Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables

Size: px
Start display at page:

Download "Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables"

Transcription

1 Distinguishing between Cause and Effect: Estimation of Causal Graphs with two Variables Jonas Peters ETH Zürich Tutorial NIPS 2013 Workshop on Causality 9th December 2013

2 F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

3 F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

4 F. H. Messerli: Chocolate Consumption, Cognitive Function, and Nobel Laureates, N Engl J Med 2012

5 Problem: Given P(X, Y ), can we infer whether X Y or Y X?

6 Problem: Given P(X, Y ), can we infer whether X Y or Y X? Difficulty: So much symmetry: P(X ) P(Y X ) = P(X, Y ) = P(X Y ) P(Y ) We need assumptions!! (e.g. Markov and faithfulness do not suffice.)

7 Problem: Given P(X, Y ), can we infer whether X Y or Y X? Difficulty: So much symmetry: P(X ) P(Y X ) = P(X, Y ) = P(X Y ) P(Y ) We need assumptions!! (e.g. Markov and faithfulness do not suffice.) Surprise (for some assumptions): 2 variables p variables J. Peters, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, arxiv:

8 Idea No. 1: Linear Non-Gaussian Additive Models (LiNGAM) Structural assumptions like additive non-gaussian noise models break the symmetry: Y = βx + N Y N Y X, with N Y non-gaussian.

9 Asymmetry No. 1 Consider a distribution corresponding to Y = βx + N Y N Y X N Y non-gaussian X Y

10 Asymmetry No. 1 Consider a distribution corresponding to Y = βx + N Y N Y X N Y non-gaussian X Y Then there is no X = φy + N X N X Y N X non-gaussian X Y S. Shimizu, P.O. Hoyer, A. Hyvärinen and A.J. Kerminen: A linear non-gaussian acyclic model for causal discovery, JMLR 2006

11 Idea No. 2: Additive noise models Nonlinear functions are also fine! Y = f (X ) + N Y N Y X P. Hoyer, D. Janzing, J. Mooij, J. Peters and B. Schölkopf: Nonlinear causal discovery with additive noise models, NIPS 2008

12 Asymmetry No. 2 Consider a distribution corresponding to Y = f (X ) + N Y with N Y X X Y

13 Asymmetry No. 2 Consider a distribution corresponding to Y = f (X ) + N Y with N Y X X Y Then for most combinations (f, P(X ), P(N Y )) there is no X = g(y ) + M X with M X Y X Y

14 Y = f (X ) + N Y, N Y X

15 Y = f (X ) + N Y, N Y X

16 X = g(y ) + N X, N X Y

17 X = g(y ) + N X, N X Y

18 Idea No. 3: Gaussian Process Inference (GPI) We can always write and Y = f (X, N Y ), X = g(y, N X ), N Y X N X Y Which model is more complex? Use Bayesian model comparison. J. M. Mooij, O. Stegle, D. Janzing, K. Zhang, B. Schölkopf: Probabilistic latent variable models for distinguishing between cause and effect, NIPS 2010 E.g., J. Peters: Restricted Structural Equation Models for Causal Inference, PhD Thesis

19 Asymmetry No. 3 1 Fix the noise distribution to be N (0, 1). 2 Put prior p(θ X ) on input distribution p(x θ X ) ( complexity of X ). 3 Put prior p(θ f ) on the functions p(f θ f ) ( complexity of f ).

