Resonances, Divergent series and R.G.: (G. Gentile, G.G.) α = ε α f(α) α 2. 0 ν Z r

Size: px
Start display at page:

Download "Resonances, Divergent series and R.G.: (G. Gentile, G.G.) α = ε α f(α) α 2. 0 ν Z r"

Transcription

1 B Resonances, Divergent series and R.G.: (G. Gentile, G.G.) Eq. Motion: α = ε α f(α) A A 2 α α 2 α l A l Representation of phase space in terms of l rotators: α=(α,...,α l ) T l Potential: f(α) = ν Z l f ν e iν α, f ν 0 if ν > N Motions: α def = (γ,β) T r T s, t (γ +ω 0 t,β) γ= fast angles, β= slow angles Resonance of order s Independence: ω 0 ν > C ν τ, 0 ν Z r

2 2 L Find a resonance copy, i.e. h (g(ψ),k(ψ)) R r R s s.t. α (γ,β), and γ = ψ +g(ψ), β = β 0 +k(ψ), ψ ψ +ω 0 t solves α = ε α f(α), i.e. ( ) g(ψ) (ω 0 ψ ) 2 = ε α f ( ψ +g(ψ),β 0 +k(ψ) ) k(ψ) If f(β) def = dγ (2π) r f(γ,β) β f(β 0 ) = 0 (0 average force) There is a power series solution

3 A A 2 B 3 α α 2 α l A l Representation of phase space in terms of l rotators: α=(α,...,α l ) T l Notation: f(γ,β) def = ν Z r f ν (β)e iγ ν. Rules: () To node v attach a harmonic ν v Z r (2) To line λ v v attach current ν(λ) = w v ν w (3) and two component labels j λ,j λ j j v v j0 j j 2 Component labels around v v j p v J v = (j 0,...,j p ) and Jv f νv (β 0 ) are defined.

4 4 L () To node v attach a harmonic ν v Z r (2) To line λ v v attach current ν(λ) = w v ν w (3) and two component labels j λ,j λ j j v v j0 j j 2 Component labels around v (4) Value : Val(θ) = k! g ij def = ( v v j p ε Jv f νv (β 0 ) )( ( δ ij 0 0 (ω ν(λ)), or g 2 ij = 0 (ε 2 β f(β 0)) g jλ j λ linesλ ) ) if ν(λ) = 0 h ν θval(θ) : no trivial node with 0 incoming current Estimate: h (k) ν bb k ε k k! 2τ!! Results:

5 B 5 If det 2 β f(β 0) 0 The tree series can be rearranged to yield a convergent series representation of h = (g(ψ), k(ψ), hence its existence, in j j v v j0 Component labels around v v j j 2 j p 3 E ( ε 0,0] with open dense complement; 0 is a density point. Fig.4: ε E; E dense at 0. The figure illustrates the analyticity domain D(ε) associated with ε E, for ε < 0 (elliptic case), assuming 2 ββ f(β 0) <0 ε-plane 4 Need k! 2 for Borel sum: at 0 derivatives grow as k! 2τ.

6 6 L The k! arise because of chains in graphs (self-energy insertions): i i 0 j 0 i j j Inserting a single trivial node with 0 harmonic ( ν 0): 6 ν 0 ν i i 0 j 0 j def Let M 0;i0 j 0 = ( ) ε 2 f(β 0 ) graph value modified trivially : propagator modification δ ij (ω ν) 2 (ω ν) 2 ( M0 (ω ν) 2 ) k Simplify : NO trivial nodes if (ω ν) 2 (ω ν) 2 k=0 BUT z = M 0 (ω ν) 2 <? NO! ( M0 (ω ν) 2 ) k (ω ν) 2 M 0

