3 x, t)u η c 4 x, t)v η =, x, t) Q T, 3.1) V η t x η) α V η x ) x c 2 x, t)v η x c 5 x, t)v η =, x, t) Q T, 3.2) U η, t) = V η, t) =, U η 1, t) = V η 1, t) =, t, T ), 3.3) U η x, T ) = U T x), V η x, T ) = V T x), x, 1), 3.4) where < α < 1/2, < η < 1, c i L Q T ) 1 i 5), and U T, V T L 2, 1). Let ψ C [, 1]) satisfy = 1, x [, 3x 2x 1 )/5], ψ [, 1], x ω, =, x [2x 3x 1 )/5, 1], where ω = 3x 2x 1 )/5, 2x 3x 1 )/5) and ˆω = 4x x 1 )/5, x 4x 1 )/5). Set where ϕx, t) = θt)gx), Ψx, t) = θt) e 2ζ) e ζx)), x, t) Q T, Φx, t) = ψx)ϕx, t) 1 ψx))ψx, t), x, t) Q T, θt) = 1, t, T ), tt t)) 4 gx) = 8x η) 4 2α)/3 8), ζx) = 1 η) 1 α/2 x η) 1 α/2, x, 1). The Carleman estimate for the solution to problem 3.1) 3.4) is as follows. Theorem 3.1 Uniform Carleman estimate). Assume that < α < 1/2, < η < 1, c i L Q T ) with c i L Q T ) K 1 i 5), and c 4 x,x 1),T ) c or c 4 x,x 1),T ) c. There exist two constants s > and M > depending only on x, x 1, K, c, T, and α, such that for each U T, V T L 2, 1), the solution U η, V η ) to problem 3.1) 3.4) satisfies sθu η x ) 2 s 3 θ 3 U η ) 2 sθv η x ) 2 s 3 θ 3 V η ) 2 )e 2sΦ dx dt M U η ) 2 dx dt, s s. ω Proof. For convenience, U η and V η are abbreviated by U and V, respectively, in the proof. Without loss of generality, it is assumed that U, V C 2 Q T ). Set wx, t) = ψx)ux, t), W x, t) = ψx)v x, t), x, t) Q T. 3.5)

9 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY 9 Then, w, W ) solves where Set w t x η) α w x ) x = ρ 1, W t x η) α W x ) x = ρ 2, x, t) Q T, 3.6) ρ 1 = ϱ 1 c 1 w x c 3 w, ρ 2 = ϱ 2 c 2 W x c 5 W, x, t) Q T, 3.7) ϱ 1 = x η) α ψ U) x ψ x η) α U x c 1 ψ U c 4 ψv, x, t) Q T, 3.8) ϱ 2 = x η) α ψ V ) x ψ x η) α V x c 2 ψ V, x, t) Q T. 3.9) Y x, t) = e sϕx,t) wx, t), Zx, t) = e sϕx,t) W x, t), x, t) Q T. 3.1) From 3.6) it follows that e sϕ e sϕ Y ) t x η) α e sϕ Y ) x ) x ) = e sϕ ρ 1, x, t) Q T, e sϕ e sϕ Z) t x η) α e sϕ Z) x ) x ) = e sϕ ρ 2, x, t) Q T. From [29, Proposition 3.1], there exist three positive constants M 1, M 2, and s 1 depending only on T and α, such that for each s s 1, M 1 s x η) 4α 2)/3 θy 2 x Z 2 x) dx dt M 2 s 3 ρ 2 1 ρ 2 2)e 2sϕ dx dt. θ 3 Y 2 Z 2 ) dx dt This formula, together with 3.7) and 3.1), leads to that for each s s 1, M 1 s 2 M 3 x η) 4α 2)/3 θy 2 x Z 2 x) dx dt M 2 s 3 ϱ 2 1 ϱ 2 2)e 2sϕ dx dt θ 3 Y 2 Z 2 ) dx dt Y 2 x Z 2 x Y 2 Z 2 s 2 x η) 21 2α)/3 θ 2 Y 2 Z 2 )) dx dt, where M 3 > depends only on K, T, and α. Therefore, there exist s 2 s 1 and M 4 > depend only on K, T, and α, such that for each s s 2, s s 3 M 4 x η) 4α 2)/3 θe sϕ Y ) 2 x e sϕ Z) 2 x)e 2sϕ dx dt θ 3 Y 2 Z 2 ) dx dt ϱ 2 1 ϱ 2 2)e 2sϕ dx dt. From 3.11), < α < 1/2, 3.8) 3.1) and 3.5), we obtain sθw 2 x s 3 θ 3 w 2 sθw 2 x s 3 θ 3 W 2 )e 2sϕ dx dt M 5 U 2 Ux 2 V 2 Vx 2 )e 2sϕ dx dt ω 3.11) ) W 2 e 2sϕ dx dt, s s 2,

10 1 J. XU, C. WANG, Y. NIE EJDE-218/195 where M 5 > depends only on K, T, x, x 1, and α. Therefore, there exist s 3 s 2 and M 6 > depend only on K, T, x, x 1, and α, such that for each s s 3, sθw 2 x s 3 θ 3 w 2 sθw 2 x s 3 θ 3 W 2 )e 2sϕ dx dt M 6 U 2 Ux 2 V 2 Vx 2 )e 2sϕ dx dt. ω This formula, together with 3.5) and the definition of ψ, leads to that for each s s 3, Set 3x2x 1)/5 sθu 2 x s 3 θ 3 U 2 sθv 2 x s 3 θ 3 V 2 )e 2sΦ dx dt M 6 U 2 Ux 2 V 2 Vx 2 )e 2sϕ dx dt. ω qx, t) = 1 ψx))ux, t), Qx, t) = 1 ψx))v x, t), x, t) Q T. 3.12) From the classical Carleman estimate [1, Proposition 4.2], there exist s 4 > and M 7 > depend only on K, T, x, x 1, and α, such that for each s s 4, sθe ζ q 2 x s 3 θ 3 e 3ζ q 2 sθe ζ Q 2 x s 3 θ 3 e 3ζ Q 2 )e 2sΨ dx dt M 7 U 2 Ux 2 V 2 Vx 2 )e 2sΨ dx dt. ω This formula, and the definition of ψ, leads to 2x 3x 1)/5 sθe ζ U 2 x s 3 θ 3 e 3ζ U 2 sθe ζ V 2 x s 3 θ 3 e 3ζ V 2 )e 2sΦ dx dt M 7 U 2 Ux 2 V 2 Vx 2 )e 2sΨ dx dt, s s 4. ω It follows from 3.12), 3.13) and the definition of Φ, ϕ, Ψ, ψ that sθu 2 x s 3 θ 3 U 2 sθv 2 x s 3 θ 3 V 2 )e 2sΦ dx dt 3.13) M 8 U 2 Ux 2 V 2 Vx 2 )e 2sϕ e 2sΨ e 2sΦ ) dx dt 3.14) ω 3M 8 U 2 Ux 2 V 2 Vx 2 )e 2sΦ dx dt, s max{s 3, s 4 }, ω where M 8 > depends only on K, T, x, x 1, and α. Let ξ 1 C [, 1]) such that supp ξ 1 ˆω, ξ 1 1 in, 1) and ξ 1 1 in ω. For s >, 3.1) 3.3) show = = 2s d dt 2 ξ 2 1U 2 V 2 )e 2sΦ dx dt ξ 2 1Φ t U 2 V 2 )e 2sΦ dx dt ξ 2 1x η) α U 2 x x η) α V 2 x )e 2sΦ dx dt