20 Asymmetry No. 3 1 Fix the noise distribution to be N (0, 1). 2 Put prior p(θ X ) on input distribution p(x θ X ) ( complexity of X ). 3 Put prior p(θ f ) on the functions p(f θ f ) ( complexity of f ). 4 Approximate marginal likelihood for X Y p(x, y) = p(x) p(y x) = p(x θ X )p(θ X ) dθ X δ ( y f (x, e) ) p(e)p(f ) de df 5 Approximate marginal likelihood for Y X. θ f f θ X X Y E 6 Compare. J. M. Mooij, O. Stegle, D. Janzing, K. Zhang, B. Schölkopf: Probabilistic latent variable models for distinguishing between cause and effect, NIPS 2010

21 Idea No. 4: Information Geometric Causal Inference (IGCI) Assume a deterministic relationship Y = f (X ) and that f and P(X ) are independent. D. Janzing, J. M. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniusis, B. Steudel, B. Schölkopf: Information-geometric approach to inferring causal directions, Artificial Intelligence 2012

22 Idea No. 4: Information Geometric Causal Inference (IGCI) Assume a deterministic relationship Y = f (X ) and that f and P(X ) are independent. D. Janzing, J. M. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniusis, B. Steudel, B. Schölkopf: Information-geometric approach to inferring causal directions, Artificial Intelligence 2012 p(y) y f(x) x p(x)

23 Asymmetry No. 4 Consider Y = f (X ) with id f : [0, 1] [0, 1] invertible and X = g(y ). If cov (log f, p X ) = log(f (x)) p X (x) dx log f (x) dx = 0 then cov (log g, p Y ) = log(g (y)) p Y (y) dy log g (y) dy > 0 D. Janzing, J. M. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniusis, B. Steudel, B. Schölkopf: Information-geometric approach to inferring causal directions, Artificial Intelligence 2012

24 Open Questions 1: Quantifying Identifiability

25 Open Questions 1: Quantifying Identifiability

26 Open Questions 1: Quantifying Identifiability Proposition Assume P(X, Y ) is generated by with independent X and N Y. Y = f (X ) + N Y Then inf KL(P Q) =? Q {Q:Y X } first steps to understand the geometry gives us finite sample guarantees

27 Open Questions 2: Robustness What happens if assumptions are violated? E.g., in case of confounding? Z X Y Can we still infer X Y? How useful is this?

28 Conclusions In theory, we can brake asymmetry between cause and effect. restricted structural equation models: - linear functions, additive non-gaussian noise - nonlinear functions, additive noise complexity measures on functions and distributions independence between function and input distribution

29 Conclusions In theory, we can brake asymmetry between cause and effect. restricted structural equation models: - linear functions, additive non-gaussian noise - nonlinear functions, additive noise complexity measures on functions and distributions independence between function and input distribution... principles behind new methods from challenge?

30 Conclusions In theory, we can brake asymmetry between cause and effect. restricted structural equation models: - linear functions, additive non-gaussian noise - nonlinear functions, additive noise complexity measures on functions and distributions independence between function and input distribution... principles behind new methods from challenge? Causal inference problem of climate change is solved! Fight the cause! Don t fly! (Zurich-SFO 5.4t CO 2 )! Compensate!

31 IGCI It turns out that if X Y log f (x) p(x) dx < log g (y) p(y) dy Estimator: Infer X Y if Ĉ X Y := 1 m m log y j+1 y j x j+1 x j j=1 Ĉ X Y < Ĉ Y X log f (x) p(x) dx

32 Y = βx + N Y, N Y X, N Y non-gaussian Y X

33 Y = βx + N Y, N Y X, N Y non-gaussian Y X

34 X = φy + N X, N X Y, N X non-gaussian Y X

35 X = φy + N X, N X Y, N X non-gaussian Y X

36 Does X cause Y or vice versa? Real Data

37 Does X cause Y or vice versa? Real Data

38 Does X cause Y or vice versa? No (not enough) data for chocolate

39 Does X cause Y or vice versa? No (not enough) data for chocolate... but we have data for coffee!

40 Does X cause Y or vice versa? # Nobel Laureates / 10 mio coffee consumption per capita (kg) Correlation: 0.698, p-value: <

41 Does X cause Y or vice versa? # Nobel Laureates / 10 mio coffee consumption per capita (kg) Correlation: 0.698, p-value: < Nobel Prize Coffee: Dependent residuals (p-value of 0). Coffee Nobel Prize: Dependent residuals (p-value of 0). Model class too small? Causally insufficient?

