CSE 311 Lecture 25: Relating NFAs, DFAs, and Regular Expressions. Emina Torlak and Kevin Zatloukal

Size: px
Start display at page:

Download "CSE 311 Lecture 25: Relating NFAs, DFAs, and Regular Expressions. Emina Torlak and Kevin Zatloukal"

Transcription

1 CSE 3 Lecture 25: Relating NFAs, DFAs, and Regular Expressions Emina Torlak and Kevin Zatloukal

2 Topics From regular expressions to NFAs Theorem, algorithm, and examples. From NFAs to DFAs Theorem, algorithm, and examples. 2

3 From regular expressions to NFAs Theorem, algorithm, and examples. 3

4 NFAs and regular expressions Theorem For any set of strings (language) A described by a regular expression, there is an NFA that recognizes. A 4

5 NFAs and regular expressions Theorem For any set of strings (language) A described by a regular expression, there is an NFA that recognizes. How would you prove this theorem? A 4

6 NFAs and regular expressions Theorem For any set of strings (language) A described by a regular expression, there is an NFA that recognizes. A How would you prove this theorem? Structural induction on the recursive definition of regular expressions. 4

7 NFAs and regular expressions Theorem For any set of strings (language) A described by a regular expression, there is an NFA that recognizes. A How would you prove this theorem? Structural induction on the recursive definition of regular expressions. This proof will also give us an algorithm for converting regular expressions to NFAs! 4

8 Recall the definition of regular expressions over Σ Basis step:, are regular expressions. is a regular expression for any. a a Σ Recursive step: If A and B are regular expressions, then so are,, and. AB A B A 5

9 Recall the definition of regular expressions over Σ Basis step:, are regular expressions. is a regular expression for any. a a Σ Recursive step: If A and B are regular expressions, then so are,, and. AB A B A Base cases We will first show how construct the NFAs that accept the languages for the regular expressions,, and, respectively. a Σ Inductive step Then, assuming we have NFAs N A and N B for A and B, we ll use them to construct NFAs for,, and. AB A B A 5

10 Regular expressions to NFAs: base cases,, and a Σ NFA that accepts the language NFA that accepts the language {} NFA that accepts the language {a} for a Σ 6

11 Regular expressions to NFAs: base cases,, and a Σ NFA that accepts the language NFA that accepts the language {} NFA that accepts the language {a} for a Σ 6

12 Regular expressions to NFAs: base cases,, and a Σ NFA that accepts the language NFA that accepts the language {} NFA that accepts the language {a} for a Σ 6

13 Regular expressions to NFAs: base cases,, and a Σ NFA that accepts the language NFA that accepts the language {} NFA that accepts the language {a} for a Σ a 6

14 Regular expressions to NFAs: inductive step for A B 7

15 Regular expressions to NFAs: inductive step for A B N A N B A B Suppose and are NFAs for and. N A N B 7

16 Regular expressions to NFAs: inductive step for A B N A N B A B Suppose and are NFAs for and. N A N B A B To construct an NFA for : Create a new start state. Add edges from the new start state to the old start states of and. N A N B 7

17 Regular expressions to NFAs: inductive step for AB N A N B A B Suppose and are NFAs for and. N A N B 8

18 Regular expressions to NFAs: inductive step for AB N A N B A B Suppose and are NFAs for and. N A N B AB To construct an NFA for : Let the start state of N A be the start state of the new NFA. Let the final states of NB be the final states of the new NFA. Add an edge from every old final state of to the old start state of. N A N B 8

19 Regular expressions to NFAs: inductive step for A N A A Suppose is an NFA for. N A 9

20 Regular expressions to NFAs: inductive step for A N A A Suppose is an NFA for. N A A To construct an NFA for : Create a new start state that is a final state. Add an edge from the new start state to the old start state of N A. Add an edge from every final state of to the new start state. N A 9

21 Example: build an NFA for ( )

22 Example: build an NFA for ( )

23 Example: build an NFA for ( )

24 Example: build an NFA for ( )

25 Example: build an NFA for ( )

26 Example: build an NFA for ( )

27 Example: build an NFA for ( )

28 Example: build an NFA for ( )

29 Example: build an NFA for ( )

30 From NFAs to DFAs Theorem, algorithm, and examples.

31 NFAs and DFAs Every DFA is an NFA. A DFA is an NFA that satisfies more constraints. 2

32 NFAs and DFAs Every DFA is an NFA. A DFA is an NFA that satisfies more constraints. Theorem For every NFA there is a DFA that recognizes exactly the same language. 2

