Quantum Field Theory 2011 Solutions

Size: px
Start display at page:

Download "Quantum Field Theory 2011 Solutions"

Transcription

1 Quantum Field Theory 011 Solution Yichen Shi Eater 014 Note that we ue the metric convention + ++). 1. State and prove Noether theorem in the context of a claical Lagrangian field theory defined in Minkowki pace. See Q Yukawa theory ha a Lagrangian denity L = 1 aφ a φ 1 m φ i ψγ a a + m)ψ + g ψ φ ψ. Find the Noether current and conerved charge aociated with the phae rotation ψ e iα ψ. Find the Noether current and conerved charge aociated with time tranlation ymmetry. The quetion implie that ψ e iα ψ 1 iα)ψ i a ymmetry of the theory, o we do not need to verify them. Then by Noether theorem, the conerved current αj a = L a ψ) δψ + L δ a ψ) ψ = i ψγ a iαψ) = α ψγ a ψ. And the conerved charge Q = d 3 x j 0 = d 3 x ψγ a ψ. For a pace-time tranlational ymmetry, we have x a x a + α a. Then, φx) φx) α a a φx); ψx) ψx) α a a ψx). By Noether theorem, the aociated current i the energy-momentum tenor T ab = L a ψ) b ψ L a φ) b φ + η ab L = i ψγ 1 a b ψ + a φ b φ η ab cφ c φ + 1 ) m φ + i ψγ c c + m)ψ g ψ φ ψ = i ψγ 1 a b ψ + a φ b φ η ab cφ c φ + 1 ) m φ, 1

2 by uing the equation of motion for ψ. We can do o ince a current i conerved only when the equation of motion are obeyed. So for a time tranlational ymmetry, T 00 = i ψγ 0 ψ + φ + 1 cφ c φ + 1 m φ = ψiγ i i m)ψ + 1 φ + 1 φ) + 1 m φ, where we again ued the equation of motion for ψ. And the conerved charge i the total energy, E = d 3 x T 00. Briefly decribe any additional Noether current and charge that thi theory ha. There are conerved current and charge aociated with patial tranlational invariance, i.e., total momentum. Note that there i no Noether current from the phae rotation of φ ince g ψφψ lead to a term in δl that i not a total derivative.. Free calar field theory in momentum pace i defined by a et of Schrodinger picture operator a and a atifying [a, a q ] = π)3 δ 3 q) and a Hamiltonian H = d 3 π) 3 E a a. Define what i meant by a Heienberg picture operator, and find the Heienberg picture operator a H and a H obtained from a and a. In the Heienberg picture, operator evolve with time wherea tate are time-independent, in contrat with the Schrodinger picture. For any operator, O H = e iht O S e iht. Given the Schrodinger picture field φ x) = π x) = i) d 3 1 a π) 3 e i x + a e i x) ; E d 3 E π) 3 a e i x a e i x), find the correponding Heienberg picture field. Show that φ H obey the Klein-Gordon equation. Since we have [H, a ] = E a ; [H, a ] = E a a H = eiht a e iht = e ie t a ; a H = e iht a e iht = e ie t a.

3 and Hence if we let a a H Now, in the Schodinger picture mode expanion, then φ H x) = π H x) = i) d 3 1 a π) 3 e ip x + a e ip x) ; E d 3 E π) 3 a e ip x a e ip x). φ H = ih e iht φ S e iht + e iht φ S e iht ih) = i[h, φ H ] = i d 3 x [ π y) + φ y)) + m φ y), φ x) ] = i d 3 x [ π y), φ x) ] = π x), π H = ih e iht π S e iht + e iht π S e iht ih) = i[h, π H ] = i d 3 x [ φ y)) + m φ y), φ x) ] = d 3 x φ y) δ 3 x y) + m φ y)δ 3 x y) ) = d 3 x φ y)δ 3 x y) m φ x) = φ x) m φ x). Combining the two calculation, we have which i the KG equation. φ H φ H + m φ H = 0, Define the vacuum tate 0 and find an expreion for 0 φ H x)φ H y) 0 a a 3-momentum integral. The vacuum tate 0 i defined uch that it i annihilated by an annihilation operator, i.e., a 0 = 0. 0 φ H x)φ H y) 0 = = = d 3 π) 3 d 3 π) 3 d 3 q 1 π) 3 e ip x iq y ) 0 [a p, a q] 0 E E q d 3 q 1 π) 3 e ip x iq y ) E E π) 3 δ 3 q) q d 3 π) 3 1 E e ip x y). 3. 3