42 The linear Gaussian case Y = βx + N Y with independent X N (0, σx 2 ) and N N (0, σn 2 Y ). Then there is a linear SEM with X = αy + M X How can we find α and M X? Y N Y L 2 βx X

Simplicity of Additive Noise Models

Simplicity of Additive Noise Models Simplicity of Additive Noise Models Jonas Peters ETH Zürich - Marie Curie (IEF) Workshop on Simplicity and Causal Discovery Carnegie Mellon University 7th June 2014 contains joint work with... ETH Zürich:

More information

Recovering the Graph Structure of Restricted Structural Equation Models

Recovering the Graph Structure of Restricted Structural Equation Models Recovering the Graph Structure of Restricted Structural Equation Models Workshop on Statistics for Complex Networks, Eindhoven Jonas Peters 1 J. Mooij 3, D. Janzing 2, B. Schölkopf 2, P. Bühlmann 1 1 Seminar

More information

Inference of Cause and Effect with Unsupervised Inverse Regression

Inference of Cause and Effect with Unsupervised Inverse Regression Inference of Cause and Effect with Unsupervised Inverse Regression Eleni Sgouritsa Dominik Janzing Philipp Hennig Bernhard Schölkopf Max Planck Institute for Intelligent Systems, Tübingen, Germany {eleni.sgouritsa,

More information

Probabilistic latent variable models for distinguishing between cause and effect

Probabilistic latent variable models for distinguishing between cause and effect Probabilistic latent variable models for distinguishing between cause and effect Joris M. Mooij joris.mooij@tuebingen.mpg.de Oliver Stegle oliver.stegle@tuebingen.mpg.de Dominik Janzing dominik.janzing@tuebingen.mpg.de

More information

Causal Inference on Discrete Data via Estimating Distance Correlations

Causal Inference on Discrete Data via Estimating Distance Correlations ARTICLE CommunicatedbyAapoHyvärinen Causal Inference on Discrete Data via Estimating Distance Correlations Furui Liu frliu@cse.cuhk.edu.hk Laiwan Chan lwchan@cse.euhk.edu.hk Department of Computer Science

More information

Causality. Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen. MLSS, Tübingen 21st July 2015

Causality. Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen. MLSS, Tübingen 21st July 2015 Causality Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen MLSS, Tübingen 21st July 2015 Charig et al.: Comparison of treatment of renal calculi by open surgery, (...), British

More information

Deep Convolutional Neural Networks for Pairwise Causality

Deep Convolutional Neural Networks for Pairwise Causality Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, Delhi Tata Consultancy Services Ltd. {karamjit.singh,

More information

Foundations of Causal Inference

Foundations of Causal Inference Foundations of Causal Inference Causal inference is usually concerned with exploring causal relations among random variables X 1,..., X n after observing sufficiently many samples drawn from the joint

More information

arxiv: v1 [cs.lg] 3 Jan 2017

arxiv: v1 [cs.lg] 3 Jan 2017 Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, New-Delhi, India January 4, 2017 arxiv:1701.00597v1

More information

Learning of Causal Relations

Learning of Causal Relations Learning of Causal Relations John A. Quinn 1 and Joris Mooij 2 and Tom Heskes 2 and Michael Biehl 3 1 Faculty of Computing & IT, Makerere University P.O. Box 7062, Kampala, Uganda 2 Institute for Computing

More information

Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks

Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks Journal of Machine Learning Research 17 (2016) 1-102 Submitted 12/14; Revised 12/15; Published 4/16 Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks Joris M. Mooij Institute

More information

arxiv: v1 [cs.ai] 22 Apr 2015

arxiv: v1 [cs.ai] 22 Apr 2015 Distinguishing Cause from Effect Based on Exogeneity [Extended Abstract] Kun Zhang MPI for Intelligent Systems 7276 Tübingen, Germany & Info. Sci. Inst., USC 4676 Admiralty Way, CA 9292 kzhang@tuebingen.mpg.de