7 B 7 using k=0 zk = z, z, e.g. k=0 2k = = If accepted (ω ν) ( ) k 2 (ω ν) 2 k=0 M0 (ω ν) 2 (ω ν) 2 M 0 M 0 0 (β 0 =maximum) gives ε > 0 easier than ε < 0. For ε < 0 expect to exclude ε s.t ω ν = ± εµ j. PROBLEM: LOTS of other chains! They cause values k! η, η > 0 IDEA: eliminate them all by resummation (RG needed). KEY: Siegel s theorem Given a tree θ let N n be the number of lines of scale n: i.e. s.t. 2 n < C ω ν 2 n+ n = 0,,... IF no pair lines λ < λ with ν(λ ) = ν(λ) with only lower scale intermediates THEN N n 4N2 n/τ k

8 8 L If there were no chains : N n 4N2 n/τ k v (ω 0 ν) 2 C2k 2 2nN n C 2k( 2 2n(4N2 n/τ ) ) k n=0 Product of couplings: v J vf ν v (β 0 ) v N Jv F k N 2k F k, number of harmonics ν: (2N +) k, n. of trees k k n=0 Convergence: ε < ( N 2 C 2 (2N +) l 3 F 2 8N n n2 n/τ) Multiscale analysis (RG): Organize the lines of θ into clusters

9 B 9 Definition: A cluster of scale n is a maximal connected set of lines of θ with scales p n and with one line at least of scale n. ν 0 ν i i 0 j 0 j Self energy clusters : line in and line out with ν in = ν out 7 ν out ν in 8

10 0 L Eliminate self energy clusters by resummations Necessary multiscale to avoid overlapping divergences First identify the self energy clusters of scale [0] i.e. with x def = Cω ν with x 2 and resum all chains giant tree ν ν ν ν giant tree Key remark: each s.e. cluster does not contain s.e. clusters Summing over the contents of each s.e. cluster convergent sum by Siegel s lemma. 9

11 B Summing over s.e. clusters of scale [0] leads to modify propagators of lines on scale [ ] giant tree ν ν ν ν g [ ] (x) = x 2 M 0 x 2 M 0 n=0 (M eliminated also s.e. subgraphs of scale [0]. giant tree x 2 M 0 ) n x 2 M 0 M Iterate! at every step only graphs with no s.e. subgraphs have to be considered; convergent additions made on propagators. Full resummation of self energy in the hyperbolic case. In the elliptic the situation is very different. 9

12 2 L As the scale decreases the scale 2 n ε is reached and x 2 M 0 M... M n can vanish (a) More values of ε excluded (b)the successive scales must be measured by the size of x 2 M 0 M...; analysis becomes delicate: DIFFICULTY: even in the hyperbolic case it is necessary to check that the renormalized propagators have the same size as the bare ones Siegel s lemma applies only to graphs in which the propagators size is of the order of x 2 (ω ν) 2. Not automatic but checked via the cancellation mechanism of the KAM theory: this time the cancellations are only partial but still enough.

13 B 3 Case det 2 β f(β 0) = 0? If s = and c = k 0+ f(β 0 ) 0 same but analyticity in η = ε k 0 (+ A. Giuliani) Borel Summability? yes if r = 2(perhaps: w. progress +O.Costin,A.Giuliani) OPEN PROBLEM: uniqueness (and relation with alternative existence results) complex ε plane 0

1 Divergent series summation in Hamilton Jacobi equation (resonances) G. Gentile, G.G. α = ε α f(α)

1 Divergent series summation in Hamilton Jacobi equation (resonances) G. Gentile, G.G. α = ε α f(α) Divergent series summation in Hamilton Jacobi equation (resonances) Eq. Motion: G. Gentile, G.G. α = ε α f(α) α α 2 α l...... Representation of phase space in terms of l rotators. 2 α = (α,...,α l ) T

More information

Resummations of self-energy graphs and KAM theory G. Gentile (Roma3), G.G. (The.H.E.S.) Communications in Mathematical Physics, 227, , 2002.

