Probabilistic generative models

Size: px
Start display at page:

Download "Probabilistic generative models"

Transcription

1 Linear models for classification Francesco Corona

2

3 Probabilistic discriminative models Models with linear decision boundaries arise from assumptions about the data In a generative approach to classification, we first model the class-conditional densities p(x C k) and the class priors p(c k), and then we compute posterior probabilities p(c k x) through Bayes theorem

4 Probabilistic discriminative models (cont.) For the two-class problem, the posterior probability of class C 1 is p(c 1 x) = p(x C 1)p(C 1) p(x C 1)p(C 1)+p(x C 2)p(C 2) }{{} p(x)= k p(x,c k)= k p(x C k)p(c k ) = 1 = σ(a) (1) 1+exp( a) where we defined a = ln p(x C1)p(C1) p(x C 2)p(C 2) (2) σ(a) is the logistic sigmoid function (plotted in red) 1 σ(a) = 1 1+exp( a) (3) or squashing function, because it maps R onto a finite interval

5 Probabilistic discriminative models (cont.) The logistic sigmoid satisfies the following symmetry property σ( a) = 1 σ(a) (4) The inverse of the logistic sigmoid is known as logit function ( σ ) a = ln 1 σ It reflects the log of the ratio of probabilities for two classes (5) ln(p(c 1 x)/p(c 2 x))

6 Probabilistic discriminative models (cont.) p(c 1 x) = p(x C 1)p(C 1) p(x C 1)p(C 1)+p(x C 2)p(C 2) 1 = 1+exp ( ln p(x C1)p(C1) ) p(x C 2)p(C 2) }{{} a ( = σ ln p(x C1)p(C1) ) p(x C 2)p(C 2) }{{} a We have written the posterior probabilities in an equivalent form that will have significance when a(x) is a linear function of x Here, the posterior probability is governed by a generalised linear model

7 Probabilisticgenerative models Probabilistic discriminative models (cont.) For the case K > 2 classes, we have p(c k x) = p(x Ck)p(Ck) K j=1 p(x Cj)p(Cj) = exp(a k) K j=1 exp(aj) (6) known as normalised exponential 1 We have defined the quantity a k as If a k >> a j, for all j k, then a k = ln ( ) p(x C k)p(c k) { p(c k x) 1 p(c j x) 0 (7) We analyse the consequences of choosing the form of class-conditional densities 1 It is a generalisation of the logistic sigmoid and it is also known as the softmax function

8 Outline

9

10 Let us assume that the class-conditional densities p(x C k) are Gaussian p(x C k) = 1 1 ( (2π) D/2 Σ 1/2exp 1 ) 2 (x µk)t Σ 1 (x µ k) (8) and, we want to explore the form of the posterior probabilities p(c k x) The Gaussians have different means µ k but share the same covariance matrix Σ

11 (cont.) p(x C 1)p(C 1) With 2 classes, p(c 1 x) = p(x C = 1 1)p(C 1)+p(x C 2)p(C 2) 1+exp( a) = σ(a) and a = ln p(x C1)p(C1), we have p(x C 2)p(C 2) where p(c 1 x) = σ(w T x+w 0) (9) w = Σ 1 (µ 1 µ 2) (10) w 0 = 1 2 µ1σ 1 µ µ2σ 1 µ 2 +ln p(c1) p(c 2) The quadratic terms in x from the exponents of the Gaussian densities have cancelled (due to the assumption of common covariance matrices) leading to a linear function of x in the argument of the logistic sigmoid (11)

12 (cont.) The left-hand plot shows the class-conditional densities for two classes over 2D The posterior probability p(c 1 x) is a logistic sigmoid of a linear function of x The surface in the right-hand plot is coloured using a proportion of red given by p(c 1 x) and a proportion of blue given by p(c 2 x) = 1 p(c 1 x)

13 (cont.) Decision boundaries are surfaces with constant posterior probabilities p(c k x) Linear functions of x Linear in input space Prior probabilities p(c k) enter only through the bias parameter w 0 so changes in priors have the effect of making parallel shifts of the decision boundary more generally of the parallel contours of constant posterior probability