More information

Cause-Effect Inference by Comparing Regression Errors

Cause-Effect Inference by Comparing Regression Errors Cause-Effect Inference by Comparing Regression Errors Patrick Blöbaum Dominik Janzing Takashi Washio Osaka University MPI for Intelligent Systems Osaka University Japan Tübingen, Germany Japan Shohei Shimizu

More information

Inferring deterministic causal relations

Inferring deterministic causal relations Inferring deterministic causal relations Povilas Daniušis 1,2, Dominik Janzing 1, Joris Mooij 1, Jakob Zscheischler 1, Bastian Steudel 3, Kun Zhang 1, Bernhard Schölkopf 1 1 Max Planck Institute for Biological

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

Arrowhead completeness from minimal conditional independencies

Arrowhead completeness from minimal conditional independencies Arrowhead completeness from minimal conditional independencies Tom Claassen, Tom Heskes Radboud University Nijmegen The Netherlands {tomc,tomh}@cs.ru.nl Abstract We present two inference rules, based on

More information

Causal Inference via Kernel Deviance Measures

Causal Inference via Kernel Deviance Measures Causal Inference via Kernel Deviance Measures Jovana Mitrovic Department of Statistics University of Oxford Dino Sejdinovic Department of Statistics University of Oxford Yee Whye Teh Department of Statistics

More information

Bayesian Discovery of Linear Acyclic Causal Models

Bayesian Discovery of Linear Acyclic Causal Models Bayesian Discovery of Linear Acyclic Causal Models Patrik O. Hoyer Helsinki Institute for Information Technology & Department of Computer Science University of Helsinki Finland Antti Hyttinen Helsinki

More information

39 On Estimation of Functional Causal Models: General Results and Application to Post-Nonlinear Causal Model

39 On Estimation of Functional Causal Models: General Results and Application to Post-Nonlinear Causal Model 39 On Estimation of Functional Causal Models: General Results and Application to Post-Nonlinear Causal Model KUN ZHANG, Max-Planck Institute for Intelligent Systems, 776 Tübingen, Germany ZHIKUN WANG,

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence 182 183 212) 1 31 Contents lists available at SciVerse ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint Information-geometric approach to inferring causal directions

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

Accurate Causal Inference on Discrete Data

Accurate Causal Inference on Discrete Data Accurate Causal Inference on Discrete Data Kailash Budhathoki and Jilles Vreeken Max Planck Institute for Informatics and Saarland University Saarland Informatics Campus, Saarbrücken, Germany {kbudhath,jilles}@mpi-inf.mpg.de

More information

arxiv: v1 [cs.lg] 22 Feb 2017

arxiv: v1 [cs.lg] 22 Feb 2017 Causal Inference by Stochastic Complexity KAILASH BUDHATHOKI, Max Planck Institute for Informatics and Saarland University, Germany JILLES VREEKEN, Max Planck Institute for Informatics and Saarland University,

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University of Helsinki 14 Helsinki, Finland kun.zhang@cs.helsinki.fi Aapo Hyvärinen

More information

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise

Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise Makoto Yamada and Masashi Sugiyama Department of Computer Science, Tokyo Institute of Technology

More information

Discovery of Linear Acyclic Models Using Independent Component Analysis

Discovery of Linear Acyclic Models Using Independent Component Analysis Created by S.S. in Jan 2008 Discovery of Linear Acyclic Models Using Independent Component Analysis Shohei Shimizu, Patrik Hoyer, Aapo Hyvarinen and Antti Kerminen LiNGAM homepage: http://www.cs.helsinki.fi/group/neuroinf/lingam/

More information

Nonlinear causal discovery with additive noise models

Nonlinear causal discovery with additive noise models Nonlinear causal discovery with additive noise models Patrik O. Hoyer University of Helsinki Finland Dominik Janzing MPI for Biological Cybernetics Tübingen, Germany Joris Mooij MPI for Biological Cybernetics