Resummations of self-energy graphs and KAM theory G. Gentile (Roma3), G.G. (The.H.E.S.) Communications in Mathematical Physics, 227, , 2002. Resummations of self-energy graphs and KAM theory G. Gentile (Roma3), G.G. (The.H.E.S.) Communications in Mathematical Physics, 227, 421 460, 2002. 1 Hamiltonian for a rotators system H = 1 2 (A2 + B 2

More information

Resummations of self energy graphs and KAM theory G. Gentile (Roma3), G.G. (I.H.E.S.) Communications in Mathematical Physics, 227, , 2002.

Resummations of self energy graphs and KAM theory G. Gentile (Roma3), G.G. (I.H.E.S.) Communications in Mathematical Physics, 227, , 2002. Resummations of self energy graphs and KAM theory G. Gentile (Roma3), G.G. (I.H.E.S.) Communications in Mathematical Physics, 227, 421 460, 2002. 1 Hamiltonian for a rotator system H = 1 2 (A2 + B 2 )+εf(α,

More information

Divergent series resummations: examples in ODE s & PDE s

Divergent series resummations: examples in ODE s & PDE s Divergent series resummations: examples in ODE s & PDE s Survey of works by G. Gentile (Roma3), V. Matropietro (Roma2), G.G. (Roma1) http://ipparco.roma1.infn.it 1 Hamiltonian rotators system α = ε α f(α,

More information

Elliptic resonances and summation of divergent series

Elliptic resonances and summation of divergent series Elliptic resonances and summation of divergent series Guido Gentile, G. Gallavotti Universitá di Roma 3 and Roma 7/giugno/200; 9:42 Hamiltonian : H = 2 I2 +εf(ϕ) with (I,ϕ) R l T l...... Representation

More information

Summation of divergent series and Borel summability for strongly dissipative equations with periodic or quasi-periodic forcing terms

Summation of divergent series and Borel summability for strongly dissipative equations with periodic or quasi-periodic forcing terms Summation of divergent series and Borel summability for strongly dissipative equations with periodic or quasi-periodic forcing terms Guido Gentile, Michele V. Bartuccelli and Jonathan H.B. Deane Dipartimento

More information

Diagrammatic Methods in Classical Perturbation Theory

Diagrammatic Methods in Classical Perturbation Theory Diagrammatic Methods in Classical Perturbation Theory Guido Gentile Dipartimento di Matematica, Università di Roma Tre, Roma, I-0046, Italy. E-mail: gentile@mat.uniroma3.it Article outline Glossary. Definition

More information

Domains of analyticity for response solutions in strongly dissipative forced systems

Domains of analyticity for response solutions in strongly dissipative forced systems Domains of analyticity for response solutions in strongly dissipative forced systems Livia Corsi 1, Roberto Feola 2 and Guido Gentile 2 1 Dipartimento di Matematica, Università di Napoli Federico II, Napoli,

More information

Construction of quasi-periodic response solutions in forced strongly dissipative systems

Construction of quasi-periodic response solutions in forced strongly dissipative systems Construction of quasi-periodic response solutions in forced strongly dissipative systems Guido Gentile Dipartimento di Matematica, Università di Roma Tre, Roma, I-146, Italy. E-mail: gentile@mat.uniroma3.it

More information

Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms

Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms JOURNAL OF MATHEMATICAL PHYSICS 46, 062704 2005 Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms Guido Gentile

More information

Quasi-periodic motions in strongly dissipative forced systems

Quasi-periodic motions in strongly dissipative forced systems Quasi-periodic motions in strongly dissipative forced systems Guido Gentile Dipartimento di Matematica, Università di Roma Tre, Roma, I-00146, Italy. E-mail: gentile@mat.uniroma3.it Abstract We consider

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Problem Set 3 Issued: Thursday, September 25, 2014 Due: Thursday,

More information

RENORMALIZATION GROUP AND FIELD THEORETIC TECHNIQUES FOR THE ANALYSIS OF THE LINDSTEDT SERIES ALBERTO BERRETTI AND GUIDO GENTILE

