ECE 501b Homework #6 Due: 11/26

Size: px
Start display at page:

Download "ECE 501b Homework #6 Due: 11/26"

Transcription

1 ECE 51b Homework #6 Due: 11/26 1. Principal Component Analysis: In this assignment, you will explore PCA as a technique for discerning whether low-dimensional structure exists in a set of data and for finding good representations of the data in that subspace. In the previous homework, I suggested that we would be looking at image compression applications. As several groups will be potentially employing PCA in their class projects, I decided to forgo that particular topic. For this assignment, please do the following (include MATLAB code and plots where appropriate): (a) Download the paper A Tutorial on Principal Component Analysis, from the course website and read it carefully. This paper really does an excellent job of introducing PCA. Note however, that it is written very much from the same perspective as we will explore in this assignment discovering low-dimensional structure if it exists. Much of the utility of PCA comes from applications that then make use of that discovered structure (for compression, denoising, etc.). In what follows, you may use the code-snippets at the end for inspiration, but are expected to design and implement your own functions where necessary. BE AWARE that the notation used in the paper does not always match my and MATLAB s default notation (vectors are stored in columns of a matrix). I want you to use MATLAB s approach, so you need to be careful before blindly applying something from the paper. (b) Download the rawdata.mat datafile from the website. The rawdata matrix in this datafile represents 512 vectors in a 124-dimensional vector space. I generated this data so that the vectors actually reside in a much-lower dimensional subspace: More specifically, I generated data that lives in a low-dimensional subspace and then added a certain amount of noise so the data in rawdata is just approximately low-dimensional. Begin by writing a function to zero-mean the data. That is, write a function that shifts the vectors so that the mean of the data in each dimension is zero. Use it to zero-mean rawdata. Use a different name, as you ll still need the non-zero-mean version of rawdata in the future. Here s the function function zm = zeromean(data) [rr cc] = size(data); zm = data - repmat(mean(data),[rr 1]); and here s the call load rawdata.mat ; [M N] = size(rawdata); rdz = zeromean(rawdata); (c) Compute the covariance matrix for both rawdata and its zero-mean version. You may use the MATLAB function cov. Plot the matrices and their difference to demonstrate that zero-meaning the data doesn t affect the covariance. (Pro tips: Use imagesc to display the matrix and it will scale the colormap appropriately. Use colormap gray to get a colormap that gives a smooth variation in color with

2 ECE 51b Homework #6 Due: 11/26 value. Use colorbar to place a scale next to the image.) rdcov = cov(rawdata); rdzcov = cov(rdz); subplot(1,3,1);imagesc(rdcov);colormap gray;colorbar; title( Non zero meaned ); subplot(1,3,2);imagesc(rdzcov);colormap gray;colorbar; title( Zero meaned ); subplot(1,3,3);imagesc(rdcov-rdzcov);colormap gray;colorbar; title( Difference ); Non zero meaned Zero meaned Difference x The difference is on the order of 1 14, which is just numerical rounding error. (d) Compute the principal components by finding the eigendecomposition of your zeromean covariance matrix. Use the MATLAB function eig. Sort the eigenvalues from largest to smallest (and sort the eigenvectors as well). (Pro tip: Use the [vals index] = sort(numbers, descend ) version of the sort command to get a sorted list of indices that you can use to sort the eigenvectors.). Make two plots of the eigenvalues (linear and semilog). Use this information to infer the dimension of the low-dimensional subspace that the data approximately resides in. [ev D] = eig(rdzcov); [vals index] = sort(diag(d), descend ); ev = ev(:,index); subplot(1,2,1);plot(vals);subplot(1,2,2);semilogy(vals);