4 Let u and v be arbitrary Dirac pinor. Show that ūγ a v) = vγ a u. Uing the Dirac algebra, determine Trγ a γ b ) and Trγ a γ b γ c γ d ). Since γ a = γ 0 γ a γ 0, γ 0 = γ 0, and ūγ a v) = v γ a γ 0 u = v γ 0 γ a γ 0 )γ 0 u = vγ a u. By the cyclic permutation of element in Tr), and noting that we are tracing over pinor not Lorentz) indice, Trγ a γ b ) = 1 Trγa γ b + γ b γ a ) = 1 Trηab I 4 ) = 4η ab. Trγ a γ b γ c γ d ) = Trγ a γ b η cd γ d γ c )) = η cd Trγ a γ b ) Trγ a γ b γ d γ c ) = η cd Trγ a γ b ) Trγ a η bd γ d γ b )γ c ) = η cd Trγ a γ b ) η bd Trγ a γ c ) + Trγ a γ d γ b γ c ) = η cd Trγ a γ b ) η bd Trγ a γ c ) + Trη ad γ d γ a )γ b γ c ) = η cd Trγ a γ b ) η bd Trγ a γ c ) + η ad Trγ b γ c ) Trγ d γ a γ b γ c ) = 8η cd η ab 8η bd η ac + 8η ad η bc Trγ a γ b γ c γ d ). Hence Trγ a γ b γ c γ d ) = 4η cd η ab η bd η ac + η ad η bc ) Now let {u p), v p)}, = ±1/ be an orthonormalied bai et of pinor atifying iγ a p a + m)u p) = 0, iγ a p a + m)v p) = 0; ū u r = imδ r, v v r = imδ r. Why i it neceary that p + m = 0 here? Etablih the pin um We are given But we imilarly have u p)ū p) = γ a p a im, iγ a p a + m)u p) = 0. v p) v p) = γ a p a + im. iγ b p b + m)iγ a p a + m)u p) = 0. γ b γ a p b p a + m )u p) = 0. γ a γ b p a p b + m )u p) = 0. Auming the olution i nontrivial, adding the expreion and uing the Clifford algebra, we obtain η ab p a p b + m = 0. p + m = 0. Now, ince {u p), v p)} i a bai of the four dimenional vector pace of Dirac pinor for every fixed value of p, linear operator Ap) := u p)ū p), Bp) := v p) v p) 4

5 are determined by their action on the bai pinor u r p) and v r p). Ap)u r p) = u p)ū p)u r p) = im u p)δ r Hence Similarly, Hence = imu r p) = imu r p) i iγ a p a )u r p) = γ a p a im)u r p). u p)ū p) = γ a p a im. Bp)v r p) = γ a p a + im)v r p). v p) v p) = γ a p a + im. Ue the reult above to implify the expreion ū p)γ a v r q)) ū p)γ b v r q)), where p = q = m. Decribe briefly how thi quantity could arie in a QED calculation. Note that an 1x1 matrix i equal to it trace. Alo recall the identitie Trγ a γ b γ c ) = 0 due to the antiymmetry of γ a and the cyclic permutation of trace, and Trγ a γ b ) = 4η ab, Trγ a γ b γ c γ d ) = 4η ab η cd η ac η bd + η ad η bc ). ū p)γ a v r q)) ū p)γ b v r q)) = v r q)γ a u p)ū p)γ b v r q) ) = Tr v r q)γ a u p)ū p)γ b v r q) ) = Tr v r q) v r q)γ a u p)ū p)γ b = Tr γ c q c + im)γ a γ d p d im)γ b) = Trγ c q c γ a γ d p d γ b ) + m Trγ a γ b ) = 4q a p b p qη ab + q b p a + m η ab ). Thi quantity can arie in, for example, muon-electron cattering, when finding A from A ūp 1)γ a up 1 )ūp )γ a up ). 4. 5