RENORMALIZATION GROUP AND FIELD THEORETIC TECHNIQUES FOR THE ANALYSIS OF THE LINDSTEDT SERIES ALBERTO BERRETTI AND GUIDO GENTILE RENORMALIZATION GROUP AND FIELD THEORETIC TECHNIQUES FOR THE ANALYSIS OF THE LINDSTEDT SERIES ALBERTO BERRETTI AND GUIDO GENTILE Abstract. The Lindstedt series were introduced in the XIX th century in

More information

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory

UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics. EECS 281A / STAT 241A Statistical Learning Theory UC Berkeley Department of Electrical Engineering and Computer Science Department of Statistics EECS 281A / STAT 241A Statistical Learning Theory Solutions to Problem Set 2 Fall 2011 Issued: Wednesday,

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

DIEUDONNE AGBOR AND JAN BOMAN

DIEUDONNE AGBOR AND JAN BOMAN ON THE MODULUS OF CONTINUITY OF MAPPINGS BETWEEN EUCLIDEAN SPACES DIEUDONNE AGBOR AND JAN BOMAN Abstract Let f be a function from R p to R q and let Λ be a finite set of pairs (θ, η) R p R q. Assume that

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Normal form for the non linear Schrödinger equation

Normal form for the non linear Schrödinger equation Normal form for the non linear Schrödinger equation joint work with Claudio Procesi and Nguyen Bich Van Universita di Roma La Sapienza S. Etienne de Tinee 4-9 Feb. 2013 Nonlinear Schrödinger equation Consider

More information

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours.

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours. UNIVERSITY OF YORK MSc Examinations 2004 MATHEMATICS Networks Time Allowed: 3 hours. Answer 4 questions. Standard calculators will be provided but should be unnecessary. 1 Turn over 2 continued on next

More information

Lecture 3. Vector fields with given vorticity, divergence and the normal trace, and the divergence and curl estimates

Lecture 3. Vector fields with given vorticity, divergence and the normal trace, and the divergence and curl estimates Lecture 3. Vector fields with given vorticity, divergence and the normal trace, and the divergence and curl estimates Ching-hsiao (Arthur) Cheng Department of Mathematics National Central University Taiwan,

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Variable Elimination: Algorithm

Variable Elimination: Algorithm Variable Elimination: Algorithm Sargur srihari@cedar.buffalo.edu 1 Topics 1. Types of Inference Algorithms 2. Variable Elimination: the Basic ideas 3. Variable Elimination Sum-Product VE Algorithm Sum-Product

More information

Branch-and-Bound for the Travelling Salesman Problem

Branch-and-Bound for the Travelling Salesman Problem Branch-and-Bound for the Travelling Salesman Problem Leo Liberti LIX, École Polytechnique, F-91128 Palaiseau, France Email:liberti@lix.polytechnique.fr March 15, 2011 Contents 1 The setting 1 1.1 Graphs...............................................

More information

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

5. Sum-product algorithm

5. Sum-product algorithm Sum-product algorithm 5-1 5. Sum-product algorithm Elimination algorithm Sum-product algorithm on a line Sum-product algorithm on a tree Sum-product algorithm 5-2 Inference tasks on graphical models consider

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Extensions naturelles des. et pavages

Extensions naturelles des. et pavages Extensions naturelles des bêta-transformations généralisées et pavages Wolfgang Steiner LIAFA, CNRS, Université Paris Diderot Paris 7 (travail en commun avec Charlene Kalle, Universiteit Utrecht, en ce

More information

Chapter 1 Mathematical Foundations

Chapter 1 Mathematical Foundations Computational Electromagnetics; Chapter 1 1 Chapter 1 Mathematical Foundations 1.1 Maxwell s Equations Electromagnetic phenomena can be described by the electric field E, the electric induction D, the