3 ECE 51b Homework #6 Eigenvalues (linear) 25 Due: 11/26 Eigenvalues (semilog) X: 65 Y: The semilog plot shows it best. The first 64 eigenvalues decrease smoothly, but then there is a sharp transition in magnitude. This is the break between the signal subspace and noise contributions. The even sharper drop at 513 is because we only have 512 datavectors, so the remainder of the eigenvalues are essentially just rounding errors. Thus, I conclude the signal lives in a 64-dimensional subspace. (e) Use the principal components to diagonalize the covariance matrix. Plot the original and diagonalized covariance matrices to demonstrate the difference. cv2 = ev *rdzcov*ev; subplot(1,3,1);imagesc(rdzcov);colormap gray;colorbar; title( Original covariance matrix ); subplot(1,3,2);imagesc(cv2);colormap gray;colorbar; title( After diagonalizing with eigenvectors ); subplot(1,3,3);imagesc(cv2(1:75,1:75));colormap gray;colorbar; title( Zoomed view ); Original covariance matrix After diagonalizing with eigenvectors Zoomed view (Left) Original (Center) Diagonalized (Right) Zoomed view on upper left region. (f) Now we re going to compute the principal components via SVD. Use the MATLAB svd command to decompose the zero-mean data into U, S, and V matrices. Make two plots of the singular values (linear and semilog). Use this information to infer the dimension of the low-dimensional subspace that the data approximately resides

4 ECE 51b Homework #6 Due: 11/26 in. Compare with the answer you found earlier. [U S sv] = svd(rdz); subplot(1,2,1);plot(diag(s));title( Singular values (linear) ); subplot(1,2,2);semilogy(diag(s));title( Singular values (semilog) ); 12 Singular values (linear) 1 5 Singular values (semilog) Again, we see a sharp drop in the magnitude of the singular values after the first 64. We again conclude a 64-dimensional subspace. This matches our earlier result. (g) Compare the principal components found by taking the eigenvectors of the covariance matrix with the ones found in the matrix V of the SVD. Plot the difference of the two matrices. Comment on the differences. imagesc(sv - ev);colormap gray;colorbar;title( Difference ); Difference So the plot above is the difference between the two sets of vectors (arranged in columns). Close examination reveals something odd there are some columns that cancel out exactly (at least to within rounding errors), but others don t. After thinking about it for a while, we realize that there can be an overall sign

5 ECE 51b Homework #6 Due: 11/26 ambiguity to a direction vector. So we use the following code instead: map = repmat(sign(sv(1,:))./sign(ev(1,:)),[n 1]); ev2 = ev.*map; imagesc(sv - ev2);colormap gray;colorbar; title( Difference correcting for flips ); This takes the eigenvectors and multiplies them by -1 if they have a different leading sign than the singular vectors. The graph below is the difference of the result and the singular vectors: Difference correcting for flips We see that now all of the first 512 columns zero out to within rounding (the remainder are meaningless as a result of the fact that we started with only 512 data vectors). (h) Now we re going to use the MATLAB function princomp to compute the principal components. This time, use the non-zero-meaned data (princomp takes care of that detail for you). Plot the score matrix returned by princomp. This matrix gives the expansion coefficients for the data in the principal component basis. Comment on the structure you see. [pv score] = princomp(rawdata); Look at the scores to infer size of low-dim subspace imagesc(score);colormap gray;colorbar;title( Scores );

6 ECE 51b Homework #6 Due: 11/26 Scores The rows correspond to the different data vectors, the columns are the projection of that data vector into the 124 difference PC basis vectors. We see that there are significant weights in only a small number of basis directions. We ll explore this in the next part. (i) Following up on the lead from the part above, compute the mean of the absolute value of the elements in each column of score. Make two plots of this information (linear and semilog). Use this information to infer the dimension of the low-dimensional subspace that the data approximately resides in. subplot(1,2,1);plot(mean(abs(score))); title( mean(abs(scores)) (linear) ); subplot(1,2,2);semilogy(mean(abs(score))); title( mean(abs(scores)) (semilog) ); 4 35 mean(abs(scores)) (linear) 1 2 mean(abs(scores)) (semilog) So we see what we saw in all the other cases. The values drop off significantly in magnitude after the first 64 values. Thus we conclude a 64-dimensional subspace for the data.