6 Write down the Feynman rule for a QED cattering amplitude involving only photon on external line. 1. Draw the Feynman diagram and label with momentum conitent with conervation.. For each internal fermion propagator, give a factor of i /p + m) p + m iɛ. 3. For each interaction vertex, add ieγ a, impoe vertex momentum conervation and overall momentum conervation with π) 4 δ 4 pin ) p out. 4. Integrate over momenta aociated with loop with meaure d4 k π) Add polariation vector for external photon: ɛ a incoming; ɛ a outgoing. 6. Take into account minu ign due to the commutation of fermion. 7. Divide by ymmetry factor. a) Explain the contraint on the photon polarization vector and how they arie. Uing the mode expanion of A, A = d 3 1 π) 3 ɛ r a r, e ip x + a e ip x r, ), E r the gauge condition A = 0 give ɛ = 0, hence the polariation vector are tranvere to patial momentum. b) Explain the key tep in the derivation of the photon propagator. We can imply read off the photon propagator from Maxwell Lagrangian in the Coulomb gauge: L Coulomb = 1 4 F abf ab = 1 A i A i. Fourier tranform of the propagator, being the invere of δ ij k, i, D F k) ij = δ ij k iɛ. c) Draw the lowet order Feynman diagram for two photon to two photon cattering, and give the integral expreion for the cattering amplitude to thi order. Simplification of the expreion i not required.) ie) 4 d 4 k i /p 1 + m) i /p + m) i /p 3 + m) i /p 4 + m) π) 4 γa p 1 + m iɛ γb p + m iɛ γc p 3 + m iɛ γd p m iɛ d) Draw the diagram that contribute at next to lowet order to thi cattering amplitude. 6

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information

PHY 396 K. Solutions for problem set #7.

PHY 396 K. Solutions for problem set #7. PHY 396 K. Solution for problem et #7. Problem 1a: γ µ γ ν ±γ ν γ µ where the ign i + for µ ν and otherwie. Hence for any product Γ of the γ matrice, γ µ Γ 1 nµ Γγ µ where n µ i the number of γ ν µ factor

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

Physics 443 Homework 2 Solutions

Physics 443 Homework 2 Solutions Phyic 3 Homework Solution Problem 1 a Under the tranformation φx φ x λ a φλx Lagrangian Lx 1 µφx ρφx tranform a Lx 1 µ λ a φλx ρλ a φλx 1 λ +a 1 µφ λx ρλ a φλx. Moreover, note that action S d xlx i invariant

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

FY3464 Quantum Field Theory Exercise sheet 10

FY3464 Quantum Field Theory Exercise sheet 10 Exercie heet 10 Scalar QED. a. Write down the Lagrangian of calar QED, i.e. a complex calar field coupled to the photon via D µ = µ + iqa µ. Derive the Noether current and the current to which the photon

More information

9 Lorentz Invariant phase-space

9 Lorentz Invariant phase-space 9 Lorentz Invariant phae-space 9. Cro-ection The cattering amplitude M q,q 2,out p, p 2,in i the amplitude for a tate p, p 2 to make a tranition into the tate q,q 2. The tranition probability i the quare

More information

LSZ reduction for spin-1/2 particles

LSZ reduction for spin-1/2 particles LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory:

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory: LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

arxiv:hep-th/ v1 27 Jul 2005

arxiv:hep-th/ v1 27 Jul 2005 Fermi Field without Tear arxiv:hep-th/57259v1 27 Jul 25 Peter Cahill Department of Mechanical Engineering, Univerity of New Mexico, Albuquerque, NM 87131 E-mail: pedo@unm.edu Kevin Cahill New Mexico Center

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

What s up with those Feynman diagrams? an Introduction to Quantum Field Theories

What s up with those Feynman diagrams? an Introduction to Quantum Field Theories What s up with those Feynman diagrams? an Introduction to Quantum Field Theories Martin Nagel University of Colorado February 3, 2010 Martin Nagel (CU Boulder) Quantum Field Theories February 3, 2010 1

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I)

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Part I is based on material that has come up in class, you can do it at home. Go straight to Part II. 1. This question will be part of a take-home

More information

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing.