More information

Advances in Cyclic Structural Causal Models

Advances in Cyclic Structural Causal Models Advances in Cyclic Structural Causal Models Joris Mooij j.m.mooij@uva.nl June 1st, 2018 Joris Mooij (UvA) Rotterdam 2018 2018-06-01 1 / 41 Part I Introduction to Causality Joris Mooij (UvA) Rotterdam 2018

More information

Distinguishing between cause and effect

Distinguishing between cause and effect JMLR Workshop and Conference Proceedings 6:147 156 NIPS 28 workshop on causality Distinguishing between cause and effect Joris Mooij Max Planck Institute for Biological Cybernetics, 7276 Tübingen, Germany

More information

Pairwise measures of causal direction in linear non-gaussian acy

Pairwise measures of causal direction in linear non-gaussian acy Pairwise measures of causal direction in linear non-gaussian acyclic models Dept of Mathematics and Statistics & Dept of Computer Science University of Helsinki, Finland Abstract Estimating causal direction

More information

Learning causal network structure from multiple (in)dependence models

Learning causal network structure from multiple (in)dependence models Learning causal network structure from multiple (in)dependence models Tom Claassen Radboud University, Nijmegen tomc@cs.ru.nl Abstract Tom Heskes Radboud University, Nijmegen tomh@cs.ru.nl We tackle the

More information

Telling Cause from Effect using MDL-based Local and Global Regression

Telling Cause from Effect using MDL-based Local and Global Regression Telling Cause from Effect using MDL-based Local and Global Regression Alexander Marx and Jilles Vreeken Max Planck Institute for Informatics and Saarland University Saarland Informatics Campus, Saarbrücken,

More information

arxiv: v1 [cs.lg] 11 Dec 2014

arxiv: v1 [cs.lg] 11 Dec 2014 Distinguishing cause from effect using observational data: methods and benchmarks Distinguishing cause from effect using observational data: methods and benchmarks Joris M. Mooij Institute for Informatics,

More information

arxiv: v2 [stat.ml] 16 Oct 2017

arxiv: v2 [stat.ml] 16 Oct 2017 Causal Inference on Multivariate and Mixed-Type Data Alexander Marx Jilles Vreeken arxiv:702.06385v2 [stat.ml] 6 Oct 207 Abstract Given data over the joint distribution of two random variables X and Y,

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Causal Inference on Multivariate and Mixed-Type Data

Causal Inference on Multivariate and Mixed-Type Data Causal Inference on Multivariate and Mixed-Type Data Alexander Marx and Jilles Vreeken Max Planck Institute for Informatics and Saarland University, Saarbrücken, Germany {amarx,jilles}@mpi-inf.mpg.de Abstract.

More information

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 How Random Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 1 Center for Complex Systems Research and Department of Physics University

More information

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Proceedings of Machine Learning Research vol 73:21-32, 2017 AMBN 2017 Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Jose M. Peña Linköping University Linköping (Sweden) jose.m.pena@liu.se

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

arxiv: v1 [cs.lg] 26 May 2017

arxiv: v1 [cs.lg] 26 May 2017 Learning Causal tructures Using Regression Invariance ariv:1705.09644v1 [cs.lg] 26 May 2017 AmirEmad Ghassami, aber alehkaleybar, Negar Kiyavash, Kun Zhang Department of ECE, University of Illinois at

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Inferring the Causal Decomposition under the Presence of Deterministic Relations.