7 ECE 51b Homework #6 Due: 11/26 (j) Now compare the principal components found via svd and princomp. Plot the difference of the two matrices. Now compare the difference in the expansion coefficients. In the svd version, this will be the product US. Compute the difference of the two matrices. Comment on the results. subplot(1,2,1);imagesc(sv - pv);colormap gray;colorbar; title( Difference in vectors ); subplot(1,2,2);imagesc(u*s - score);colormap gray;colorbar; title( Difference in weights ); Difference in vectors 1 Difference in weights x (Left) Difference of vectors (exactly zero) and (Right) Difference of weights (zero to within numerical precision). NOTE: You should have found roughly equivalent results from all of the methods (with the princomp and svd methods being identical. This is because princomp uses svd internally the SVD method is generally viewed as being numerically superior to the eigendecomposition of the covariance matrix approach.). In what follows, just use the built-in princomp command. (k) Now you re going to turn your attention to real, rather than synthetic data. Download the spectra.mat datafile from the course website. This data represents the optical spectra of 2 compounds measured in 13 different spectral channels. Perform principal component analysis of the data to try to infer the underlying dimensionality of the data. As is common with real data, the data is only approximately low-dimensional (to a greater degree than my synthetic data). Thus, there is no clear-cut answer. Use the tools at your disposal and justify your answer. (Pro tip: I often use the cumsum function in part of my analysis.) We ll again plot the mean of the absolute value of the elements in each column of score (repeating our approach with princomp from above).

8 ECE 51b Homework #6 Due: 11/26 35 mean(abs(scores)) (linear) 1 4 mean(abs(scores)) (semilog) Wow! First of all, the values drop much faster. The linear plot is all but useless. Furthermore, in the semilog plot, we don t see any clear jump in magnitude, just a continual decrease. This is what I meant about there not being a clearcut answer. In these kind of cases, it s sometimes useful to consider the cumulative sum of the values and see where that stops growing rapidly (it turns the value of the original function into the local slope of the cumulative sum, this sometimes makes it easier to see where things really change.) Here s the code and plot: cs = cumsum(mean(abs(score))); subplot(1,2,1);plot(cs(1:2));title( cumulative sume (linear) ); subplot(1,2,2);semilogy(cs(1:2));title( cumulative sum (semilog) ); 55 cumulative sume (linear) cumulative sum (semilog) X: 21 Y: I m limiting the range in x to just the first 2 values (as we only provided that many data vectors in the first place). We see that there is a clear knee in both the linear and semilog plots around 21. That s the point where the growth in the cumulative sum really starts changing. So we ll conclude that the spectral data approximately resides in a 21-dimensional space.

9 ECE 51b Homework #6 Due: 11/26 2. Please estimate how much productive time you spent completing this assignment (watching television with the assignment in your lap does not count as productive time!).

Principal Component Analysis. Applied Multivariate Statistics Spring 2012

Principal Component Analysis. Applied Multivariate Statistics Spring 2012 Principal Component Analysis Applied Multivariate Statistics Spring 2012 Overview Intuition Four definitions Practical examples Mathematical example Case study 2 PCA: Goals Goal 1: Dimension reduction

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works CS68: The Modern Algorithmic Toolbox Lecture #8: How PCA Works Tim Roughgarden & Gregory Valiant April 20, 206 Introduction Last lecture introduced the idea of principal components analysis (PCA). The

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

Machine Learning (Spring 2012) Principal Component Analysis

Machine Learning (Spring 2012) Principal Component Analysis 1-71 Machine Learning (Spring 1) Principal Component Analysis Yang Xu This note is partly based on Chapter 1.1 in Chris Bishop s book on PRML and the lecture slides on PCA written by Carlos Guestrin in

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

Quantitative Understanding in Biology Principal Components Analysis

Quantitative Understanding in Biology Principal Components Analysis Quantitative Understanding in Biology Principal Components Analysis Introduction Throughout this course we have seen examples of complex mathematical phenomena being represented as linear combinations

More information

Section 4.6 Negative Exponents

Section 4.6 Negative Exponents Section 4.6 Negative Exponents INTRODUCTION In order to understand negative exponents the main topic of this section we need to make sure we understand the meaning of the reciprocal of a number. Reciprocals

More information

Gopalkrishna Veni. Project 4 (Active Shape Models)

Gopalkrishna Veni. Project 4 (Active Shape Models) Gopalkrishna Veni Project 4 (Active Shape Models) Introduction Active shape Model (ASM) is a technique of building a model by learning the variability patterns from training datasets. ASMs try to deform