More information

arxiv: v1 [math.co] 3 Nov 2014

arxiv: v1 [math.co] 3 Nov 2014 SPARSE MATRICES DESCRIBING ITERATIONS OF INTEGER-VALUED FUNCTIONS BERND C. KELLNER arxiv:1411.0590v1 [math.co] 3 Nov 014 Abstract. We consider iterations of integer-valued functions φ, which have no fixed

More information

Waves and characteristics: Overview 5-1

Waves and characteristics: Overview 5-1 Waves and characteristics: Overview 5-1 Chapter 5: Waves and characteristics Overview Physics and accounting: use example of sound waves to illustrate method of linearization and counting of variables

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu.50 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .50 Introduction to Seismology

More information

Optimal transport paths and their applications

Optimal transport paths and their applications Optimal transport paths and their applications Qinglan Xia University of California at Davis March 4, 2009 Outline Monge-Kantorovich optimal transportation (Classical) Ramified optimal transportation Motivation

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

Theory of Elementary Particles homework XI (July??)

Theory of Elementary Particles homework XI (July??) Theory of Elementary Particles homework XI (July??) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like II-1, II-3, IV- ).

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Symposium on Fundamental Problems in Hot and/or Dense QCD, YITP, Kyoto, March 2008 - p. 1

More information

Cluster Properties and Relativistic Quantum Mechanics

Cluster Properties and Relativistic Quantum Mechanics Cluster Properties and Relativistic Quantum Mechanics Wayne Polyzou polyzou@uiowa.edu The University of Iowa Cluster Properties p.1/45 Why is quantum field theory difficult? number of degrees of freedom.

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

On the Perturbative Stability of des QFT s

On the Perturbative Stability of des QFT s On the Perturbative Stability of des QFT s D. Boyanovsky, R.H. arxiv:3.4648 PPCC Workshop, IGC PSU 22 Outline Is de Sitter space stable? Polyakov s views Some quantum Mechanics: The Wigner- Weisskopf Method

More information

On a multiscale representation of images as hierarchy of edges. Eitan Tadmor. University of Maryland

On a multiscale representation of images as hierarchy of edges. Eitan Tadmor. University of Maryland On a multiscale representation of images as hierarchy of edges Eitan Tadmor Center for Scientific Computation and Mathematical Modeling (CSCAMM) Department of Mathematics and Institute for Physical Science

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Universal effective coupling constant ratios of 3D scalar φ 4 field theory and pseudo-ɛ expansion

Universal effective coupling constant ratios of 3D scalar φ 4 field theory and pseudo-ɛ expansion Universal effective coupling constant ratios of 3D scalar φ 4 field theory and pseudo-ɛ expansion A. I. Sokolov 1,, M. A. Nikitina 1,2, and A. Kudlis 1,2, 1 Department of Quantum Mechanics, Saint Petersburg

More information

The De Giorgi-Nash-Moser Estimates

The De Giorgi-Nash-Moser Estimates The De Giorgi-Nash-Moser Estimates We are going to discuss the the equation Lu D i (a ij (x)d j u) = 0 in B 4 R n. (1) The a ij, with i, j {1,..., n}, are functions on the ball B 4. Here and in the following

More information

Network models: random graphs

Network models: random graphs Network models: random graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

THE STOKES SYSTEM R.E. SHOWALTER

THE STOKES SYSTEM R.E. SHOWALTER THE STOKES SYSTEM R.E. SHOWALTER Contents 1. Stokes System 1 Stokes System 2 2. The Weak Solution of the Stokes System 3 3. The Strong Solution 4 4. The Normal Trace 6 5. The Mixed Problem 7 6. The Navier-Stokes

More information

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET WEILIN LI AND ROBERT S. STRICHARTZ Abstract. We study boundary value problems for the Laplacian on a domain Ω consisting of the left half of the Sierpinski

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Lesson 9: Multiplying Media (Reactors)