Inferring the Causal Decomposition under the Presence of Deterministic Relations. Inferring the Causal Decomposition under the Presence of Deterministic Relations. Jan Lemeire 1,2, Stijn Meganck 1,2, Francesco Cartella 1, Tingting Liu 1 and Alexander Statnikov 3 1-ETRO Department, Vrije

More information

arxiv: v1 [stat.ml] 24 Dec 2018

arxiv: v1 [stat.ml] 24 Dec 2018 Journal of Machine Learning Research 0 (0000) 0-00 Submitted 2/8; Published 00/00 Bayesian Causal Inference arxiv:82.09895v [stat.ml] 24 Dec 208 Maximilian Kurthen Max-Planck-Institut für Astrophysik Karl-Schwarzschildstr.,

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Part 1: Expectation Propagation

Part 1: Expectation Propagation Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 1: Expectation Propagation Tom Heskes Machine Learning Group, Institute for Computing and Information Sciences Radboud

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Causation and Prediction (2007) Neural Connectomics (2014) Pot-luck challenge (2008) Causality challenges Isabelle Guyon

Causation and Prediction (2007) Neural Connectomics (2014) Pot-luck challenge (2008) Causality challenges Isabelle Guyon Isabelle Guyon Causation and Prediction (2007) Fast Cause-Effect causation coefficient Pairs (2013) (2014) Pot-luck challenge (2008) Neural Connectomics (2014) Causality challenges Isabelle Guyon Initial

More information

arxiv: v2 [cs.ai] 15 Nov 2016

arxiv: v2 [cs.ai] 15 Nov 2016 Entropic Causal Inference Murat Kocaoglu 1,*, Alexandros G. Dimakis 1,, Sriram Vishwanath 1, and Babak Hassibi 2, arxiv:1611.04035v2 [cs.ai] 15 Nov 2016 1 Department of Electrical and Computer Engineering,

More information

On Causal Explanations of Quantum Correlations

On Causal Explanations of Quantum Correlations On Causal Explanations of Quantum Correlations Rob Spekkens Perimeter Institute From XKCD comics Quantum Information and Foundations of Quantum Mechanics workshop Vancouver, July 2, 2013 Simpson s Paradox

More information

Summary of the Bayes Net Formalism. David Danks Institute for Human & Machine Cognition

Summary of the Bayes Net Formalism. David Danks Institute for Human & Machine Cognition Summary of the Bayes Net Formalism David Danks Institute for Human & Machine Cognition Bayesian Networks Two components: 1. Directed Acyclic Graph (DAG) G: There is a node for every variable D: Some nodes

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Causal discovery from big data : mission (im)possible? Tom Heskes Radboud University Nijmegen The Netherlands

Causal discovery from big data : mission (im)possible? Tom Heskes Radboud University Nijmegen The Netherlands Causal discovery from big data : mission (im)possible? Tom Heskes Radboud University Nijmegen The Netherlands Outline Statistical causal discovery The logic of causal inference A Bayesian approach... Applications

More information

Effectiveness of classification approach in recovering pairwise causal relations from data.

Effectiveness of classification approach in recovering pairwise causal relations from data. Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2018 Effectiveness of classification approach in recovering pairwise causal relations from data. Kristima Guha

More information

Inferring Causal Direction from Relational Data

Inferring Causal Direction from Relational Data Inferring Causal Direction from Relational Data David Arbour darbour@cs.umass.edu Katerina Marazopoulou kmarazo@cs.umass.edu College of Information and Computer Sciences University of Massachusetts Amherst

More information

Estimation of linear non-gaussian acyclic models for latent factors

Estimation of linear non-gaussian acyclic models for latent factors Estimation of linear non-gaussian acyclic models for latent factors Shohei Shimizu a Patrik O. Hoyer b Aapo Hyvärinen b,c a The Institute of Scientific and Industrial Research, Osaka University Mihogaoka

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables N-1 Experiments Suffice to Determine the Causal Relations Among N Variables Frederick Eberhardt Clark Glymour 1 Richard Scheines Carnegie Mellon University Abstract By combining experimental interventions

More information

Telling cause from effect based on high-dimensional observations

Telling cause from effect based on high-dimensional observations Telling cause from effect based on high-dimensional observations Dominik Janzing dominik.janzing@tuebingen.mpg.de Max Planck Institute for Biological Cybernetics, Tübingen, Germany Patrik O. Hoyer patrik.hoyer@helsinki.fi