More information

LECTURE 16: PCA AND SVD

LECTURE 16: PCA AND SVD Instructor: Sael Lee CS549 Computational Biology LECTURE 16: PCA AND SVD Resource: PCA Slide by Iyad Batal Chapter 12 of PRML Shlens, J. (2003). A tutorial on principal component analysis. CONTENT Principal

More information

Singular Value Decomposition and Digital Image Compression

Singular Value Decomposition and Digital Image Compression Singular Value Decomposition and Digital Image Compression Chris Bingham December 1, 016 Page 1 of Abstract The purpose of this document is to be a very basic introduction to the singular value decomposition

More information

7 Principal Component Analysis

7 Principal Component Analysis 7 Principal Component Analysis This topic will build a series of techniques to deal with high-dimensional data. Unlike regression problems, our goal is not to predict a value (the y-coordinate), it is

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

Assignment #10: Diagonalization of Symmetric Matrices, Quadratic Forms, Optimization, Singular Value Decomposition. Name:

Assignment #10: Diagonalization of Symmetric Matrices, Quadratic Forms, Optimization, Singular Value Decomposition. Name: Assignment #10: Diagonalization of Symmetric Matrices, Quadratic Forms, Optimization, Singular Value Decomposition Due date: Friday, May 4, 2018 (1:35pm) Name: Section Number Assignment #10: Diagonalization

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 51 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

DIMENSION REDUCTION AND CLUSTER ANALYSIS

DIMENSION REDUCTION AND CLUSTER ANALYSIS DIMENSION REDUCTION AND CLUSTER ANALYSIS EECS 833, 6 March 2006 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@kgs.ku.edu 864-2093 Overheads and resources available at http://people.ku.edu/~gbohling/eecs833

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Anders Øland David Christiansen 1 Introduction Principal Component Analysis, or PCA, is a commonly used multi-purpose technique in data analysis. It can be used for feature

More information

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis: Uses one group of variables (we will call this X) In

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis CS5240 Theoretical Foundations in Multimedia Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (NUS) Principal

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #21: Dimensionality Reduction Seoul National University 1 In This Lecture Understand the motivation and applications of dimensionality reduction Learn the definition

More information

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data. Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS 121 CHAPTER 11 PRINCIPAL COMPONENTS ANALYSIS We now have the tools necessary to discuss one of the most important concepts in mathematical statistics: Principal Components Analysis (PCA). PCA involves

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Introduction to SVD and Applications

Introduction to SVD and Applications Introduction to SVD and Applications Eric Kostelich and Dave Kuhl MSRI Climate Change Summer School July 18, 2008 Introduction The goal of this exercise is to familiarize you with the basics of the singular

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities MA 1128: Lecture 08 03/02/2018 Linear Equations from Graphs And Linear Inequalities Linear Equations from Graphs Given a line, we would like to be able to come up with an equation for it. I ll go over

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Merrily we roll along

Merrily we roll along Merrily we roll along Name Period Date Lab partners Overview Measuring motion of freely falling objects is difficult because they acclerate so fast. The speed increases by 9.8 m/s every second, so Galileo

More information

Data Mining Lecture 4: Covariance, EVD, PCA & SVD

Data Mining Lecture 4: Covariance, EVD, PCA & SVD Data Mining Lecture 4: Covariance, EVD, PCA & SVD Jo Houghton ECS Southampton February 25, 2019 1 / 28 Variance and Covariance - Expectation A random variable takes on different values due to chance The

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 37 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

Principal Components Analysis: A How-To Manual for R

Principal Components Analysis: A How-To Manual for R Principal Components Analysis: A How-To Manual for R Emily Mankin Introduction Principal Components Analysis (PCA) is one of several statistical tools available for reducing the dimensionality of a data

More information

Chapter 6. Systems of Equations and Inequalities

Chapter 6. Systems of Equations and Inequalities Chapter 6 Systems of Equations and Inequalities 6.1 Solve Linear Systems by Graphing I can graph and solve systems of linear equations. CC.9-12.A.CED.2, CC.9-12.A.CED.3, CC.9-12.A.REI.6 What is a system

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 9

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 9 EECS 16B Designing Information Devices and Systems II Fall 18 Elad Alon and Miki Lustig Homework 9 This homework is due Wednesday, October 31, 18, at 11:59pm. Self grades are due Monday, November 5, 18,

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Class President: A Network Approach to Popularity. Due July 18, 2014

Class President: A Network Approach to Popularity. Due July 18, 2014 Class President: A Network Approach to Popularity Due July 8, 24 Instructions. Due Fri, July 8 at :59 PM 2. Work in groups of up to 3 3. Type up the report, and submit as a pdf on D2L 4. Attach the code

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise.