11 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY s 2 ξ 1 ξ 1Ux η) α U x V x η) α V x )e 2sΦ dx dt ξ 2 1c 1 UU x c 2 V V x )e 2sΦ dx dt ξ 2 1Φ x Ux η) α U x V x η) α V x )e 2sΦ dx dt ξ 2 1c 3 U 2 c 5 V 2 c 4 UV )e 2sΦ dx dt, which leads to ξ 2 1x η) α U 2 x x η) α V 2 x )e 2sΦ dx dt 1 ξ 2 1x 2 η) α Ux 2 x η) α Vx 2 )e 2sΦ dx dt M 9 1 s 2 ) θ 2 U 2 V 2 )e 2sΦ dx dt, ˆω with M 9 > depending only on K, T, x, x 1, and α. Hence, for s >, Ux 2 Vx 2 )e 2sΦ dx dt M 1 1 s 2 ) ω θ 2 U 2 V 2 )e 2sΦ dx dt, 3.15) ˆω where M 1 > depends only on K, T, x, x 1, and α. From 3.14) and 3.15), there exist s 5 max{s 3, s 4 } and M 11 > depend only on K, T, x, x 1, and α, such that for each s s 5, sθux 2 s 3 θ 3 U 2 sθvx 2 s 3 θ 3 V 2 )e 2sΦ dx dt 3.16) M 11 U 2 V 2 )e 2sΦ dx dt. ˆω Let ξ 2 C [, 1]) such that supp ξ 2 x, x 1 ), ξ 2 1 in, 1) and ξ 2 1 in ˆω. Multiplying 3.1) by ξ 2 V e 2sΦ, then integrating by parts and using 3.2), one gets = 2 c 4 ξ 2 V 2 e 2sΦ dx dt x η) α ξ 2 U x V x e 2sΦ dx dt c 2 ξ 2 UV x e 2sΦ dx dt x η) α ξ 2 e 2sΦ ) x ) x e 2sΦ) UV e 2sΦ dx dt. c 1 ξ 2 U x V e 2sΦ dx dt c 3 c 5 2sΦ t )ξ ) The Hölder inequality gives 1 2 x η) α ξ 2 U x V x e 2sΦ dx dt θu 2 xe 2sΦ dx dt 1 2 θ 1 V 2 x e 2sΦ dx dt, 3.18)

12 12 J. XU, C. WANG, Y. NIE EJDE-218/195 and s2 ) c 1 ξ 2 U x V e 2sΦ dx dt θu 2 xe 2sΦ dx dt 1 2 K2 c 2 ξ 2 UV x e 2sΦ dx dt θvx 2 e 2sΦ dx dt 1 2 K2 θ 1 V 2 e 2sΦ dx dt, ω θ 1 U 2 e 2sΦ dx dt, c 3 c 5 2sΦ t )ξ 2 x η) α ξ 2 e 2sΦ ) x ) x e 2sΦ )UV e 2sΦ dx dt M 12 1 s 2 ) θ 3 V 2 e 2sΦ dx dt ω θ 3 U 2 e 2sΦ dx dt, 3.19) 3.2) 3.21) where M 12 > depends only on K, T, x, x 1, and α. Since c 4 x,x 1),T ) c or c 4 x,x 1),T ) c, it follows from 3.17) 3.21) and the definition of ξ 2 that c 3 2 V 2 e 2sΦ dx dt ˆω s2 ) M 12 1 s 2 ) θu 2 xe 2sΦ dx dt 1 2 θ 1 V 2 x e 2sΦ dx dt 1 2 K2 θ 3 V 2 e 2sΦ dx dt ω θv 2 x e 2sΦ dx dt θ 3 U 2 e 2sΦ dx dt. Then the theorem follows from 3.16) and 3.22). θ 1 U 2 V 2 )e 2sΦ dx dt 3.22) Below we prove the observability inequality for the solution to problem 3.1) 3.4). Theorem 3.2 Uniform observability inequality). Assume that < α < 1/2, < η < 1, c i L Q T ) with c i L Q T ) K 1 i 5), and c 4 x,x 1),T ) c or c 4 x,x 1),T ) c. There exists M > depending only on x, x 1, K, c, T, and α, but independent of η, such that for each U T, V T L 2, 1), the solution U η, V η ) to problem 3.1) 3.4) satisfies U η ) 2 x, ) V η ) 2 x, ))dx M U η ) 2 dx dt. Proof. As in Theorem 3.1, U η and V η are abbreviated by U and V, respectively, and it is assumed that U, V C 2 Q T ). Multiplying 3.1) and 3.2) by U and V, ω

13 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY 13 respectively, and then integrating over, 1) with respect to x, we obtain 1 d 2 dt =, 1 d 2 dt U 2 dx V 2 dx x η) α U 2 xdx x η) α V 2 x dx c 1 UU x dx c 2 V V x dx c 3 U 2 dx c 5 V 2 dx =, for t, T ). Using the Hölder inequality and the Hardy inequality yields d dt U 2 V 2 ) dx M where M > depends only on K and α. Hence U 2 x, ) V 2 x, )) dx e Mt Integrating 3.23) over [T/4, 3T/4] leads to T 2 U 2 x, ) V 2 x, )) dx e 3 MT/4 U 2 V 2 ) dx, t, T ), c 4 UV dx U 2 x, t) V 2 x, t)) dx, t, T ). 3.23) 3T/4 T/4 U 2 V 2 ) dx dt. 3.24) The theorem follows from 3.24), the Hardy inequality and Theorem 3.1. By a standard limit process, one can get the Carleman estimate and the observability inequality for the degenerate parabolic system U t x α U x ) x c 1 x, t)u x c 3 x, t)u c 4 x, t)v =, x, t) Q T, 3.25) V t x α V x ) x c 2 x, t)v x c 5 x, t)v =, x, t) Q T, 3.26) U, t) = V, t) =, U1, t) = V 1, t) =, t, T ), 3.27) Ux, T ) = U T x), V x, T ) = V T x), x, 1), 3.28) where < α < 1/2, c i L Q T ) 1 i 5), and U T, V T L 2, 1). Theorem 3.3. Assume that < α < 1/2, < η < 1, c i L Q T ) with c i L Q T ) K 1 i 5), and c x,x 4 c 1),T ) or c x,x 4 c 1),T ). There exist three positive constants s, M and M depending only on x, x 1, K, c, T, and α, such that for each U T, V T L 2, 1), the solution U, V ) to problem 3.25) 3.28) satisfies where M sθu 2 x s 3 θ 3 U 2 sθv 2 x s 3 θ 3 V 2 )e 2s Φ dx dt ω U 2 dx dt, s s, U 2 x, ) V 2 x, ))dx M ω U 2 dx dt, Φx, t) = 8θt)ψx)x 4 2α)/3 8) θt)1 ψx)) e 2 e 1 x1 α/2), for x, t) Q T.

14 14 J. XU, C. WANG, Y. NIE EJDE-218/ Null controllability In this section, we study the null controllability of system 1.1) 1.4). consider the nondegenerate parabolic system First u η t x η) α u η x) x P 1 x, t, u η )) x F 1 x, t, u η ) = h η χ ω, x, t) Q T, 4.1) v η t x η) α v η x) x P 2 x, t, v η )) x F 2 x, t, u η, v η ) =, x, t) Q T, 4.2) u η, t) = v η, t) =, u η 1, t) = v η 1, t) =, t, T ), 4.3) u η x, ) = u x), v η x, ) = v x), x, 1), 4.4) where < α < 1/2, < η < 1, and u, v L 2, 1). Lemma 4.1. Assume that < α < 1/2, < η < 1, and P 1, P 2, F 1, F 2 satisfy 1.1) 1.13). For each u, v L 2, 1), there exists h η L 2 Q T ), such that the solution u η, v η ) to problem 4.1) 4.4) satisfies u η x, T ) = v η x, T ) =, x, 1). 4.5) Furthermore, there exists M > depending only on x, x 1, K, c, T, and α, such that h η L2 Q T ) M u L2,1) v L2,1)). 4.6) Proof. For x, t, y, z) Q T R 2, set { P1x,t,y) P 1x,t,) y, y, c 1 x, t, y) =, y =, { P2x,t,z) P 2x,t,) c 2 x, t, z) = z, z,, z =, { F1x,t,y) F 1x,t,) y, y, c 3 x, t, y) =, y =, c 4 x, t, y, z) = F 2 y x, t, λy, λz) dλ, c 5x, t, y, z) = F 2 x, t, λy, λz) dλ. z Then, 1.11) 1.13) show that c 1, c 2, c 3 L Q T R) and c 4, c 5 L Q T R 2 ) satisfy c i L Q T R) K i = 1, 2, 3) c j L Q T R 2 ) K j = 4, 5), c 4 x,x 1),T ) R 2 c or c 4 x,x 1),T ) R 2 c. Let y, z L 2 Q T ). For ε >, consider the problem { min h 2 dx dt 1 u 2 x, T ) dx 1 } v 2 x, T ) dx : h L 2 Q T ), 4.7) ε ε where u, v) is the solution to the problem u t x η) α u x ) x c 1 x, t, yx, t))u) x c 3 x, t, yx, t))u = hχ ω, x, t) Q T, v t x η) α v x ) x c 2 x, t, zx, t))v) x c 4 x, t, yx, t), zx, t))u c 5 x, t, yx, t), zx, t))v =, x, t) Q T, 4.8) 4.9)