33 NFAs and DFAs Every DFA is an NFA. A DFA is an NFA that satisfies more constraints. Theorem For every NFA there is a DFA that recognizes exactly the same language. Proof (and algorithm) idea: The DFA constructed for an NFA keeps track of all the states that a prefix of an input string can reach in the NFA. 2

34 NFAs and DFAs Every DFA is an NFA. A DFA is an NFA that satisfies more constraints. Theorem For every NFA there is a DFA that recognizes exactly the same language. Proof (and algorithm) idea: The DFA constructed for an NFA keeps track of all the states that a prefix of an input string can reach in the NFA. So there will be one state in the DFA for each subset of the states of the NFA that can be reached by some string. 2

35 NFAs and DFAs Every DFA is an NFA. A DFA is an NFA that satisfies more constraints. Theorem For every NFA there is a DFA that recognizes exactly the same language. Proof (and algorithm) idea: The DFA constructed for an NFA keeps track of all the states that a prefix of an input string can reach in the NFA. So there will be one state in the DFA for each subset of the states of the NFA that can be reached by some string. We ll see how to construct the start state, remaining states and transitions, and the final states of the DFA. 2

36 NFAs to DFAs: the start state The start state of the DFA represents the following set of states in the NFA: All states reachable from the start state of the NFA using only edges. 3

37 NFAs to DFAs: the start state The start state of the DFA represents the following set of states in the NFA: All states reachable from the start state of the NFA using only edges. NFA e a b f c 3

38 NFAs to DFAs: the start state The start state of the DFA represents the following set of states in the NFA: All states reachable from the start state of the NFA using only edges. NFA DFA a b e f a, b, e, f c 3

39 NFAs to DFAs: states and transitions Repeat until fixed point: 4

40 NFAs to DFAs: states and transitions Repeat until fixed point: Let be a state of the DFA corresponding to a set of the NFA states. D Q Q 4

41 NFAs to DFAs: states and transitions Repeat until fixed point: Let D Q be a state of the DFA corresponding to a set Q of the NFA states. Let be a symbol for which has no outgoing edge. a Σ D Q 4

42 NFAs to DFAs: states and transitions Repeat until fixed point: Let D Q be a state of the DFA corresponding to a set Q of the NFA states. Let a Σ be a symbol for which D Q has no outgoing edge. Let T be the (possibly empty) set of NFA states reachable from some state in by following one edge and zero or more edges. Q a 4

43 NFAs to DFAs: states and transitions Repeat until fixed point: Let D Q be a state of the DFA corresponding to a set Q of the NFA states. Let a Σ be a symbol for which D Q has no outgoing edge. Let T be the (possibly empty) set of NFA states reachable from some state in Q by following one a edge and zero or more edges. Add a state to the DFA, if not included, that represents the set. D T T 4

44 NFAs to DFAs: states and transitions Repeat until fixed point: Let D Q be a state of the DFA corresponding to a set Q of the NFA states. Let a Σ be a symbol for which D Q has no outgoing edge. Let T be the (possibly empty) set of NFA states reachable from some state in Q by following one a edge and zero or more edges. Add a state D T to the DFA, if not included, that represents the set T. Add an edge labeled from to. a D Q D T 4

45 NFAs to DFAs: states and transitions Repeat until fixed point: Let D Q be a state of the DFA corresponding to a set Q of the NFA states. Let a Σ be a symbol for which D Q has no outgoing edge. Let T be the (possibly empty) set of NFA states reachable from some state in Q by following one a edge and zero or more edges. Add a state D T to the DFA, if not included, that represents the set T. Add an edge labeled from to. a D Q D T NFA DFA b, e, f e c b f d g 4

46 NFAs to DFAs: states and transitions Repeat until fixed point: Let D Q be a state of the DFA corresponding to a set Q of the NFA states. Let a Σ be a symbol for which D Q has no outgoing edge. Let T be the (possibly empty) set of NFA states reachable from some state in Q by following one a edge and zero or more edges. Add a state D T to the DFA, if not included, that represents the set T. Add an edge labeled from to. a D Q D T NFA DFA b, e, f c, d, e, g e c b f d g 4