Lesson 9: Multiplying Media (Reactors) Lesson 9: Multiplying Media (Reactors) Laboratory for Reactor Physics and Systems Behaviour Multiplication Factors Reactor Equation for a Bare, Homogeneous Reactor Geometrical, Material Buckling Spherical,

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

High energy factorization in Nucleus-Nucleus collisions

High energy factorization in Nucleus-Nucleus collisions High energy factorization in Nucleus-Nucleus collisions François Gelis CERN and CEA/Saclay François Gelis 2008 Workshop on Hot and dense matter in the RHIC-LHC era, TIFR, Mumbai, February 2008 - p. 1 Outline

More information

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction To cite this article: V S Protsenko and A

More information

CS281A/Stat241A Lecture 19

CS281A/Stat241A Lecture 19 CS281A/Stat241A Lecture 19 p. 1/4 CS281A/Stat241A Lecture 19 Junction Tree Algorithm Peter Bartlett CS281A/Stat241A Lecture 19 p. 2/4 Announcements My office hours: Tuesday Nov 3 (today), 1-2pm, in 723

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

Chapter DM:II (continued)

Chapter DM:II (continued) Chapter DM:II (continued) II. Cluster Analysis Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster Analysis

More information

Borel summability of ϕ 4 4 planar theory via multiscale analysis

Borel summability of ϕ 4 4 planar theory via multiscale analysis Borel summability of ϕ 4 4 planar theory via multiscale analysis Marcello Porta Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma Italy Sergio Simonella Dipartimento

More information

Fractional exclusion statistics: A generalised Pauli principle

Fractional exclusion statistics: A generalised Pauli principle Fractional exclusion statistics: A generalised Pauli principle M.V.N. Murthy Institute of Mathematical Sciences, Chennai (murthy@imsc.res.in) work done with R. Shankar Indian Academy of Sciences, 27 Nov.

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

The Story of Wino Dark matter

The Story of Wino Dark matter The Story of Wino Dark matter Varun Vaidya Dept. of Physics, CMU DIS 2015 Based on the work with M. Baumgart and I. Rothstein, 1409.4415 (PRL) & 1412.8698 (JHEP) Evidence for dark matter Rotation curves

More information

Mean-field dual of cooperative reproduction

Mean-field dual of cooperative reproduction The mean-field dual of systems with cooperative reproduction joint with Tibor Mach (Prague) A. Sturm (Göttingen) Friday, July 6th, 2018 Poisson construction of Markov processes Let (X t ) t 0 be a continuous-time

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5

Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5 arxiv:hep-th/9503230v1 1 Apr 1995 Five-loop renormalization group functions of O(n)-symmetric φ 4 -theory and ǫ-expansions of critical exponents up to ǫ 5 H. Kleinert, J. Neu and V. Schulte-Frohlinde Institut

More information

Combinatorial Dyson-Schwinger equations and systems I Feynma. Feynman graphs, rooted trees and combinatorial Dyson-Schwinger equations

Combinatorial Dyson-Schwinger equations and systems I Feynma. Feynman graphs, rooted trees and combinatorial Dyson-Schwinger equations Combinatorial and systems I, rooted trees and combinatorial Potsdam November 2013 Combinatorial and systems I Feynma In QFT, one studies the behaviour of particles in a quantum fields. Several types of

More information

From local to global conjugacy in relatively hyperbolic groups

From local to global conjugacy in relatively hyperbolic groups From local to global conjugacy in relatively hyperbolic groups Oleg Bogopolski Webinar GT NY, 5.05.2016 Relative presentations Let G be a group, P = {P λ } λ Λ a collection of subgroups of G, X a subset

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

Course code: 8D020. Date: Wednesday April 11, Time: 09h00 12h00. Place: MA Read this first!