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing. Physics 27 FINAL EXAM SOLUTIONS Fall 206. The helicity spinor u(p, λ satisfies u(p,λu(p,λ = 2m. ( In parts (a and (b, you may assume that m 0. (a Evaluate u(p,λ by any method of your choosing. Using the

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 16 Fall 018 Semester Prof. Matthew Jones Review of Lecture 15 When we introduced a (classical) electromagnetic field, the Dirac equation

More information

Symmetry Lecture 9. 1 Gellmann-Nishijima relation

Symmetry Lecture 9. 1 Gellmann-Nishijima relation Symmetry Lecture 9 1 Gellmann-Nihijima relation In the lat lecture we found that the Gell-mann and Nihijima relation related Baryon number, charge, and the third component of iopin. Q = [(1/2)B + T 3 ]

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Quantum Field Theory Example Sheet 4 Michelmas Term 2011

Quantum Field Theory Example Sheet 4 Michelmas Term 2011 Quantum Field Theory Example Sheet 4 Michelmas Term 0 Solutions by: Johannes Hofmann Laurence Perreault Levasseur Dave M. Morris Marcel Schmittfull jbh38@cam.ac.uk L.Perreault-Levasseur@damtp.cam.ac.uk

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001 Quantum Electrodynamics D. E. Soper University of Oregon Physics 666, Quantum Field Theory April The action We begin with an argument that quantum electrodynamics is a natural extension of the theory of

More information

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Part I. Many-Body Systems and Classical Field Theory

Part I. Many-Body Systems and Classical Field Theory Part I. Many-Body Systems and Classical Field Theory 1. Classical and Quantum Mechanics of Particle Systems 3 1.1 Introduction. 3 1.2 Classical Mechanics of Mass Points 4 1.3 Quantum Mechanics: The Harmonic

More information

The statistical properties of the primordial fluctuations

The statistical properties of the primordial fluctuations The tatitical propertie of the primordial fluctuation Lecturer: Prof. Paolo Creminelli Trancriber: Alexander Chen July 5, 0 Content Lecture Lecture 4 3 Lecture 3 6 Primordial Fluctuation Lecture Lecture

More information

Physics 582, Problem Set 1 Solutions

Physics 582, Problem Set 1 Solutions Physics 582, Problem Set 1 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. THE DIRAC EQUATION [20 PTS] Consider a four-component fermion Ψ(x) in 3+1D, L[ Ψ, Ψ] = Ψ(i/ m)ψ, (1.1) where we use

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information

Fermi Distribution Function. n(e) T = 0 T > 0 E F

Fermi Distribution Function. n(e) T = 0 T > 0 E F LECTURE 3 Maxwell{Boltzmann, Fermi, and Boe Statitic Suppoe we have a ga of N identical point particle in a box ofvolume V. When we ay \ga", we mean that the particle are not interacting with one another.

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9 Even Odd Symmetry Lecture 9 1 Parity The normal mode of a tring have either even or odd ymmetry. Thi alo occur for tationary tate in Quantum Mechanic. The tranformation i called partiy. We previouly found

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

Lecture notes for FYS610 Many particle Quantum Mechanics

Lecture notes for FYS610 Many particle Quantum Mechanics UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Lecture notes for FYS610 Many particle Quantum Mechanics Note 20, 19.4 2017 Additions and comments to Quantum Field Theory and the Standard