14 (cont.) For the K-class case, using p(c k x) = p(x Ck)p(Ck) K j=1 p(x Cj)p(Cj) = exp(a k) K and j=1exp(aj) a k = ln(p(x C k)p(c k)), we have a k(x) = wk T x+w k0 (12) w k = Σ 1 µ k (13) w k0 = 1 2 µt k Σ 1 µ k +lnp(c k) (14) The a k(x) are again linear functions of x as a consequence of the cancellation of the quadratic terms due to the shared covariances The resulting decision boundaries (minimum misclassification rate) occur when two of the posterior probabilities (the two largest) are equal, and so they are defined by linear functions of x again we have a generalised linear model

15 (cont.) If we relax the assumption of a shared covariance matrix and allow each class-conditional density p(x C k) to have its own covariance matrix Σ k, then the earlier cancellations will no longer occur, and we will obtain quadratic functions of x, giving rise to a quadratic discriminant

16 (cont.) Class-conditional densities for three classes each having a Gaussian distribution red and green classes have the same covariance matrix The corresponding posterior probabilities and the decision boundaries Linear boundary between red and green classes, same covariance matrix Quadratic boundaries between other pairs, different covariance matrix

17

18 Once we specified a parametric functional form for class-conditional densities p(x C k), we can determine parameters and prior class probabilities p(c k) Maximum likelihood This requires data comprising observations of x and corresponding class labels

19 (cont.) Consider first the two-class case, each having a Gaussian density with shared covariance matrix Σ, and suppose we have data {x n,t n} N n=1 { t n = 1, for C 1 with prior probability p(c 1) = π t n = 0, for C 2 with prior probability p(c 2) = 1 π For a data point x n from class C 1 (C 2), we have t n = 1 (t n = 0) and thus p(x n,c 1) = p(c 1)p(x n C 1) = πn(x n µ 1,Σ) p(x n,c 2) = p(c 2)p(x n C 2) = (1 π)n(x n µ 2,Σ) For t = (t 1,...,t n) T, the likelihood function is given by p(t,x π,µ 1,µ 2,Σ) = N n=1 ( ) tn ( 1 tn πn(x n µ 1,Σ) (1 π)n(x n µ 2,Σ)) (15)

20 (cont.) As usual, we maximise the log of the likelihood function N t nln(π)+(1 t n)ln(1 π) +t nln(n(x n µ 1,Σ)) }{{}}{{} π n=1 µ 1,Σ +(1 t n)ln(n(x n µ 2,Σ)) }{{} µ 2,Σ } {{ } µ 1,µ 2,Σ

21 (cont.) Consider first maximisation with respect to π, where the terms on π are N n=1 ( ) t nln(π)+(1 t n)ln(1 π) Setting the derivative wrt π to zero and rearranging (16) π = 1 N N n=1 t n = N1 N = N 1 N 1 +N 2 (17) The maximum likelihood estimate for π is the fraction of points in C 1

22 (cont.) Now consider maximisation with respect to µ 1, where the terms on µ 1 are N n=1 ( ) t nln N(x n µ 1,Σ) = 1 2 N t n(x n µ 1) T Σ 1 (x n µ 1)+const (18) n=1 Setting the derivative wrt µ 1 to zero and rearranging µ 1 = 1 N t nx n (19) N 1 The maximum likelihood estimate of µ 1 is the mean of inputs x n in class C 1 n=1 µ 2 = 1 N t nx n (20) N 2 n=1

23 (cont.) Lastly consider maximisation with respect to Σ, where the terms on Σ are 1 N t 1 N nln Σ t n(x n µ 1) T Σ 1 (x n µ 1) 2 2 where n=1 n=1 n=1 1 N (1 t 1 N n)ln Σ (1 t n)(x n µ 2) T Σ 1 (x n µ 2) 2 2 n=1 = N 2 ln Σ N 2 Tr(Σ 1 S) (21) S = N1 N2 S1 + S2 (22) N N S 1 = 1 (x n µ 1)(x n µ 1) T (23) N 1 n C 1 S 2 = 1 N 2 n C 2 (x n µ 2)(x n µ 2) T (24)

24 (cont.) Σ = S = N1 N 1 (x n µ 1)(x n µ 1) T + N2 1 (x n µ 2)(x n µ 2) T N 1 N N 2 n C 1 n C 2 It is the average of the covariance matrices associated with each class separately

Linear Classification: Probabilistic Generative Models

Linear Classification: Probabilistic Generative Models Linear Classification: Probabilistic Generative Models Sargur N. University at Buffalo, State University of New York USA 1 Linear Classification using Probabilistic Generative Models Topics 1. Overview