15 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY 15 u, t) = v, t) =, u1, t) = v1, t) =, t, T ), 4.1) ux, ) = u x), vx, ) = v x), x, 1). 4.11) As shown in [5], one can prove that problem 4.7) 4.11) admits a unique solution h η,ε,y,z = U η,ε,y,z χ ω, where U η,ε,y,z, V η,ε,y,z ) is the solution to the problem U η,ε,y,z t x η) α Ux η,ε,y,z ) x c 1 x, t, yx, t))ux η,ε,y,z c 3 x, t, yx, t))u η,ε,y,z c 4 x, t, yx, t), zx, t))v η,ε,y,z =, x, t) Q T, 4.12) V η,ε,y,z t x η) α Vx η,ε,y,z ) x c 2 x, t, zx, t))vx η,ε,y,z c 5 x, t, yx, t), zx, t))v η,ε,y,z =, x, t) Q T, 4.13) U η,ε,y,z, t) = V η,ε,y,z, t) =, U η,ε,y,z 1, t) = V η,ε,y,z 1, t) =, t, T ), 4.14) U η,ε,y,z x, T ) = 1 ε uη,ε,y,z x, T ), V η,ε,y,z x, T ) = 1 ε vη,ε,y,z x, T ), x, 1), 4.15) with u η,ε,y,z, v η,ε,y,z ) solving problem 4.8) 4.11) for h = h η,ε,y,z. Multiplying 4.8) with h = h η,ε,y,z, 4.9), 4.12) and 4.13) by U η,ε,y,z, V η,ε,y,z, u η,ε,y,z and v η,ε,y,z, respectively, and then integrating over Q T by parts, we obtain 1 ε = h η,ε,y,z χ ω U η,ε,y,z dx dt 1 ε v η,ε,y,z x, T )) 2 dx U η,ε,y,z x, )u x) dx u η,ε,y,z x, T )) 2 dx V η,ε,y,z x, )v x) dx. 4.16) It follows from 4.16), h η,ε,y,z = U η,ε,y,z χ ω, the Hölder inequality and Theorem 3.2 that h η,ε,y,z ) 2 dx dt 1 u η,ε,y,z x, T )) 2 dx 1 v η,ε,y,z x, T )) 2 dx ε ε M 2 M 2 U η,ε,y,z x, )u x) dx u 2 x) vx)) 2 dx 1 2M u 2 x) v 2 x)) dx 1 2 V η,ε,y,z x, )v x) dx U η,ε,y,z x, )) 2 V η,ε,y,z x, )) 2 ) dx h η,ε,y,z ) 2 dx dt, where M > depending only on x, x 1, K, c, T and α, is given in Theorem 3.2. Hence h η,ε,y,z ) 2 dx dt 2 u η,ε,y,z x, T )) 2 dx 2 v η,ε,y,z x, T )) 2 dx ε ε M u 2 x) v 2 x)) dx, 4.17)

16 16 J. XU, C. WANG, Y. NIE EJDE-218/195 which, together with Lemma 2.1, leads to u η,ε,y,z L,T ;L 2,1)) x η) α/2 u η,ε,y,z x L 2 Q T ) v η,ε,y,z L,T ;L 2,1)) x η) α/2 v η,ε,y,z x L2 Q T ) N h η,ε,y,z L 2 Q T ) u L 2,1) v L 2,1)) NM 1/2 1) u L 2,1) v L 2,1)), δ δ u η,ε,y,z x, τ δ) u η,ε,y,z x, τ)) 2 dx dτ v η,ε,y,z x, τ δ) v η,ε,y,z x, τ)) 2 dx dτ Nδ 1/2 h η,ε,y,z 2 L 2 Q T ) u 2 L 2,1) v 2 L 2,1) ) Nδ 1/2 M 1) u 2 L 2,1) v 2 L 2,1)), < δ < T, where N > depending only on K, T and α, is given in Lemma 2.1. Define with Λ ε : y, z) u η,ε,y,z, v η,ε,y,z ), y, z B R = {w L 2 Q T ) : w L 2 Q T ) R} R = NT 1/2 M 1/2 1) u L 2,1) v L 2,1)). 4.18) 4.19) It follows from 4.18) and 4.19) that Λ ε is a mapping from B R to B R, and Λ ε is compact and continuous. Therefore, the Schauder fixed point theorem yields that Λ ε admits a fixed point u η,ε, v η,ε ) B R B R, which solves problem 4.1) 4.4) with h = h η,ε = h η,ε,uη,ε,v η,ε. Moreover, 4.17) 4.19) yield M h η,ε ) 2 dx dt 2 ε u 2 x) v 2 x)) dx, u η,ε x, T )) 2 dx 2 ε v η,ε x, T )) 2 dx u η,ε L,T ;L 2,1)) x η) α/2 u η,ε x L 2 Q T ) v η,ε L,T ;L 2,1)) x η) α/2 v η,ε x L2 Q T ) NM 1/2 1) u L 2,1) v L 2,1)), δ δ u η,ε x, τ δ) u η,ε x, τ)) 2 dx dτ v η,ε x, τ δ) v η,ε x, τ)) 2 dx dτ Nδ 1/2 M 1) u 2 L 2,1) v 2 L 2,1) ). Then there is ε n, 1) with lim n ε n =, E m Q T with lim m meas E m =, h η L 2 Q T ) and u η, v η L, T ; L 2, 1)) L 2, T ; H 1, 1)), such that h η,εn h η, u η,εn u η, v η,εn v η, u η,εn x u η x, vx η,εn vx η in L 2 Q T ) as n, u η,εn u η, v η,εn v η uniformly in Q T \E m as n for each positive integer m, 4.2) 4.21) u η x, T ) = v η x, T ) =, x, 1), 4.22)