More information

Lecture-05 Perturbation Theory and Feynman Diagrams

Lecture-05 Perturbation Theory and Feynman Diagrams Lecture-5 Perturbation Theory and Feynman Diagrams U. Robkob, Physics-MUSC SCPY639/428 September 3, 218 From the previous lecture We end up at an expression of the 2-to-2 particle scattering S-matrix S

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama Note on Phae Space Fall 007, Phyic 33B, Hitohi Murayama Two-Body Phae Space The two-body phae i the bai of computing higher body phae pace. We compute it in the ret frame of the two-body ytem, P p + p

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Quantization of the Dirac Field

Quantization of the Dirac Field Quantization of the Dirac Field Asaf Pe er 1 March 5, 2014 This part of the course is based on Refs. [1] and [2]. After deriving the Dirac Lagrangian: it is now time to quantize it. 1. Introduction L =

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

Cross-sections. Kevin Cahill for 524 January 24, There are two standard ways of normalizing states. We have been using continuum normalization

Cross-sections. Kevin Cahill for 524 January 24, There are two standard ways of normalizing states. We have been using continuum normalization Cross-sections Kevin Cahill for 54 January 4, 013 1 Fermi s Golden Rule There are two standard ways of normalizing states. We have been using continuum normalization p p = δ (3) (p p). (1) The other way

More information

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS LOGAN T. MEREDITH 1. Introduction When one thinks of quantum field theory, one s mind is undoubtedly drawn to Feynman diagrams. The naïve view these

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Introduction to gauge theory

Introduction to gauge theory Introduction to gauge theory 2008 High energy lecture 1 장상현 연세대학교 September 24, 2008 장상현 ( 연세대학교 ) Introduction to gauge theory September 24, 2008 1 / 72 Table of Contents 1 Introduction 2 Dirac equation

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q  ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of Vol 12 No 7, July 2003 cfl 2003 Chin. Phy. Soc. 1009-1963/2003/12(07)/0695-05 Chinee Phyic and IOP Publihing Ltd Lie ymmetrie and conerved quantitie of controllable nonholonomic dynamical ytem Fu Jing-Li(ΛΠ±)

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

Quantum Field Theory I

Quantum Field Theory I Quantum Field Theory I Problem Sets ETH Zurich, HS14 Prof. N. Beisert c 2014 ETH Zurich This document as well as its parts is protected by copyright. Reproduction of any part in any form without prior

More information

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model Brunel University Queen Mary, University of London Royal Holloway, University of London University College London Intercollegiate post-graduate course in High Energy Physics Paper 1: The Standard Model

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

3.3 Lagrangian and symmetries for a spin- 1 2 field

3.3 Lagrangian and symmetries for a spin- 1 2 field 3.3 Lagrangian and symmetries for a spin- 1 2 field The Lagrangian for the free spin- 1 2 field is The corresponding Hamiltonian density is L = ψ(i/ µ m)ψ. (3.31) H = ψ( γ p + m)ψ. (3.32) The Lagrangian

More information

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama Renormalization of the Yukawa Theory Physics 23A (Spring 27), Hitoshi Murayama We solve Problem.2 in Peskin Schroeder. The Lagrangian density is L 2 ( µφ) 2 2 m2 φ 2 + ψ(i M)ψ ig ψγ 5 ψφ. () The action

More information

A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics

A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics A Calculation of the Differential Cross Section for Compton Scattering in Tree-Level Quantum Electrodynamics Declan Millar D.Millar@soton.ac.uk School of Physics and Astronomy, University of Southampton,

More information

Quantum ElectroDynamics III

Quantum ElectroDynamics III Quantum ElectroDynamics III Feynman diagram Dr.Farida Tahir Physics department CIIT, Islamabad Human Instinct What? Why? Feynman diagrams Feynman diagrams Feynman diagrams How? What? Graphic way to represent

More information

PAPER 305 THE STANDARD MODEL

PAPER 305 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Tuesday, 6 June, 017 9:00 am to 1:00 pm PAPER 305 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14. As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14 Majorana spinors March 15, 2012 So far, we have only considered massless, two-component