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 305 Part VII

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Logistic Regression. Sargur N. Srihari. University at Buffalo, State University of New York USA

Logistic Regression. Sargur N. Srihari. University at Buffalo, State University of New York USA Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative 1. Fixed basis

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Linear Classification

Linear Classification Linear Classification Lili MOU moull12@sei.pku.edu.cn http://sei.pku.edu.cn/ moull12 23 April 2015 Outline Introduction Discriminant Functions Probabilistic Generative Models Probabilistic Discriminative

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Machine Learning. 7. Logistic and Linear Regression

Machine Learning. 7. Logistic and Linear Regression Sapienza University of Rome, Italy - Machine Learning (27/28) University of Rome La Sapienza Master in Artificial Intelligence and Robotics Machine Learning 7. Logistic and Linear Regression Luca Iocchi,

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

April 9, Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá. Linear Classification Models. Fabio A. González Ph.D.

April 9, Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá. Linear Classification Models. Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 9, 2018 Content 1 2 3 4 Outline 1 2 3 4 problems { C 1, y(x) threshold predict(x) = C 2, y(x) < threshold, with threshold

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

Logistic Regression. Seungjin Choi

Logistic Regression. Seungjin Choi Logistic Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Bayesian Logistic Regression

Bayesian Logistic Regression Bayesian Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic Generative

More information

Linear Regression and Discrimination

Linear Regression and Discrimination Linear Regression and Discrimination Kernel-based Learning Methods Christian Igel Institut für Neuroinformatik Ruhr-Universität Bochum, Germany http://www.neuroinformatik.rub.de July 16, 2009 Christian

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Linear Models for Classification

Linear Models for Classification Catherine Lee Anderson figures courtesy of Christopher M. Bishop Department of Computer Science University of Nebraska at Lincoln CSCE 970: Pattern Recognition and Machine Learning Congradulations!!!!

More information

Informatics 2B: Learning and Data Lecture 10 Discriminant functions 2. Minimal misclassifications. Decision Boundaries

Informatics 2B: Learning and Data Lecture 10 Discriminant functions 2. Minimal misclassifications. Decision Boundaries Overview Gaussians estimated from training data Guido Sanguinetti Informatics B Learning and Data Lecture 1 9 March 1 Today s lecture Posterior probabilities, decision regions and minimising the probability

More information

CS340 Machine learning Gaussian classifiers

CS340 Machine learning Gaussian classifiers CS340 Machine learning Gaussian classifiers 1 Correlated features Height and weight are not independent 2 Multivariate Gaussian Multivariate Normal (MVN) N(x µ,σ) def 1 (2π) p/2 Σ 1/2exp[ 1 2 (x µ)t Σ

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Engineering Part IIB: Module 4F0 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 202 Engineering Part IIB:

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012)

Outline. Supervised Learning. Hong Chang. Institute of Computing Technology, Chinese Academy of Sciences. Machine Learning Methods (Fall 2012) Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Linear Models for Regression Linear Regression Probabilistic Interpretation

More information

Inf2b Learning and Data

Inf2b Learning and Data Inf2b Learning and Data Lecture 13: Review (Credit: Hiroshi Shimodaira Iain Murray and Steve Renals) Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh http://www.inf.ed.ac.uk/teaching/courses/inf2b/

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

MLPR: Logistic Regression and Neural Networks

MLPR: Logistic Regression and Neural Networks MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition Amos Storkey Amos Storkey MLPR: Logistic Regression and Neural Networks 1/28 Outline 1 Logistic Regression 2 Multi-layer

More information

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap.

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap. Outline MLPR: and Neural Networks Machine Learning and Pattern Recognition 2 Amos Storkey Amos Storkey MLPR: and Neural Networks /28 Recap Amos Storkey MLPR: and Neural Networks 2/28 Which is the correct

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

Slides modified from: PATTERN RECOGNITION CHRISTOPHER M. BISHOP. and: Computer vision: models, learning and inference Simon J.D.