17 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY 17 h η ) 2 dx dt M It follows from 1.11), 1.12) and 4.21) that u 2 x) v 2 x)) dx. 4.23) P 1 x, t, u η,εn ) P 1 x, t, u η ), P 2 x, t, v η,εn ) P 2 x, t, v η ), F 1 x, t, u η,εn ) F 1 x, t, u η ), F 2 x, t, u η,εn, v η,εn ) F 2 x, t, u η, v η ) in L 2 Q T ) as n. 4.24) From 4.2) and 4.24), one can show that u η, v η ) is the solution to problem 4.1) 4.4). Finally, 4.5) and 4.6) follow from 4.22) and 4.23). Now we are ready to prove the null controllability of the degenerate parabolic system 1.1) 1.4). Theorem 4.2. Assume that < α < 1/2, and P 1, P 2, F 1, F 2 satisfy 1.1) 1.13). The system 1.1) 1.4) is null controllable. More precisely, for each u, v L 2, 1), there exists h L 2 Q T ), such that the solution u, v) to problem 1.1) 1.4) satisfies ux, T ) = vx, T ) =, x, 1). 4.25) Furthermore, there exists M > depending only on x, x 1, K, c, T, and α, such that h L2 Q T ) M u L2,1) v L2,1)). 4.26) Proof. For each < η < 1, Lemma 4.1 shows that there exists h η L 2 Q T ) with h η L2 Q T ) M u L2,1) v L2,1)), 4.27) such that the solution u η, v η ) to problem 4.1) 4.4) satisfies u η x, T ) = v η x, T ) =, x, 1), 4.28) where M > depends only on x, x 1, K, c, T, and α. Rewrite 4.1) and 4.2) into u η t x η) α u η x) x c 1 x, t)u η ) x c 3 x, t)u η = h η χ ω, x, t) Q T, v η t x η) α v η x) x c 2 x, t)v η ) x c 4 x, t)u η c 5 x, t)v η =, x, t) Q T, where for x, t) Q T, c 1 x, t) = c 2 x, t) = c 3 x, t) = c 4 x, t) = c 5 x, t) = { P1x,t,u η x,t)) P 1x,t,) u η x,t), u η x, t),, u η x, t) =, { P2x,t,v η x,t)) P 2x,t,) v η x,t), v η x, t),, v η x, t) =, { F1x,t,u η x,t)) F 1x,t,) u η x,t), u η x, t),, u η x, t) =, F 2 y x, t, λuη x, t), λv η x, t)) dλ, F 2 z x, t, λuη x, t), λv η x, t)) dλ.

18 18 J. XU, C. WANG, Y. NIE EJDE-218/195 Then, c i L Q T ) with c i L Q T ) K 1 i 5). Lemma 2.1 yields u η L,T ;L 2,1)) x η) α/2 u η x L 2 Q T ) v η L,T ;L 2,1)) x η) α/2 v η x L 2 Q T ) N h η L2 Q T ) u L2,1) v L2,1)), δ δ u η x, τ δ) u η x, τ)) 2 dx dτ v η x, τ δ) v η x, τ)) 2 dx dτ Nδ 1/2 h η 2 L 2 Q T ) u 2 L 2,1) v 2 L 2,1)), < δ < T, 4.29) 4.3) where N > depending only on K, T and α, is given in Lemma 2.1. By 4.27) 4.3), there exist η n, 1) with lim n η n =, E m Q T with lim m meas E m =, h L 2 Q T ) and u, v L, T ; L 2, 1)) H α, such that h ηn h, u ηn u, v ηn v, x η) α/2 u ηn x x α/2 u x, x η) α/2 vx ηn x α/2 v x in L 2 Q T ) as n, u ηn u, v ηn v uniformly in Q T \E m as n for each positive integer m, 4.31) 4.32) ux, T ) = vx, T ) =, x, 1), 4.33) h 2 dx dt M It follows from 1.11), 1.12) and 4.32) that P 1 x, t, u ηn ) P 1 x, t, u), u 2 x) v 2 x)) dx. 4.34) P 2 x, t, v ηn ) P 2 x, t, v), F 1 x, t, u ηn ) F 1 x, t, u), F 2 x, t, u ηn, v ηn ) F 2 x, t, u, v) 4.35) in L 2 Q T ) as n. From 4.31) and 4.35), one can show that u, v) solves problem 1.1) 1.4). Finally, 4.25) and 4.26) follow from 4.33) and 4.34). Acknowledgments. This research was supported by the National Natural Science Foundation of China No and ), the Natural Science Foundation for Young Scientists of Jilin Province No JH), and by the Scientific and Technological project of Jilin Provinces Education Department in Thirteenth Five-Year No. JJKH218114KJ). The authors would like to express their sincerely thanks to the referees and to the editor for their helpful comments on the original version of the paper. References [1] F. Alabau-Boussouira, P. Cannarsa, G. Fragnelli; Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 62) 26), [2] E. M. Ait, B. Hassi, F. Ammar Khodja, A. Hajjaj, L. Maniar; Null controllability of degenerate parabolic cascade systems, Portugal. Math., 683) 211), [3] F. Ammar Khodja, A. Benabdallah, C. Dupaix, I. Kostin; Controllability to the trajectories of phase-field models by one control force, SIAM J. Control Optim., 425) 23), [4] F. Ammar Khodja, A. Benabdallah, C. Dupaix, I. Kostin; Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var., 113) 25),

19 EJDE-218/195 CARLEMAN ESTIMATE AND NULL CONTROLLABILITY 19 [5] V. Barbu; Controllability of parabolic and Navier-Stokes equations, Sci. Math. Jpn., 561) 22), [6] H. M. Byrne, M. R. Owen; A new interpretation of the Keller-Segel model based on multiphase modelling, J. Math. Biol., 496) 24), [7] P. Cannarsa, G. Fragnelli; Null controllability of semilinear degenerate parabolic equations in bounded domains, Electron. J. Differential Equations, 26136) 26), 1 2. [8] P. Cannarsa, G. Fragnelli, J. Vancostenoble; Regional controllability of semilinear degenerate parabolic equations in bounded domains, J. Math. Anal. Appl., 322) 26), [9] P. Cannarsa, P. Martinez, J. Vancostenoble; Persistent regional null controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal., 34) 24), [1] P. Cannarsa, P. Martinez, J. Vancostenoble; Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 471) 28), [11] P. Cannarsa, P. Martinez, J. Vancostenoble; Null controllability of degenerate heat equations, Adv. Differential Equations, 12) 25), [12] P. Cannarsa, L. de Teresa; Controllability of 1-d coupled degenerate parabolic equations, Electron. J. Differential Equations, 2973) 29), [13] R. M. Du, C. P. Wang; Null controllability of a class of systems governed by coupled degenerate equations, Appl. Math. Lett., ), [14] R. M. Du, C. P. Wang, Q. Zhou; Approximate controllability of a semilinear system involving a fully nonlinear gradient term, Appl. Math. Optim., 71) 214), [15] R. M. Du, F. D. Xu; Null Controllability of a coupled degenerate system with the first order terms, J. Dyn. Control. Syst., 241) 218), [16] E. Fernández-Cara, E. Zuazua; Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Lineaire, 175) 2), [17] C. Flores, L. Teresa; Carleman estimates for degenerate parabolic equations with first order terms and applications, C. R. Math. Acad. Sci. Paris, Ser. I, ) 21), [18] A. V. Fursikov, O. Y. Imanuvilov; Controllability of evolution equations, Lecture Notes Series 34, Seoul National University, Seoul, Korea, [19] M. González-Burgos, R. Pérez-García; Controllability of some coupled parabolic systems by one control force, C. R. Math. Acad. Sci. Paris, 342)25), [2] M. González-Burgos, R. Pérez-García; Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptot. Anal., 462)26), [21] M. González-Burgos, L. de Teresa; Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Portugal. Math., 671) 21), [22] S. Guerrero; Null Controllability of some systems of two parabolic equations with one control force, SIAM J. Control Optim., 462) 27), [23] X. Liu, H. Gao, P. Lin; Null controllability of a cascade system of degenerate parabolic equations, Acta Math. Sci. A Chin. Ed., 286)28), [24] P. Martinez, J. Vancostenoble; Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 62) 26), [25] A. Schiaffino, A. Tesei; Competition systems with Dirichlet boundary conditions, J. Math. Biol., 151) 1982), [26] C. P. Wang; Approximate controllability of a class of degenerate systems, Appl. Math. Comput., 231) 28), [27] C. P. Wang; Approximate controllability of a class of semilinear systems with boundary degeneracy, J. Evol. Equ., 11) 21), [28] C. P. Wang and R. M. Du, Approximate controllability of a class of semilinear degenerate systems with convection term, J. Differential Equations, 2549)213), [29] C. P. Wang, R. M. Du; Carleman estimates and null controllability for a class of degenerate parabolic equations with convection terms, SIAM J. Control Optim., 523) 214), [3] C. P. Wang, L H. Wang, J. X. Yin, S. L.Zhou; Hölder continuity of weak solutions of a class of linear equations with boundary degeneracy, J. Differential Equations, 2391) 27), no. 1, [31] C. P. Wang, Y. N. Zhou, R. M. Du, Q. Liu; Carleman estimate for solutions to a degenerate convection-diffusion equation, Discrete Contin. Dyn. Syst. Ser. B, 231) 218), [32] J. X. Yin, C. P. Wang; Evolutionary weighted p-laplacian with boundary degeneracy, J. Differential Equations, 2372) 27),