Course code: 8D020. Date: Wednesday April 11, Time: 09h00 12h00. Place: MA Read this first! EEXAMINATION MATHEMATICAL TECHNIQUES FO IMAGE ANALYSIS Course code: 8D00. Date: Wednesday April, 0. Time: 09h00 h00. Place: MA.46. ead this first! Write your name and student ID on each paper. The eam

More information

Extension fields II. Sergei Silvestrov. Spring term 2011, Lecture 13

Extension fields II. Sergei Silvestrov. Spring term 2011, Lecture 13 Extension fields II Sergei Silvestrov Spring term 2011, Lecture 13 Abstract Contents of the lecture. Algebraic extensions. Finite fields. Automorphisms of fields. The isomorphism extension theorem. Splitting

More information

Pruning digraphs for reducing catchment zones

Pruning digraphs for reducing catchment zones Pruning digraphs for reducing catchment zones Fernand Meyer Centre de Morphologie Mathématique 19 March 2017 ernand Meyer (Centre de Morphologie Mathématique) Pruning digraphs for reducing catchment zones

More information

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018 Consistency of conservation laws in SR and GR General Relativity j µ and for point particles van Nieuwenhuizen, Spring 2018 1 Introduction The Einstein equations for matter coupled to gravity read Einstein

More information

PHYS 215C: Quantum Mechanics (Spring 2016) Problem Set 1 Solutions

PHYS 215C: Quantum Mechanics (Spring 2016) Problem Set 1 Solutions PHYS 15C: Quantum Mechanics Spring 016 Problem Set 1 Solutions TA: Chaitanya Murthy April 7, 016 Problem 1. Correlations for two spin-1/ s The singlet state of the two spin-1/ particles can be written

More information

Monte Carlo Simulation of the 2D Ising model

Monte Carlo Simulation of the 2D Ising model Monte Carlo Simulation of the 2D Ising model Emanuel Schmidt, F44 April 6, 2 Introduction Monte Carlo methods are a powerful tool to solve problems numerically which are dicult to be handled analytically.

More information

Structured Variational Inference

Structured Variational Inference Structured Variational Inference Sargur srihari@cedar.buffalo.edu 1 Topics 1. Structured Variational Approximations 1. The Mean Field Approximation 1. The Mean Field Energy 2. Maximizing the energy functional:

More information

Exact WKB Analysis and Cluster Algebras

Exact WKB Analysis and Cluster Algebras Exact WKB Analysis and Cluster Algebras Kohei Iwaki (RIMS, Kyoto University) (joint work with Tomoki Nakanishi) Winter School on Representation Theory January 21, 2015 1 / 22 Exact WKB analysis Schrödinger

More information

β ζ Γ α (ζ) 2sec 1 α Figure I.2 The cone Γ α (ζ). P z (θ)

β ζ Γ α (ζ) 2sec 1 α Figure I.2 The cone Γ α (ζ). P z (θ) z θ a igure I.1 The harmonic function θ(z). b z β ζ 2sec 1 α 0 Γ α (ζ) igure I.2 The cone Γ α (ζ). P z (θ) P z (θ) π θ 0 θ 0 π igure I.3 The function P z. P z (θ) π 0 θ 0 θ n π igure I.4 Approximating

More information

A very short introduction to the Finite Element Method

A very short introduction to the Finite Element Method A very short introduction to the Finite Element Method Till Mathis Wagner Technical University of Munich JASS 2004, St Petersburg May 4, 2004 1 Introduction This is a short introduction to the finite element

More information

Maximal perpendicularity in certain Abelian groups

Maximal perpendicularity in certain Abelian groups Acta Univ. Sapientiae, Mathematica, 9, 1 (2017) 235 247 DOI: 10.1515/ausm-2017-0016 Maximal perpendicularity in certain Abelian groups Mika Mattila Department of Mathematics, Tampere University of Technology,

More information

Fractal Scaling Models of Natural Oscillations in Chain Systems and the Mass Distribution of Particles