More information

arxiv: v1 [stat.ml] 13 Mar 2018

arxiv: v1 [stat.ml] 13 Mar 2018 SAM: Structural Agnostic Model, Causal Discovery and Penalized Adversarial Learning arxiv:1803.04929v1 [stat.ml] 13 Mar 2018 Diviyan Kalainathan 1, Olivier Goudet 1, Isabelle Guyon 1, David Lopez-Paz 2,

More information

Predicting the effect of interventions using invariance principles for nonlinear models

Predicting the effect of interventions using invariance principles for nonlinear models Predicting the effect of interventions using invariance principles for nonlinear models Christina Heinze-Deml Seminar for Statistics, ETH Zürich heinzedeml@stat.math.ethz.ch Jonas Peters University of

More information

Detecting the Direction of Causal Time Series

Detecting the Direction of Causal Time Series Jonas Peters jonas.peters@tuebingen.mpg.de Dominik Janzing dominik.janzing@tuebingen.mpg.de Arthur Gretton arthur.gretton@tuebingen.mpg.de Bernhard Schölkopf bernhard.schoelkopf@tuebingen.mpg.de Max-Planck-Institute

More information

UAI 2014 Workshop Causal Inference: Learning and Prediction

UAI 2014 Workshop Causal Inference: Learning and Prediction Joris M. Mooij, Dominik Janzing, Jonas Peters, Tom Claassen, Antti Hyttinen (Eds.) Proceedings of the UAI 2014 Workshop Causal Inference: Learning and Prediction Quebec City, Quebec, Canada July 27, 2014

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this

More information

arxiv: v1 [cs.lg] 21 Jan 2019

arxiv: v1 [cs.lg] 21 Jan 2019 We Are Not Your Real Parents: Telling Causal from Confounded using MDL David Kaltenpoth Jilles Vreeken arxiv:90.06950v [cs.lg] 2 Jan 209 Abstract Given data over variables (X,..., X m,y) we consider the

More information

Identification of Time-Dependent Causal Model: A Gaussian Process Treatment

Identification of Time-Dependent Causal Model: A Gaussian Process Treatment Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 25) Identification of Time-Dependent Causal Model: A Gaussian Process Treatment Biwei Huang Kun Zhang,2

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Robust Monte Carlo Methods for Sequential Planning and Decision Making

Robust Monte Carlo Methods for Sequential Planning and Decision Making Robust Monte Carlo Methods for Sequential Planning and Decision Making Sue Zheng, Jason Pacheco, & John Fisher Sensing, Learning, & Inference Group Computer Science & Artificial Intelligence Laboratory

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

COMP538: Introduction to Bayesian Networks

COMP538: Introduction to Bayesian Networks COMP538: Introduction to Bayesian Networks Lecture 9: Optimal Structure Learning Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering Hong Kong University of Science and Technology

More information

Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data

Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data Causal inference (with statistical uncertainty) based on invariance: exploiting the power of heterogeneous data Peter Bühlmann joint work with Jonas Peters Nicolai Meinshausen ... and designing new perturbation

More information

Non-Factorised Variational Inference in Dynamical Systems

Non-Factorised Variational Inference in Dynamical Systems st Symposium on Advances in Approximate Bayesian Inference, 08 6 Non-Factorised Variational Inference in Dynamical Systems Alessandro D. Ialongo University of Cambridge and Max Planck Institute for Intelligent

More information

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA)

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Willem van den Boom Department of Statistics and Applied Probability National University

More information

Variational Scoring of Graphical Model Structures

Variational Scoring of Graphical Model Structures Variational Scoring of Graphical Model Structures Matthew J. Beal Work with Zoubin Ghahramani & Carl Rasmussen, Toronto. 15th September 2003 Overview Bayesian model selection Approximations using Variational

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Bayesian Inference Course, WTCN, UCL, March 2013