Slides modified from: PATTERN RECOGNITION CHRISTOPHER M. BISHOP. and: Computer vision: models, learning and inference Simon J.D. Slides modified from: PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP and: Computer vision: models, learning and inference. 2011 Simon J.D. Prince ClassificaLon Example: Gender ClassificaLon

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2018 CS 551, Fall

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Teemu Roos TAs: Ville Hyvönen and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer

More information

ECE521 Lecture7. Logistic Regression

ECE521 Lecture7. Logistic Regression ECE521 Lecture7 Logistic Regression Outline Review of decision theory Logistic regression A single neuron Multi-class classification 2 Outline Decision theory is conceptually easy and computationally hard

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Feed-forward Network Functions

Feed-forward Network Functions Feed-forward Network Functions Sargur Srihari Topics 1. Extension of linear models 2. Feed-forward Network Functions 3. Weight-space symmetries 2 Recap of Linear Models Linear Models for Regression, Classification

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 2012 Engineering Part IIB: Module 4F10 Introduction In

More information

Stochastic gradient descent; Classification

Stochastic gradient descent; Classification Stochastic gradient descent; Classification Steve Renals Machine Learning Practical MLP Lecture 2 28 September 2016 MLP Lecture 2 Stochastic gradient descent; Classification 1 Single Layer Networks MLP

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Antti Ukkonen TAs: Saska Dönges and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer,

More information

CSC 411: Lecture 09: Naive Bayes

CSC 411: Lecture 09: Naive Bayes CSC 411: Lecture 09: Naive Bayes Class based on Raquel Urtasun & Rich Zemel s lectures Sanja Fidler University of Toronto Feb 8, 2015 Urtasun, Zemel, Fidler (UofT) CSC 411: 09-Naive Bayes Feb 8, 2015 1

More information

Variational Bayesian Logistic Regression

Variational Bayesian Logistic Regression Variational Bayesian Logistic Regression Sargur N. University at Buffalo, State University of New York USA Topics in Linear Models for Classification Overview 1. Discriminant Functions 2. Probabilistic

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Mengye Ren mren@cs.toronto.edu October 18, 2015 Mengye Ren Naive Bayes and Gaussian Bayes Classifier October 18, 2015 1 / 21 Naive Bayes Bayes Rules: Naive Bayes

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Ladislav Rampasek slides by Mengye Ren and others February 22, 2016 Naive Bayes and Gaussian Bayes Classifier February 22, 2016 1 / 21 Naive Bayes Bayes Rule:

More information

Multiclass Logistic Regression

Multiclass Logistic Regression Multiclass Logistic Regression Sargur. Srihari University at Buffalo, State University of ew York USA Machine Learning Srihari Topics in Linear Classification using Probabilistic Discriminative Models

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians Engineering Part IIB: Module F Statistical Pattern Processing University of Cambridge Engineering Part IIB Module F: Statistical Pattern Processing Handout : Multivariate Gaussians. Generative Model Decision

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber Machine Learning Regression-Based Classification & Gaussian Discriminant Analysis Manfred Huber 2015 1 Logistic Regression Linear regression provides a nice representation and an efficient solution to

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent University) 1 / 46 Bayesian

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Bayesian Classification Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis

CS 340 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis CS 3 Lec. 18: Multivariate Gaussian Distributions and Linear Discriminant Analysis AD March 11 AD ( March 11 1 / 17 Multivariate Gaussian Consider data { x i } N i=1 where xi R D and we assume they are

More information

Introduction to Machine Learning Spring 2018 Note 18

Introduction to Machine Learning Spring 2018 Note 18 CS 189 Introduction to Machine Learning Spring 2018 Note 18 1 Gaussian Discriminant Analysis Recall the idea of generative models: we classify an arbitrary datapoint x with the class label that maximizes

More information

Multi-layer Neural Networks

Multi-layer Neural Networks Multi-layer Neural Networks Steve Renals Informatics 2B Learning and Data Lecture 13 8 March 2011 Informatics 2B: Learning and Data Lecture 13 Multi-layer Neural Networks 1 Overview Multi-layer neural

More information

Naive Bayes & Introduction to Gaussians

Naive Bayes & Introduction to Gaussians Naive Bayes & Introduction to Gaussians Andreas C. Kapourani 2 March 217 1 Naive Bayes classifier In the previous lab we illustrated how to use Bayes Theorem for pattern classification, which in practice

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information

Naive Bayes and Gaussian Bayes Classifier

Naive Bayes and Gaussian Bayes Classifier Naive Bayes and Gaussian Bayes Classifier Elias Tragas tragas@cs.toronto.edu October 3, 2016 Elias Tragas Naive Bayes and Gaussian Bayes Classifier October 3, 2016 1 / 23 Naive Bayes Bayes Rules: Naive