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise. Name Solutions Linear Algebra; Test 3 Throughout the test simplify all answers except where stated otherwise. 1) Find the following: (10 points) ( ) Or note that so the rows are linearly independent, so

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak, scribe: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters,

More information

Principal Component Analysis CS498

Principal Component Analysis CS498 Principal Component Analysis CS498 Today s lecture Adaptive Feature Extraction Principal Component Analysis How, why, when, which A dual goal Find a good representation The features part Reduce redundancy

More information

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS PRINCIPAL COMPONENTS ANALYSIS Iris Data Let s find Principal Components using the iris dataset. This is a well known dataset, often used to demonstrate the effect of clustering algorithms. It contains

More information

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ...

Math 1310 Section 4.1: Polynomial Functions and Their Graphs. A polynomial function is a function of the form ... Math 1310 Section 4.1: Polynomial Functions and Their Graphs A polynomial function is a function of the form... where 0,,,, are real numbers and n is a whole number. The degree of the polynomial function

More information

MOL410/510 Problem Set 1 - Linear Algebra - Due Friday Sept. 30

MOL410/510 Problem Set 1 - Linear Algebra - Due Friday Sept. 30 MOL40/50 Problem Set - Linear Algebra - Due Friday Sept. 30 Use lab notes to help solve these problems. Problems marked MUST DO are required for full credit. For the remainder of the problems, do as many

More information

Astronomy 102 Lab: Hubble Law

Astronomy 102 Lab: Hubble Law Name: Astronomy 102 Lab: Hubble Law Part of today s lab will involve the use of laptops. If you own one, please bring it to class. Pre-Lab Assignment: In this week's lab, you will study the expansion of

More information

EXAMPLE 7: EIGENVALUE PROBLEM EXAMPLE. x ks1. ks2. fs1. fs2 !!! +!!! =!!!!! 4) State variables:!!!,!!!,!!!,!!! (Four SV s here!) =!!!

EXAMPLE 7: EIGENVALUE PROBLEM EXAMPLE. x ks1. ks2. fs1. fs2 !!! +!!! =!!!!! 4) State variables:!!!,!!!,!!!,!!! (Four SV s here!) =!!! EXAMPLE 7: EIGENVALUE PROBLEM EXAMPLE x ks ks m m ) CL: ) GC: 3) FBD: fs fs fs m m + 4) State variables:,,, (Four SV s here) 5) Solve for the state equations for each variable + + Wow, that was one of

More information

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 4

Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework 4 EECS 16A Designing Information Devices and Systems I Spring 2017 Babak Ayazifar, Vladimir Stojanovic Homework This homework is due February 22, 2017, at 2:59. Self-grades are due February 27, 2017, at

More information

Application of Principal Component Analysis to TES data

Application of Principal Component Analysis to TES data Application of Principal Component Analysis to TES data Clive D Rodgers Clarendon Laboratory University of Oxford Madison, Wisconsin, 27th April 2006 1 My take on the PCA business 2/41 What is the best

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

Exploratory Factor Analysis and Principal Component Analysis

Exploratory Factor Analysis and Principal Component Analysis Exploratory Factor Analysis and Principal Component Analysis Today s Topics: What are EFA and PCA for? Planning a factor analytic study Analysis steps: Extraction methods How many factors Rotation and

More information

Signal Analysis. Principal Component Analysis

Signal Analysis. Principal Component Analysis Multi dimensional Signal Analysis Lecture 2E Principal Component Analysis Subspace representation Note! Given avector space V of dimension N a scalar product defined by G 0 a subspace U of dimension M

More information

Gaussian Quiz. Preamble to The Humble Gaussian Distribution. David MacKay 1

Gaussian Quiz. Preamble to The Humble Gaussian Distribution. David MacKay 1 Preamble to The Humble Gaussian Distribution. David MacKay Gaussian Quiz H y y y 3. Assuming that the variables y, y, y 3 in this belief network have a joint Gaussian distribution, which of the following