Bayesian Inference Course, WTCN, UCL, March 2013 Bayesian Course, WTCN, UCL, March 2013 Shannon (1948) asked how much information is received when we observe a specific value of the variable x? If an unlikely event occurs then one would expect the information

More information

Automatic Causal Discovery

Automatic Causal Discovery Automatic Causal Discovery Richard Scheines Peter Spirtes, Clark Glymour Dept. of Philosophy & CALD Carnegie Mellon 1 Outline 1. Motivation 2. Representation 3. Discovery 4. Using Regression for Causal

More information

Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables

Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables Learning equivalence classes of acyclic models with latent and selection variables from multiple datasets with overlapping variables Robert E. Tillman Carnegie Mellon University Pittsburgh, PA rtillman@cmu.edu

More information

Sequential Monte Carlo in the machine learning toolbox

Sequential Monte Carlo in the machine learning toolbox Sequential Monte Carlo in the machine learning toolbox Working with the trend of blending Thomas Schön Uppsala University Sweden. Symposium on Advances in Approximate Bayesian Inference (AABI) Montréal,

More information

Joint estimation of linear non-gaussian acyclic models

Joint estimation of linear non-gaussian acyclic models Joint estimation of linear non-gaussian acyclic models Shohei Shimizu The Institute of Scientific and Industrial Research, Osaka University Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan Abstract A linear

More information

Physics 509: Bootstrap and Robust Parameter Estimation

Physics 509: Bootstrap and Robust Parameter Estimation Physics 509: Bootstrap and Robust Parameter Estimation Scott Oser Lecture #20 Physics 509 1 Nonparametric parameter estimation Question: what error estimate should you assign to the slope and intercept

More information

Probabilistic Models for Learning Data Representations. Andreas Damianou

Probabilistic Models for Learning Data Representations. Andreas Damianou Probabilistic Models for Learning Data Representations Andreas Damianou Department of Computer Science, University of Sheffield, UK IBM Research, Nairobi, Kenya, 23/06/2015 Sheffield SITraN Outline Part

More information

Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders

Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders Patrick Forré Informatics Institute University of Amsterdam The Netherlands p.d.forre@uva.nl

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Harrison B. Prosper. Bari Lectures

Harrison B. Prosper. Bari Lectures Harrison B. Prosper Florida State University Bari Lectures 30, 31 May, 1 June 2016 Lectures on Multivariate Methods Harrison B. Prosper Bari, 2016 1 h Lecture 1 h Introduction h Classification h Grid Searches

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is an author's version which may differ from the publisher's version. For additional information about this

More information

Challenges (& Some Solutions) and Making Connections

Challenges (& Some Solutions) and Making Connections Challenges (& Some Solutions) and Making Connections Real-life Search All search algorithm theorems have form: If the world behaves like, then (probability 1) the algorithm will recover the true structure

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Bayesian Calibration of Simulators with Structured Discretization Uncertainty

Bayesian Calibration of Simulators with Structured Discretization Uncertainty Bayesian Calibration of Simulators with Structured Discretization Uncertainty Oksana A. Chkrebtii Department of Statistics, The Ohio State University Joint work with Matthew T. Pratola (Statistics, The

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Causal Inference by Direction of Information

Causal Inference by Direction of Information Causal Inference by Direction of Information Downloaded 2/08/7 to 46.3.206.8. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php Abstract We focus on data-driven

More information

Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results

Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results Causal Discovery with Linear Non-Gaussian Models under Measurement Error: Structural Identifiability Results Kun Zhang,MingmingGong?, Joseph Ramsey,KayhanBatmanghelich?, Peter Spirtes,ClarkGlymour Department

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

CAUSAL DISCOVERY USING PROXY VARIABLES

CAUSAL DISCOVERY USING PROXY VARIABLES CAUSAL DISCOVERY USING PROXY VARIABLES Mateo Rojas-Carulla Facebook AI Research, Paris University of Cambridge Max Plank Institute for Intelligent Systems, Tübingen mateo.rojas-carulla@tuebingen.mpg.de

More information