More information

Iterative Reweighted Least Squares

Iterative Reweighted Least Squares Iterative Reweighted Least Squares Sargur. University at Buffalo, State University of ew York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative

More information

Introduction to Machine Learning

Introduction to Machine Learning Outline Introduction to Machine Learning Bayesian Classification Varun Chandola March 8, 017 1. {circular,large,light,smooth,thick}, malignant. {circular,large,light,irregular,thick}, malignant 3. {oval,large,dark,smooth,thin},

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Overview c 1 What is? 2 Definition Outlines 3 Examples of 4 Related Fields Overview Linear Regression Linear Classification Neural Networks Kernel Met

Overview c 1 What is? 2 Definition Outlines 3 Examples of 4 Related Fields Overview Linear Regression Linear Classification Neural Networks Kernel Met c Outlines Statistical Group and College of Engineering and Computer Science Overview Linear Regression Linear Classification Neural Networks Kernel Methods and SVM Mixture Models and EM Resources More

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017

COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 COMS 4721: Machine Learning for Data Science Lecture 16, 3/28/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SOFT CLUSTERING VS HARD CLUSTERING

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Bayes Decision Theory

Bayes Decision Theory Bayes Decision Theory Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 16

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Relevance Vector Machines

Relevance Vector Machines LUT February 21, 2011 Support Vector Machines Model / Regression Marginal Likelihood Regression Relevance vector machines Exercise Support Vector Machines The relevance vector machine (RVM) is a bayesian

More information

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones Introduction to machine learning and pattern recognition Lecture 2 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 Last week... supervised and unsupervised methods need adaptive

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Statistical Machine Learning Hilary Term 2018

Statistical Machine Learning Hilary Term 2018 Statistical Machine Learning Hilary Term 2018 Pier Francesco Palamara Department of Statistics University of Oxford Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/sml18.html

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

LDA, QDA, Naive Bayes

LDA, QDA, Naive Bayes LDA, QDA, Naive Bayes Generative Classification Models Marek Petrik 2/16/2017 Last Class Logistic Regression Maximum Likelihood Principle Logistic Regression Predict probability of a class: p(x) Example:

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians

University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 2: Multivariate Gaussians University of Cambridge Engineering Part IIB Module 4F: Statistical Pattern Processing Handout 2: Multivariate Gaussians.2.5..5 8 6 4 2 2 4 6 8 Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2 2 Engineering

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Bayesian Decision and Bayesian Learning

Bayesian Decision and Bayesian Learning Bayesian Decision and Bayesian Learning Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1 / 30 Bayes Rule p(x ω i

More information

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham Generative classifiers: The Gaussian classifier Ata Kaban School of Computer Science University of Birmingham Outline We have already seen how Bayes rule can be turned into a classifier In all our examples

More information

Classification. Sandro Cumani. Politecnico di Torino

Classification. Sandro Cumani. Politecnico di Torino Politecnico di Torino Outline Generative model: Gaussian classifier (Linear) discriminative model: logistic regression (Non linear) discriminative model: neural networks Gaussian Classifier We want to

More information

Lecture 5. Gaussian Models - Part 1. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. November 29, 2016

Lecture 5. Gaussian Models - Part 1. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. November 29, 2016 Lecture 5 Gaussian Models - Part 1 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza November 29, 2016 Luigi Freda ( La Sapienza University) Lecture 5 November 29, 2016 1 / 42 Outline 1 Basics

More information

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam ECLT 5810 Linear Regression and Logistic Regression for Classification Prof. Wai Lam Linear Regression Models Least Squares Input vectors is an attribute / feature / predictor (independent variable) The

More information

TDA231. Logistic regression

TDA231. Logistic regression TDA231 Devdatt Dubhashi dubhashi@chalmers.se Dept. of Computer Science and Engg. Chalmers University February 19, 2016 Some data 5 x2 0 5 5 0 5 x 1 In the Bayes classifier, we built a model of each class

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Lecture 2: Simple Classifiers

Lecture 2: Simple Classifiers CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 2: Simple Classifiers Slides based on Rich Zemel s All lecture slides will be available on the course website: www.cs.toronto.edu/~jessebett/csc412

More information