More information

Unit 8 - Polynomial and Rational Functions Classwork

Unit 8 - Polynomial and Rational Functions Classwork Unit 8 - Polynomial and Rational Functions Classwork This unit begins with a study of polynomial functions. Polynomials are in the form: f ( x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Fitting functions to data

Fitting functions to data 1 Fitting functions to data 1.1 Exact fitting 1.1.1 Introduction Suppose we have a set of real-number data pairs x i, y i, i = 1, 2,, N. These can be considered to be a set of points in the xy-plane. They

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization Tim Roughgarden February 28, 2017 1 Preamble This lecture fulfills a promise made back in Lecture #1,

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper)

PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper) PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper) In class, we saw this graph, with each node representing people who are following each other on Twitter: Our

More information

7 Principal Components and Factor Analysis

7 Principal Components and Factor Analysis 7 Principal Components and actor nalysis 7.1 Principal Components a oal. Relationships between two variables can be graphically well captured in a meaningful way. or three variables this is also possible,

More information

IV. Matrix Approximation using Least-Squares

IV. Matrix Approximation using Least-Squares IV. Matrix Approximation using Least-Squares The SVD and Matrix Approximation We begin with the following fundamental question. Let A be an M N matrix with rank R. What is the closest matrix to A that

More information

Dimensionality Reduction

Dimensionality Reduction Lecture 5 1 Outline 1. Overview a) What is? b) Why? 2. Principal Component Analysis (PCA) a) Objectives b) Explaining variability c) SVD 3. Related approaches a) ICA b) Autoencoders 2 Example 1: Sportsball

More information

Eigenvalues, Eigenvectors, and an Intro to PCA

Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Eigenvalues, Eigenvectors, and an Intro to PCA Changing Basis We ve talked so far about re-writing our data using a new set of variables, or a new basis.

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering

Karhunen-Loève Transform KLT. JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform KLT JanKees van der Poel D.Sc. Student, Mechanical Engineering Karhunen-Loève Transform Has many names cited in literature: Karhunen-Loève Transform (KLT); Karhunen-Loève Decomposition

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters, transforms,

More information

CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery

CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery Tim Roughgarden & Gregory Valiant May 3, 2017 Last lecture discussed singular value decomposition (SVD), and we

More information

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION 2.25 SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION PART A: LONG DIVISION Ancient Example with Integers 2 4 9 8 1 In general: dividend, f divisor, d We can say: 9 4 = 2 + 1 4 By multiplying both sides

More information

COMP6237 Data Mining Covariance, EVD, PCA & SVD. Jonathon Hare

COMP6237 Data Mining Covariance, EVD, PCA & SVD. Jonathon Hare COMP6237 Data Mining Covariance, EVD, PCA & SVD Jonathon Hare jsh2@ecs.soton.ac.uk Variance and Covariance Random Variables and Expected Values Mathematicians talk variance (and covariance) in terms of

More information

Section 29: What s an Inverse?

Section 29: What s an Inverse? Section 29: What s an Inverse? Our investigations in the last section showed that all of the matrix operations had an identity element. The identity element for addition is, for obvious reasons, called

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 6. Principal component analysis (PCA) 6.1 Overview 6.2 Essentials of PCA 6.3 Numerical calculation of PCs 6.4 Effects of data preprocessing

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 15

GEOG 4110/5100 Advanced Remote Sensing Lecture 15 GEOG 4110/5100 Advanced Remote Sensing Lecture 15 Principal Component Analysis Relevant reading: Richards. Chapters 6.3* http://www.ce.yildiz.edu.tr/personal/songul/file/1097/principal_components.pdf *For

More information

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

More information

What is Image Deblurring?

What is Image Deblurring? What is Image Deblurring? When we use a camera, we want the recorded image to be a faithful representation of the scene that we see but every image is more or less blurry, depending on the circumstances.