20 2 J. XU, C. WANG, Y. NIE EJDE-218/195 Jianing Xu School of Mathematics, Jilin University, Changchun 1312, China address: Chunpeng Wang corresponding author) School of Mathematics, Jilin University, Changchun 1312, China address: Yuanyuan Nie School of Mathematics, Jilin University, Changchun 1312, China address:

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition

Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition Some recent results on controllability of coupled parabolic systems: Towards a Kalman condition F. Ammar Khodja Clermont-Ferrand, June 2011 GOAL: 1 Show the important differences between scalar and non

More information

Exact controllability of the superlinear heat equation

Exact controllability of the superlinear heat equation Exact controllability of the superlinear heat equation Youjun Xu 1,2, Zhenhai Liu 1 1 School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410075, P R China

More information

NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION SYSTEM WITH NONLOCAL SOURCES

NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION SYSTEM WITH NONLOCAL SOURCES Electronic Journal of Differential Equations, Vol. 2016 (2016, No. 45, pp. 1 5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu NON-EXTINCTION OF

More information

NULL CONTROLLABILITY FOR LINEAR PARABOLIC CASCADE SYSTEMS WITH INTERIOR DEGENERACY

NULL CONTROLLABILITY FOR LINEAR PARABOLIC CASCADE SYSTEMS WITH INTERIOR DEGENERACY Electronic Journal of Differential Equations, Vol. 16 (16), No. 5, pp. 1. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu NULL CONTROLLABILITY FOR LINEAR PARABOLIC CASCADE

More information

Controllability results for cascade systems of m coupled parabolic PDEs by one control force

Controllability results for cascade systems of m coupled parabolic PDEs by one control force Portugal. Math. (N.S.) Vol. xx, Fasc., x, xxx xxx Portugaliae Mathematica c European Mathematical Society Controllability results for cascade systems of m coupled parabolic PDEs by one control force Manuel

More information

EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY

EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY Electronic Journal of Differential Equations, Vol. 216 216), No. 329, pp. 1 22. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN

More information

Insensitizing controls for the Boussinesq system with no control on the temperature equation

Insensitizing controls for the Boussinesq system with no control on the temperature equation Insensitizing controls for the Boussinesq system with no control on the temperature equation N. Carreño Departamento de Matemática Universidad Técnica Federico Santa María Casilla 110-V, Valparaíso, Chile.

More information

New phenomena for the null controllability of parabolic systems: Minim

New phenomena for the null controllability of parabolic systems: Minim New phenomena for the null controllability of parabolic systems F.Ammar Khodja, M. González-Burgos & L. de Teresa Aix-Marseille Université, CNRS, Centrale Marseille, l2m, UMR 7373, Marseille, France assia.benabdallah@univ-amu.fr

More information

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL Electronic Journal of Differential Equations, Vol. 217 (217), No. 289, pp. 1 6. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS

More information

OBSERVABILITY INEQUALITY AND DECAY RATE FOR WAVE EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

OBSERVABILITY INEQUALITY AND DECAY RATE FOR WAVE EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 27 (27, No. 6, pp. 2. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu OBSERVABILITY INEQUALITY AND DECAY RATE FOR WAVE EQUATIONS

More information

LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS

LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS Electronic Journal of Differential Equations, Vol. 21(21), No. 17, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu LIFE SPAN OF BLOW-UP

More information

1 Introduction. Controllability and observability

1 Introduction. Controllability and observability Matemática Contemporânea, Vol 31, 00-00 c 2006, Sociedade Brasileira de Matemática REMARKS ON THE CONTROLLABILITY OF SOME PARABOLIC EQUATIONS AND SYSTEMS E. Fernández-Cara Abstract This paper is devoted

More information

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 13, pp. 1 15. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL

More information

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION Electronic Journal of Differential Equations, Vol. 013 (013), No. 3, pp. 1 6. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu OSGOOD TYPE REGULARITY

More information

BLOW-UP AND EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION EQUATION WITH HOMOGENEOUS NEUMANN BOUNDARY CONDITIONS

BLOW-UP AND EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION EQUATION WITH HOMOGENEOUS NEUMANN BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 016 (016), No. 36, pp. 1 10. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu BLOW-UP AND EXTINCTION OF SOLUTIONS TO A FAST

More information

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM Electronic Journal of Differential Euations, Vol. 22 (22), No. 26, pp. 9. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SIMULTANEOUS AND NON-SIMULTANEOUS

More information

Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain

Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain Nicolás Carreño Université Pierre et Marie Curie-Paris 6 UMR 7598 Laboratoire

More information

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 139, pp. 1 9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SEMILINEAR ELLIPTIC

More information

BLOW-UP OF SOLUTIONS FOR VISCOELASTIC EQUATIONS OF KIRCHHOFF TYPE WITH ARBITRARY POSITIVE INITIAL ENERGY

BLOW-UP OF SOLUTIONS FOR VISCOELASTIC EQUATIONS OF KIRCHHOFF TYPE WITH ARBITRARY POSITIVE INITIAL ENERGY Electronic Journal of Differential Equations, Vol. 6 6, No. 33, pp. 8. ISSN: 7-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu BLOW-UP OF SOLUTIONS FOR VISCOELASTIC EQUATIONS OF KIRCHHOFF

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 46, No. 2, pp. 379 394 c 2007 Society for Industrial and Applied Mathematics NULL CONTROLLABILITY OF SOME SYSTEMS OF TWO PARABOLIC EUATIONS WITH ONE CONTROL FORCE SERGIO GUERRERO

More information

BLOW-UP OF SOLUTIONS FOR A NONLINEAR WAVE EQUATION WITH NONNEGATIVE INITIAL ENERGY

BLOW-UP OF SOLUTIONS FOR A NONLINEAR WAVE EQUATION WITH NONNEGATIVE INITIAL ENERGY Electronic Journal of Differential Equations, Vol. 213 (213, No. 115, pp. 1 8. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu BLOW-UP OF SOLUTIONS

More information

The Singular Diffusion Equation with Boundary Degeneracy

The Singular Diffusion Equation with Boundary Degeneracy The Singular Diffusion Equation with Boundary Degeneracy QINGMEI XIE Jimei University School of Sciences Xiamen, 36 China xieqingmei@63com HUASHUI ZHAN Jimei University School of Sciences Xiamen, 36 China

More information

SUPER-QUADRATIC CONDITIONS FOR PERIODIC ELLIPTIC SYSTEM ON R N

SUPER-QUADRATIC CONDITIONS FOR PERIODIC ELLIPTIC SYSTEM ON R N Electronic Journal of Differential Equations, Vol. 015 015), No. 17, pp. 1 11. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SUPER-QUADRATIC CONDITIONS

More information

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS Electronic Journal of Differential Equations, Vol. 16 16, No. 7, pp. 1 11. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu UNIFORM DECAY OF SOLUTIONS

More information

Contrôlabilité de quelques systèmes gouvernés par des equations paraboliques.

Contrôlabilité de quelques systèmes gouvernés par des equations paraboliques. Contrôlabilité de quelques systèmes gouvernés par des equations paraboliques. Michel Duprez LMB, université de Franche-Comté 26 novembre 2015 Soutenance de thèse M. Duprez Controllability of some systems

More information

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS Electronic Journal of Differential Equations, Vol. 017 (017), No. 15, pp. 1 7. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC

More information

Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy

Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy Electronic Journal of Qualitative Theory of Differential Equations 26, No. 5, -2; http://www.math.u-szeged.hu/ejqtde/ Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy Zejia

More information

NULL CONTROLLABILITY OF DEGENERATE/SINGULAR PARABOLIC EQUATIONS

NULL CONTROLLABILITY OF DEGENERATE/SINGULAR PARABOLIC EQUATIONS Journal of Dynamical and Control Systems, Vol. 18, No., October 1, 573 6 ( c 1) DOI: 1.17/s1883-1-916-5 NULL CONTROLLABILITY OF DEGENERATE/SINGULAR PARABOLIC EQUATIONS M. FOTOUHI and L. SALIMI Abstract.