Fractal Scaling Models of Natural Oscillations in Chain Systems and the Mass Distribution of Particles July, 200 PROGRESS IN PHYSICS Volume 3 Introduction Fractal Scaling Models of Natural Oscillations in Chain Systems and the Mass Distribution of Particles Hartmut Müller Global Scaling Research Institute

More information

Facets for Node-Capacitated Multicut Polytopes from Path-Block Cycles with Two Common Nodes

Facets for Node-Capacitated Multicut Polytopes from Path-Block Cycles with Two Common Nodes Facets for Node-Capacitated Multicut Polytopes from Path-Block Cycles with Two Common Nodes Michael M. Sørensen July 2016 Abstract Path-block-cycle inequalities are valid, and sometimes facet-defining,

More information

Tadpole Summation by Dyson-Schwinger Equations

Tadpole Summation by Dyson-Schwinger Equations MS-TPI-96-4 hep-th/963145 Tadpole Summation by Dyson-Schwinger Equations arxiv:hep-th/963145v1 18 Mar 1996 Jens Küster and Gernot Münster Institut für Theoretische Physik I, Universität Münster Wilhelm-Klemm-Str.

More information

Message Passing Algorithms and Junction Tree Algorithms

Message Passing Algorithms and Junction Tree Algorithms Message Passing lgorithms and Junction Tree lgorithms Le Song Machine Learning II: dvanced Topics S 8803ML, Spring 2012 Inference in raphical Models eneral form of the inference problem P X 1,, X n Ψ(

More information

Substitutions, Rauzy fractals and Tilings

Substitutions, Rauzy fractals and Tilings Substitutions, Rauzy fractals and Tilings Anne Siegel CANT, 2009 Reminder... Pisot fractals: projection of the stair of a Pisot substitution Self-replicating substitution multiple tiling: replace faces

More information

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0.

The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

Learning MN Parameters with Approximation. Sargur Srihari

Learning MN Parameters with Approximation. Sargur Srihari Learning MN Parameters with Approximation Sargur srihari@cedar.buffalo.edu 1 Topics Iterative exact learning of MN parameters Difficulty with exact methods Approximate methods Approximate Inference Belief

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I)

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Part I is based on material that has come up in class, you can do it at home. Go straight to Part II. 1. This question will be part of a take-home

More information

Decision Diagrams and Dynamic Programming

Decision Diagrams and Dynamic Programming Decision Diagrams and Dynamic Programming J. N. Hooker Carnegie Mellon University CPAIOR 13 Decision Diagrams & Dynamic Programming Binary/multivalued decision diagrams are related to dynamic programming.

More information

The Phase Transition of the 2D-Ising Model

The Phase Transition of the 2D-Ising Model The Phase Transition of the 2D-Ising Model Lilian Witthauer and Manuel Dieterle Summer Term 2007 Contents 1 2D-Ising Model 2 1.1 Calculation of the Physical Quantities............... 2 2 Location of the

More information

21 Linear State-Space Representations

21 Linear State-Space Representations ME 132, Spring 25, UC Berkeley, A Packard 187 21 Linear State-Space Representations First, let s describe the most general type of dynamic system that we will consider/encounter in this class Systems may

More information

Packing nearly optimal Ramsey R(3, t) graphs

Packing nearly optimal Ramsey R(3, t) graphs Packing nearly optimal Ramsey R(3, t) graphs He Guo Joint work with Lutz Warnke Context of this talk Ramsey number R(s, t) R(s, t) := minimum n N such that every red/blue edge-coloring of complete n-vertex

More information

Minimum Power Dominating Sets of Random Cubic Graphs

Minimum Power Dominating Sets of Random Cubic Graphs Minimum Power Dominating Sets of Random Cubic Graphs Liying Kang Dept. of Mathematics, Shanghai University N. Wormald Dept. of Combinatorics & Optimization, University of Waterloo 1 1 55 Outline 1 Introduction

More information