More information

A short Introduction to Feynman Diagrams

A short Introduction to Feynman Diagrams A short Introduction to Feynman Diagrams J. Bijnens, November 2008 This assumes knowledge at the level of Chapter two in G. Kane, Modern Elementary Particle Physics. This note is more advanced than needed

More information

Physics 523, Quantum Field Theory II Midterm Examination

Physics 523, Quantum Field Theory II Midterm Examination Physics 53, Quantum Fiel Theory II Miterm Examination Due Monay, 9 th March 004 Jacob Lewis Bourjaily University of Michigan, Department of Physics, Ann Arbor, MI 4809-0 PHYSICS 53: QUANTUM FIELD THEORY

More information

11 Spinor solutions and CPT

11 Spinor solutions and CPT 11 Spinor solutions and CPT 184 In the previous chapter, we cataloged the irreducible representations of the Lorentz group O(1, 3. We found that in addition to the obvious tensor representations, φ, A

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Physics 221B Spring 2018 Notes 49 Electromagnetic Interactions With the Dirac Field

Physics 221B Spring 2018 Notes 49 Electromagnetic Interactions With the Dirac Field Copyright c 018 by Robert G. Littlejohn Physics 1B Spring 018 Notes 49 Electromagnetic Interactions With the Dirac Field 1. Introduction In the previous set of notes we second-quantized the Dirac equation

More information

Quantum Electrodynamics

Quantum Electrodynamics Quantum Electrodynamics Wei Wang and Zhi-Peng Xing SJTU Wei Wang and Zhi-Peng Xing (SJTU) QED 1 / 35 Contents 1 QED 2 e + e µ + µ 3 Helicity Amplitudes 4 ep ep 5 Compton Scattering 6 e + e 2γ Wei Wang

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

Name: Solutions Exam 3

Name: Solutions Exam 3 Intruction. Anwer each of the quetion on your own paper. Put your name on each page of your paper. Be ure to how your work o that partial credit can be adequately aeed. Credit will not be given for anwer

More information

7 Quantized Free Dirac Fields

7 Quantized Free Dirac Fields 7 Quantized Free Dirac Fields 7.1 The Dirac Equation and Quantum Field Theory The Dirac equation is a relativistic wave equation which describes the quantum dynamics of spinors. We will see in this section

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Inference for Two Stage Cluster Sampling: Equal SSU per PSU. Projections of SSU Random Variables on Each SSU selection.

Inference for Two Stage Cluster Sampling: Equal SSU per PSU. Projections of SSU Random Variables on Each SSU selection. Inference for Two Stage Cluter Sampling: Equal SSU per PSU Projection of SSU andom Variable on Eac SSU election By Ed Stanek Introduction We review etimating equation for PSU mean in a two tage cluter

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

Quantum Physics 2006/07

Quantum Physics 2006/07 Quantum Physics 6/7 Lecture 7: More on the Dirac Equation In the last lecture we showed that the Dirac equation for a free particle i h t ψr, t = i hc α + β mc ψr, t has plane wave solutions ψr, t = exp

More information

1 Introduction. 2 Relativistic Kinematics. 2.1 Particle Decay

1 Introduction. 2 Relativistic Kinematics. 2.1 Particle Decay 1 Introduction Relativistic Kinematics.1 Particle Decay Due to time dilation, the decay-time (i.e. lifetime) of the particle in its restframe is related to the decay-time in the lab frame via the following

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

COLLISIONS AND TRANSPORT

COLLISIONS AND TRANSPORT COLLISIONS AND TRANSPORT Temperature are in ev the correponding value of Boltzmann contant i k = 1.6 1 1 erg/ev mae µ, µ are in unit of the proton ma e α = Z α e i the charge of pecie α. All other unit

More information

High energy hadronic interactions in QCD and applications to heavy ion collisions

High energy hadronic interactions in QCD and applications to heavy ion collisions High energy hadronic interactions in QCD and applications to heavy ion collisions III QCD on the light-cone François Gelis CEA / DSM / SPhT François Gelis 2006 Lecture III/V SPhT, Saclay, January 2006