More information

NULL CONTROLLABILITY OF POPULATION DYNAMICS WITH INTERIOR DEGENERACY. 1. Introduction

NULL CONTROLLABILITY OF POPULATION DYNAMICS WITH INTERIOR DEGENERACY. 1. Introduction Electronic Journal of Differential Euations, Vol. 217 (217, No. 131, pp. 1 21. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu NULL CONTROLLABILITY OF POPULATION DYNAMICS

More information

WELL-POSEDNESS AND EXPONENTIAL DECAY OF SOLUTIONS FOR A TRANSMISSION PROBLEM WITH DISTRIBUTED DELAY

WELL-POSEDNESS AND EXPONENTIAL DECAY OF SOLUTIONS FOR A TRANSMISSION PROBLEM WITH DISTRIBUTED DELAY Electronic Journal of Differential Equations, Vol. 7 (7), No. 74, pp. 3. ISSN: 7-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu WELL-POSEDNESS AND EXPONENTIAL DECAY OF SOLUTIONS FOR

More information

NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS

NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS Fixed Point Theory, Volume 9, No. 1, 28, 3-16 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS GIOVANNI ANELLO Department of Mathematics University

More information

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1)

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1) Title On the stability of contact Navier-Stokes equations with discont free b Authors Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 4 Issue 4-3 Date Text Version publisher URL

More information

Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs

Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs Global Carleman inequalities and theoretical and numerical control results for systems governed by PDEs Enrique FERNÁNDEZ-CARA Dpto. E.D.A.N. - Univ. of Sevilla joint work with A. MÜNCH Lab. Mathématiques,

More information

CONTROLLABILITY OF NONLINEAR DEGENERATE PARABOLIC CASCADE SYSTEMS

CONTROLLABILITY OF NONLINEAR DEGENERATE PARABOLIC CASCADE SYSTEMS Electronic Journal of Differential Equations, Vol. 216 (216), No. 219, pp. 1 25. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu CONTROLLABILITY OF NONLINEAR DEGENERATE PARABOLIC

More information

DECAY ESTIMATES FOR THE KLEIN-GORDON EQUATION IN CURVED SPACETIME

DECAY ESTIMATES FOR THE KLEIN-GORDON EQUATION IN CURVED SPACETIME Electronic Journal of Differential Equations, Vol. 218 218), No. 17, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu DECAY ESTIMATES FOR THE KLEIN-GORDON EQUATION

More information

MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN

MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN Electronic Journal of Differential Equations, Vol. 016 (016), No. 97, pp. 1 11. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE SOLUTIONS

More information

WEAK ASYMPTOTIC SOLUTION FOR A NON-STRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS-II

WEAK ASYMPTOTIC SOLUTION FOR A NON-STRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS-II Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 94, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu WEAK ASYMPTOTIC

More information

UNIQUENESS OF SELF-SIMILAR VERY SINGULAR SOLUTION FOR NON-NEWTONIAN POLYTROPIC FILTRATION EQUATIONS WITH GRADIENT ABSORPTION

UNIQUENESS OF SELF-SIMILAR VERY SINGULAR SOLUTION FOR NON-NEWTONIAN POLYTROPIC FILTRATION EQUATIONS WITH GRADIENT ABSORPTION Electronic Journal of Differential Equations, Vol. 2015 2015), No. 83, pp. 1 9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu UNIQUENESS OF SELF-SIMILAR

More information

NONLINEAR SINGULAR HYPERBOLIC INITIAL BOUNDARY VALUE PROBLEMS

NONLINEAR SINGULAR HYPERBOLIC INITIAL BOUNDARY VALUE PROBLEMS Electronic Journal of Differential Equations, Vol. 217 (217, No. 277, pp. 1 11. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu NONLINEAR SINGULAR HYPERBOLIC INITIAL BOUNDARY

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 42 (2016), No. 1, pp. 129 141. Title: On nonlocal elliptic system of p-kirchhoff-type in Author(s): L.

More information

Memoirs on Differential Equations and Mathematical Physics

Memoirs on Differential Equations and Mathematical Physics Memoirs on Differential Equations and Mathematical Physics Volume 51, 010, 93 108 Said Kouachi and Belgacem Rebiai INVARIANT REGIONS AND THE GLOBAL EXISTENCE FOR REACTION-DIFFUSION SYSTEMS WITH A TRIDIAGONAL

More information

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES Electronic Journal of Differential Equations, Vol. 2008(2008), No. 76, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) ELLIPTIC

More information

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 05, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE OF NONTRIVIAL

More information

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University The 2D Magnetohydrodynamic Equations with Partial Dissipation Jiahong Wu Oklahoma State University IPAM Workshop Mathematical Analysis of Turbulence IPAM, UCLA, September 29-October 3, 2014 1 / 112 Outline

More information

Heat equations with singular potentials: Hardy & Carleman inequalities, well-posedness & control

Heat equations with singular potentials: Hardy & Carleman inequalities, well-posedness & control Outline Heat equations with singular potentials: Hardy & Carleman inequalities, well-posedness & control IMDEA-Matemáticas & Universidad Autónoma de Madrid Spain enrique.zuazua@uam.es Analysis and control

More information

HIGHER ORDER CRITERION FOR THE NONEXISTENCE OF FORMAL FIRST INTEGRAL FOR NONLINEAR SYSTEMS. 1. Introduction

HIGHER ORDER CRITERION FOR THE NONEXISTENCE OF FORMAL FIRST INTEGRAL FOR NONLINEAR SYSTEMS. 1. Introduction Electronic Journal of Differential Equations, Vol. 217 (217), No. 274, pp. 1 11. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu HIGHER ORDER CRITERION FOR THE NONEXISTENCE

More information

Non-radial solutions to a bi-harmonic equation with negative exponent

Non-radial solutions to a bi-harmonic equation with negative exponent Non-radial solutions to a bi-harmonic equation with negative exponent Ali Hyder Department of Mathematics, University of British Columbia, Vancouver BC V6TZ2, Canada ali.hyder@math.ubc.ca Juncheng Wei

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

THE CAUCHY PROBLEM AND STEADY STATE SOLUTIONS FOR A NONLOCAL CAHN-HILLIARD EQUATION

THE CAUCHY PROBLEM AND STEADY STATE SOLUTIONS FOR A NONLOCAL CAHN-HILLIARD EQUATION Electronic Journal of Differential Equations, Vol. 24(24), No. 113, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) THE CAUCHY

More information

CONTROLLABILITY OF FAST DIFFUSION COUPLED PARABOLIC SYSTEMS

CONTROLLABILITY OF FAST DIFFUSION COUPLED PARABOLIC SYSTEMS CONTROLLABILITY OF FAST DIFFUSION COUPLED PARABOLIC SYSTEMS FELIPE WALLISON CHAVES-SILVA, SERGIO GUERRERO, AND JEAN PIERRE PUEL Abstract. In this work we are concerned with the null controllability of

More information

Nonlinear stabilization via a linear observability

Nonlinear stabilization via a linear observability via a linear observability Kaïs Ammari Department of Mathematics University of Monastir Joint work with Fathia Alabau-Boussouira Collocated feedback stabilization Outline 1 Introduction and main result

More information

HOW TO APPROXIMATE THE HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS BY NONLOCAL DIFFUSION PROBLEMS. 1. Introduction