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

MATH2071: LAB #5: Norms, Errors and Condition Numbers

MATH2071: LAB #5: Norms, Errors and Condition Numbers MATH2071: LAB #5: Norms, Errors and Condition Numbers 1 Introduction Introduction Exercise 1 Vector Norms Exercise 2 Matrix Norms Exercise 3 Compatible Matrix Norms Exercise 4 More on the Spectral Radius

More information

MATH 310, REVIEW SHEET 2

MATH 310, REVIEW SHEET 2 MATH 310, REVIEW SHEET 2 These notes are a very short summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive,

More information

Lesson 3-2: Solving Linear Systems Algebraically

Lesson 3-2: Solving Linear Systems Algebraically Yesterday we took our first look at solving a linear system. We learned that a linear system is two or more linear equations taken at the same time. Their solution is the point that all the lines have

More information

8. TRANSFORMING TOOL #1 (the Addition Property of Equality)

8. TRANSFORMING TOOL #1 (the Addition Property of Equality) 8 TRANSFORMING TOOL #1 (the Addition Property of Equality) sentences that look different, but always have the same truth values What can you DO to a sentence that will make it LOOK different, but not change

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 1 1.1 Introduction to Linear Algebra the EECS Way In this note, we will teach the basics of linear algebra and relate it

More information

Exploratory Factor Analysis and Principal Component Analysis

Exploratory Factor Analysis and Principal Component Analysis Exploratory Factor Analysis and Principal Component Analysis Today s Topics: What are EFA and PCA for? Planning a factor analytic study Analysis steps: Extraction methods How many factors Rotation and

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17

Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis. Chris Funk. Lecture 17 Principal Component Analysis-I Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 17 Outline Filters and Rotations Generating co-varying random fields Translating co-varying fields into

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Multivariate Statistics (I) 2. Principal Component Analysis (PCA)

Multivariate Statistics (I) 2. Principal Component Analysis (PCA) Multivariate Statistics (I) 2. Principal Component Analysis (PCA) 2.1 Comprehension of PCA 2.2 Concepts of PCs 2.3 Algebraic derivation of PCs 2.4 Selection and goodness-of-fit of PCs 2.5 Algebraic derivation

More information

Solution Set 7, Fall '12

Solution Set 7, Fall '12 Solution Set 7, 18.06 Fall '12 1. Do Problem 26 from 5.1. (It might take a while but when you see it, it's easy) Solution. Let n 3, and let A be an n n matrix whose i, j entry is i + j. To show that det

More information

MATH 122: Matrixology (Linear Algebra) Solutions to Level Tetris (1984), 10 of 10 University of Vermont, Fall 2016

MATH 122: Matrixology (Linear Algebra) Solutions to Level Tetris (1984), 10 of 10 University of Vermont, Fall 2016 MATH : Matrixology (Linear Algebra) Solutions to Level Tetris (984), 0 of 0 University of Vermont, Fall 0 (Q 4, 5) Show that the function f (x, x ) x + 4x x + x does not have a minimum at (0, 0) even though

More information

Recitation 8: Graphs and Adjacency Matrices

Recitation 8: Graphs and Adjacency Matrices Math 1b TA: Padraic Bartlett Recitation 8: Graphs and Adjacency Matrices Week 8 Caltech 2011 1 Random Question Suppose you take a large triangle XY Z, and divide it up with straight line segments into

More information

Image Compression Using Singular Value Decomposition

Image Compression Using Singular Value Decomposition Image Compression Using Singular Value Decomposition Ian Cooper and Craig Lorenc December 15, 2006 Abstract Singular value decomposition (SVD) is an effective tool for minimizing data storage and data

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

Please bring the task to your first physics lesson and hand it to the teacher.

Please bring the task to your first physics lesson and hand it to the teacher. Pre-enrolment task for 2014 entry Physics Why do I need to complete a pre-enrolment task? This bridging pack serves a number of purposes. It gives you practice in some of the important skills you will

More information

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME Signal Processing for Power System Applications Frequency Domain Analysis Techniques Parametric Methods for Line Spectra (Week-5-6) Gazi Üniversitesi, Elektrik ve

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

Singular Value Decomposition

Singular Value Decomposition Chapter 5 Singular Value Decomposition We now reach an important Chapter in this course concerned with the Singular Value Decomposition of a matrix A. SVD, as it is commonly referred to, is one of the

More information