More information

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) 1 Problem Sheet 7: Interacting Quantum Field Theory: λφ 4 Comments on these questions are always welcome. For instance if you spot any typos or

More information

Fundamental Interactions (Forces) of Nature

Fundamental Interactions (Forces) of Nature Chapter 14 Fundamental Interactions (Forces) of Nature Interaction Gauge Boson Gauge Boson Mass Interaction Range (Force carrier) Strong Gluon 0 short-range (a few fm) Weak W ±, Z M W = 80.4 GeV/c 2 short-range

More information

Notes on Quantum Field Theory. Mark Srednicki UCSB

Notes on Quantum Field Theory. Mark Srednicki UCSB March 2004 Notes on Quantum Field Theory Mark Srednicki UCSB Notes for the third quarter of a QFT course, introducing gauge theories. Please send any comments or corrections to mark@physics.ucsb.edu 1

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

Physics 772 Peskin and Schroeder Problem 3.4.! R R (!,! ) = 1 ı!!

Physics 772 Peskin and Schroeder Problem 3.4.! R R (!,! ) = 1 ı!! Physics 77 Peskin and Schroeder Problem 3.4 Problem 3.4 a) We start with the equation ı @ ım = 0. Define R L (!,! ) = ı!!!! R R (!,! ) = ı!! +!! Remember we showed in class (and it is shown in the text)

More information

A Short Note on Hysteresis and Odd Harmonics

A Short Note on Hysteresis and Odd Harmonics 1 A Short Note on yterei and Odd armonic Peter R aoput Senior Reearch Scientit ubocope Pipeline Engineering outon, X 7751 USA pmaoput@varco.com June 19, Abtract hi hort note deal with the exitence of odd

More information

Loop Corrections: Radiative Corrections, Renormalization and All

Loop Corrections: Radiative Corrections, Renormalization and All Loop Corrections: Radiative Corrections, Renormalization and All That Michael Dine Department of Physics University of California, Santa Cruz Nov 2012 Loop Corrections in φ 4 Theory At tree level, we had

More information

Surprises in the multipole description of macroscopic electrodynamics

Surprises in the multipole description of macroscopic electrodynamics Surprie in the multipole decription of macrocopic electrodynamic O. L. de Lange a and R. E. Raab School of Phyic, Univerity of KwaZulu-Natal, Private Bag X01, Scottville, Pietermaritzburg 3209, South Africa

More information

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCoureWare http://ocw.mit.edu 8.33 Relativitic Quantum Field Theory I Spring 008 For information about citing thee material or our Term Ue, viit: http://ocw.mit.edu/term. , 8.33 Lecture, April 4

More information

WIMP dark matter and Baryogenesis

WIMP dark matter and Baryogenesis WIMP dark matter and Baryogenei Lorenzo Ubaldi Bethe Center for Theoretical Phyic & Phyikaliche Intitut der Univerität Bonn, Germany with N. Bernal and F Joe-Michaux JCAP 1301 (013) 034 BLV 013 -- April

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12 As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Wednesday March 30 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

2 Quantization of the scalar field

2 Quantization of the scalar field 22 Quantum field theory 2 Quantization of the scalar field Commutator relations. The strategy to quantize a classical field theory is to interpret the fields Φ(x) and Π(x) = Φ(x) as operators which satisfy

More information

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning.

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning. Imperial College London QFFF MSc TEST January 017 QUANTUM FIELD THEORY TEST For QFFF MSc Students Monday, 9th January 017: 14:00 to 16:00 Answer ALL questions. Please answer each question in a separate

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

Quantum Electrodynamics and the Higgs Mechanism

Quantum Electrodynamics and the Higgs Mechanism Quantum Electrodynamics and the Higgs Mechanism Jakob Jark Jørgensen 4. januar 009 QED and the Higgs Mechanism INDHOLD Indhold 1 Introduction Quantum Electrodynamics 3.1 Obtaining a Gauge Theory..........................

More information