HOW TO APPROXIMATE THE HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS BY NONLOCAL DIFFUSION PROBLEMS. 1. Introduction HOW TO APPROXIMATE THE HEAT EQUATION WITH NEUMANN BOUNDARY CONDITIONS BY NONLOCAL DIFFUSION PROBLEMS CARMEN CORTAZAR, MANUEL ELGUETA, ULIO D. ROSSI, AND NOEMI WOLANSKI Abstract. We present a model for

More information

DATA ASSIMILATION AND NULL CONTROLLABILITY OF DEGENERATE/SINGULAR PARABOLIC PROBLEMS

DATA ASSIMILATION AND NULL CONTROLLABILITY OF DEGENERATE/SINGULAR PARABOLIC PROBLEMS Electronic Journal of Differential Equations, Vol. 217 (217), No. 135, pp. 1 17. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu DATA ASSIMILATION AND NULL CONTROLLABILITY

More information

NODAL PROPERTIES FOR p-laplacian SYSTEMS

NODAL PROPERTIES FOR p-laplacian SYSTEMS Electronic Journal of Differential Equations, Vol. 217 (217), No. 87, pp. 1 8. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu NODAL PROPERTIES FOR p-laplacian SYSTEMS YAN-HSIOU

More information

arxiv: v1 [math.ap] 11 Jun 2007

arxiv: v1 [math.ap] 11 Jun 2007 Inverse Conductivity Problem for a Parabolic Equation using a Carleman Estimate with One Observation arxiv:0706.1422v1 [math.ap 11 Jun 2007 November 15, 2018 Patricia Gaitan Laboratoire d Analyse, Topologie,

More information

GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC SYSTEM

GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC SYSTEM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 35, Number 4, April 7, Pages 7 7 S -99396)8773-9 Article electronically published on September 8, 6 GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC

More information

REGULARITY CRITERIA FOR WEAK SOLUTIONS TO 3D INCOMPRESSIBLE MHD EQUATIONS WITH HALL TERM

REGULARITY CRITERIA FOR WEAK SOLUTIONS TO 3D INCOMPRESSIBLE MHD EQUATIONS WITH HALL TERM Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 10, pp. 1 12. ISSN: 1072-6691. UL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EGULAITY CITEIA FO WEAK SOLUTIONS TO D INCOMPESSIBLE

More information

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 11, Number 1, July 004 pp. 189 04 ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS Tian Ma Department of

More information

arxiv: v1 [math.oc] 23 Aug 2017

arxiv: v1 [math.oc] 23 Aug 2017 . OBSERVABILITY INEQUALITIES ON MEASURABLE SETS FOR THE STOKES SYSTEM AND APPLICATIONS FELIPE W. CHAVES-SILVA, DIEGO A. SOUZA, AND CAN ZHANG arxiv:1708.07165v1 [math.oc] 23 Aug 2017 Abstract. In this paper,

More information

Abstract In this paper, we consider bang-bang property for a kind of timevarying. time optimal control problem of null controllable heat equation.

Abstract In this paper, we consider bang-bang property for a kind of timevarying. time optimal control problem of null controllable heat equation. JOTA manuscript No. (will be inserted by the editor) The Bang-Bang Property of Time-Varying Optimal Time Control for Null Controllable Heat Equation Dong-Hui Yang Bao-Zhu Guo Weihua Gui Chunhua Yang Received:

More information

A quantitative Fattorini-Hautus test: the minimal null control time problem in the parabolic setting

A quantitative Fattorini-Hautus test: the minimal null control time problem in the parabolic setting A quantitative Fattorini-Hautus test: the minimal null control time problem in the parabolic setting Morgan MORANCEY I2M, Aix-Marseille Université August 2017 "Controllability of parabolic equations :

More information

JUNXIA MENG. 2. Preliminaries. 1/k. x = max x(t), t [0,T ] x (t), x k = x(t) dt) k

JUNXIA MENG. 2. Preliminaries. 1/k. x = max x(t), t [0,T ] x (t), x k = x(t) dt) k Electronic Journal of Differential Equations, Vol. 29(29), No. 39, pp. 1 7. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu POSIIVE PERIODIC SOLUIONS

More information

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Hongjun Gao Institute of Applied Physics and Computational Mathematics 188 Beijing, China To Fu Ma Departamento de Matemática

More information

On the bang-bang property of time optimal controls for infinite dimensional linear systems

On the bang-bang property of time optimal controls for infinite dimensional linear systems On the bang-bang property of time optimal controls for infinite dimensional linear systems Marius Tucsnak Université de Lorraine Paris, 6 janvier 2012 Notation and problem statement (I) Notation: X (the

More information

Remarks on global controllability for the Burgers equation with two control forces

Remarks on global controllability for the Burgers equation with two control forces Ann. I. H. Poincaré AN 4 7) 897 96 www.elsevier.com/locate/anihpc Remarks on global controllability for the Burgers equation with two control forces S. Guerrero a,,1, O.Yu. Imanuvilov b, a Laboratoire

More information

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Stability of an abstract wave equation with delay and a Kelvin Voigt damping Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMV-UVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability

More information

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 2015 (2015), o. 274, pp. 1 9. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE SOLUTIOS

More information

y(x,t;τ,v) 2 dxdt, (1.2) 2

y(x,t;τ,v) 2 dxdt, (1.2) 2 A LOCAL RESULT ON INSENSITIZING CONTROLS FOR A SEMILINEAR HEAT EUATION WITH NONLINEAR BOUNDARY FOURIER CONDITIONS OLIVIER BODART, MANUEL GONZÁLEZ-BURGOS, AND ROSARIO PÉREZ-GARCÍA Abstract. In this paper

More information

A Bang-Bang Principle of Time Optimal Internal Controls of the Heat Equation

A Bang-Bang Principle of Time Optimal Internal Controls of the Heat Equation arxiv:math/6137v1 [math.oc] 9 Dec 6 A Bang-Bang Principle of Time Optimal Internal Controls of the Heat Equation Gengsheng Wang School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, 437,

More information

Robust Stackelberg controllability for a heat equation Recent Advances in PDEs: Analysis, Numerics and Control

Robust Stackelberg controllability for a heat equation Recent Advances in PDEs: Analysis, Numerics and Control Robust Stackelberg controllability for a heat equation Recent Advances in PDEs: Analysis, Numerics and Control Luz de Teresa Víctor Hernández Santamaría Supported by IN102116 of DGAPA-UNAM Robust Control

More information

Dissipative quasi-geostrophic equations with L p data

Dissipative quasi-geostrophic equations with L p data Electronic Journal of Differential Equations, Vol. (), No. 56, pp. 3. ISSN: 7-669. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Dissipative quasi-geostrophic

More information

REGULARITY OF GENERALIZED NAVEIR-STOKES EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY

REGULARITY OF GENERALIZED NAVEIR-STOKES EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY Electronic Journal of Differential Equations, Vol. 00(00), No. 05, pp. 5. ISSN: 07-669. UR: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu REGUARITY OF GENERAIZED NAVEIR-STOKES

More information

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces Nonlinear Analysis 74 (11) 5 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A regularity criterion for the 3D magneto-micropolar fluid equations

More information

Large time behavior of solutions of the p-laplacian equation

Large time behavior of solutions of the p-laplacian equation Large time behavior of solutions of the p-laplacian equation Ki-ahm Lee, Arshak Petrosyan, and Juan Luis Vázquez Abstract We establish the behavior of the solutions of the degenerate parabolic equation

More information

A HYPERBOLIC PROBLEM WITH NONLINEAR SECOND-ORDER BOUNDARY DAMPING. G. G. Doronin, N. A. Lar kin, & A. J. Souza

A HYPERBOLIC PROBLEM WITH NONLINEAR SECOND-ORDER BOUNDARY DAMPING. G. G. Doronin, N. A. Lar kin, & A. J. Souza Electronic Journal of Differential Equations, Vol. 1998(1998), No. 28, pp. 1 1. ISSN: 172-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp 147.26.13.11 or 129.12.3.113 (login: ftp) A

More information

GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A PETROVSKY EQUATION WITH GENERAL NONLINEAR DISSIPATION AND SOURCE TERM

GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A PETROVSKY EQUATION WITH GENERAL NONLINEAR DISSIPATION AND SOURCE TERM Georgian Mathematical Journal Volume 3 (26), Number 3, 397 4 GLOBAL EXITENCE AND ENERGY DECAY OF OLUTION TO A PETROVKY EQUATION WITH GENERAL NONLINEAR DIIPATION AND OURCE TERM NOUR-EDDINE AMROUN AND ABBE

More information

LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S PARABOLIC-HYPERBOLIC COMPRESSIBLE NON-ISOTHERMAL MODEL FOR LIQUID CRYSTALS

LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S PARABOLIC-HYPERBOLIC COMPRESSIBLE NON-ISOTHERMAL MODEL FOR LIQUID CRYSTALS Electronic Journal of Differential Equations, Vol. 017 (017), No. 3, pp. 1 8. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S

More information

Hardy inequalities, heat kernels and wave propagation

Hardy inequalities, heat kernels and wave propagation Outline Hardy inequalities, heat kernels and wave propagation Basque Center for Applied Mathematics (BCAM) Bilbao, Basque Country, Spain zuazua@bcamath.org http://www.bcamath.org/zuazua/ Third Brazilian

More information

POINCARE INEQUALITY AND CAMPANATO ESTIMATES FOR WEAK SOLUTIONS OF PARABOLIC EQUATIONS

POINCARE INEQUALITY AND CAMPANATO ESTIMATES FOR WEAK SOLUTIONS OF PARABOLIC EQUATIONS Electronic Journal of Differential Equation, Vol. 206 (206), No. 204, pp. 8. ISSN: 072-669. URL: http://ejde.math.txtate.edu or http://ejde.math.unt.edu POINCARE INEQUALITY AND CAMPANATO ESTIMATES FOR

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR FULLY NONLINEAR ELLIPTIC EQUATIONS

LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR FULLY NONLINEAR ELLIPTIC EQUATIONS Electronic Journal of Differential Equations, Vol. 27 27), No. 2, pp. 3. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR FULLY NONLINEAR

More information

Stationary distribution and pathwise estimation of n-species mutualism system with stochastic perturbation

Stationary distribution and pathwise estimation of n-species mutualism system with stochastic perturbation Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 6), 936 93 Research Article Stationary distribution and pathwise estimation of n-species mutualism system with stochastic perturbation Weiwei

More information

MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS WITH THE SECOND HESSIAN

MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS WITH THE SECOND HESSIAN Electronic Journal of Differential Equations, Vol 2016 (2016), No 289, pp 1 16 ISSN: 1072-6691 URL: http://ejdemathtxstateedu or http://ejdemathuntedu MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS

More information

GENERATORS WITH INTERIOR DEGENERACY ON SPACES OF L 2 TYPE

GENERATORS WITH INTERIOR DEGENERACY ON SPACES OF L 2 TYPE Electronic Journal of Differential Equations, Vol. 22 (22), No. 89, pp. 3. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GENERATORS WITH INTERIOR

More information

Conservative Control Systems Described by the Schrödinger Equation

Conservative Control Systems Described by the Schrödinger Equation Conservative Control Systems Described by the Schrödinger Equation Salah E. Rebiai Abstract An important subclass of well-posed linear systems is formed by the conservative systems. A conservative system

More information

arxiv: v1 [math.ap] 26 Dec 2018

arxiv: v1 [math.ap] 26 Dec 2018 Interfacial behaviors of the backward forward diffusion convection equations arxiv:181.1005v1 [math.ap] 6 Dec 018 Lianzhang Bao School of Mathematics, Jilin University, Changchun, Jilin 13001, China, and

More information

GENERALIZED FRONTS FOR ONE-DIMENSIONAL REACTION-DIFFUSION EQUATIONS

GENERALIZED FRONTS FOR ONE-DIMENSIONAL REACTION-DIFFUSION EQUATIONS GENERALIZED FRONTS FOR ONE-DIMENSIONAL REACTION-DIFFUSION EQUATIONS ANTOINE MELLET, JEAN-MICHEL ROQUEJOFFRE, AND YANNICK SIRE Abstract. For a class of one-dimensional reaction-diffusion equations, we establish

More information

Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping

Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping Electronic Journal of Differential Equations, Vol. 22(22), No. 44, pp. 1 14. ISSN: 172-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Exponential decay

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

ANISOTROPIC EQUATIONS: UNIQUENESS AND EXISTENCE RESULTS

ANISOTROPIC EQUATIONS: UNIQUENESS AND EXISTENCE RESULTS ANISOTROPIC EQUATIONS: UNIQUENESS AND EXISTENCE RESULTS STANISLAV ANTONTSEV, MICHEL CHIPOT Abstract. We study uniqueness of weak solutions for elliptic equations of the following type ) xi (a i (x, u)

More information

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT AND WEIGHT

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT AND WEIGHT Electronic Journal of Differential Equations, Vol. 016 (016), No. 08, pp. 1 1. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu NONHOMOGENEOUS ELLIPTIC

More information

ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM. Paweł Goncerz

ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM. Paweł Goncerz Opuscula Mathematica Vol. 32 No. 3 2012 http://dx.doi.org/10.7494/opmath.2012.32.3.473 ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM Paweł Goncerz Abstract. We consider a quasilinear

More information

On Behaviors of the Energy of Solutions for Some Damped Nonlinear Hyperbolic Equations with p-laplacian Soufiane Mokeddem

On Behaviors of the Energy of Solutions for Some Damped Nonlinear Hyperbolic Equations with p-laplacian Soufiane Mokeddem International Journal of Advanced Research in Mathematics ubmitted: 16-8-4 IN: 97-613, Vol. 6, pp 13- Revised: 16-9-7 doi:1.185/www.scipress.com/ijarm.6.13 Accepted: 16-9-8 16 cipress Ltd., witzerland

More information

Nonexistence of solutions to systems of higher-order semilinear inequalities in cone-like domains

Nonexistence of solutions to systems of higher-order semilinear inequalities in cone-like domains Electronic Journal of Differential Equations, Vol. 22(22, No. 97, pp. 1 19. ISSN: 172-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp Nonexistence of solutions

More information

Some lecture notes for Math 6050E: PDEs, Fall 2016

Some lecture notes for Math 6050E: PDEs, Fall 2016 Some lecture notes for Math 65E: PDEs, Fall 216 Tianling Jin December 1, 216 1 Variational methods We discuss an example of the use of variational methods in obtaining existence of solutions. Theorem 1.1.

More information

Giuseppe Floridia Department of Matematics and Applications R. Caccioppoli, University of Naples Federico II

Giuseppe Floridia Department of Matematics and Applications R. Caccioppoli, University of Naples Federico II Multiplicative controllability for semilinear reaction-diffusion equations Giuseppe Floridia Department of Matematics and Applications R. Caccioppoli, University of Naples Federico II (joint work with

More information

The continuity method

The continuity method The continuity method The method of continuity is used in conjunction with a priori estimates to prove the existence of suitably regular solutions to elliptic partial differential equations. One crucial

More information

Mathias Jais CLASSICAL AND WEAK SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS WITH PREISACH HYSTERESIS

Mathias Jais CLASSICAL AND WEAK SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS WITH PREISACH HYSTERESIS Opuscula Mathematica Vol. 28 No. 1 28 Mathias Jais CLASSICAL AND WEAK SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS WITH PREISACH HYSTERESIS Abstract. We consider the solvability of the semilinear parabolic

More information

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED TAOUFIK HMIDI AND SAHBI KERAANI Abstract. In this note we prove a refined version of compactness lemma adapted to the blowup analysis

More information

arxiv: v2 [math.ap] 30 Jul 2012

arxiv: v2 [math.ap] 30 Jul 2012 Blow up for some semilinear wave equations in multi-space dimensions Yi Zhou Wei Han. arxiv:17.536v [math.ap] 3 Jul 1 Abstract In this paper, we discuss a new nonlinear phenomenon. We find that in n space

More information