47 NFAs to DFAs: final states The final states of the DFA: Every DFA state that represents a set of NFA states containing a final state. NFA DFA a e b c a, b, c, e 5

48 Example: NFA to DFA conversion NFA DFA a c, b 6

49 Example: NFA to DFA conversion NFA DFA a c, b a, b 6

50 Example: NFA to DFA conversion NFA DFA a c, b a, b 6

51 Example: NFA to DFA conversion NFA DFA a c, b c a, b 6

52 Example: NFA to DFA conversion NFA DFA a c, b b, c c a, b 6

53 Example: NFA to DFA conversion NFA DFA a c, b c b, c b a, b 6

54 Example: NFA to DFA conversion NFA DFA a c, b c b, c a, b, c b a, b 6

55 Example: NFA to DFA conversion NFA DFA a c, b c b, c a, b, c b a, b 6

56 Example: NFA to DFA conversion NFA DFA a c, b c b, c a, b, c b a, b 6

57 Example: NFA to DFA conversion NFA DFA a c, b c b, c a, b, c b a, b 6

58 Example: NFA to DFA conversion NFA DFA a c, b a, b c b, c a, b, c b 6

59 Example: NFA to DFA conversion NFA DFA a c, b a, b c b, c a, b, c b 6

60 Example: NFA to DFA conversion NFA DFA a c, b a, b c b, c a, b, c b, 6

61 Exponential blow-up in simulating nondeterminism In general the DFA might need a state for every subset of states of the NFA. Power set of the set of states of the NFA. n -state NFA yields DFA with up to 2 n states. We saw an example of this worst case outcome. 7

62 Exponential blow-up in simulating nondeterminism In general the DFA might need a state for every subset of states of the NFA. Power set of the set of states of the NFA. n -state NFA yields DFA with up to 2 n states. We saw an example of this worst case outcome. The famous P=NP? question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms. 7

63 DFAs NFAs regular expressions 8

64 Equivalence of DFAs, NFAs, and regular expressions We have shown how to build an optimal DFA for every regular expression. Build an NFA. Convert the NFA to a DFA using the subset construction. Minimize the resulting DFA. 9

65 Equivalence of DFAs, NFAs, and regular expressions We have shown how to build an optimal DFA for every regular expression. Build an NFA. Convert the NFA to a DFA using the subset construction. Minimize the resulting DFA. Theorem A language is recognized by a DFA (or NFA) if and only if it has a regular expression. You need to know this fact but we won t ask you anything about the only if direction from DFAs/NFAs to regular expressions. 9

66 Summary Every regular expression has a corresponding NFA. Constructed using the algorithm shown in this lecture. Every NFA has a corresponding DFA. Constructed using the algorithm shown in this lecture. Worst case outcome: exponential blowup in the number of states! DFAs NFAs regular expressions. We ve shown how to go from a regular expression to an NFA to a DFA. But we won t show how to go from an NFA/DFA to a regular expression. 2

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

CSE 311: Foundations of Computing. Lecture 25: Pattern Matching, DFA NFA Regex Languages vs Representations

CSE 311: Foundations of Computing. Lecture 25: Pattern Matching, DFA NFA Regex Languages vs Representations CSE 311: Foundations of Computing Lecture 25: Pattern Matching, DFA NFA Rege Languages vs Representations Last time: NFA to DFA 0 a,b 0,1 a 1 0 1 0 c 1 0 0,1 NFA b ɛ 0 c b,c 1 1 1 0 b 0 a,b,c DFA Eponential

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

Nondeterministic finite automata

Nondeterministic finite automata Lecture 3 Nondeterministic finite automata This lecture is focused on the nondeterministic finite automata (NFA) model and its relationship to the DFA model. Nondeterminism is an important concept in the

More information

CSE 311 Lecture 23: Finite State Machines. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 23: Finite State Machines. Emina Torlak and Kevin Zatloukal CSE 3 Lecture 3: Finite State Machines Emina Torlak and Kevin Zatloukal Topics Finite state machines (FSMs) Definition and examples. Finite state machines with output Definition and examples. Finite state

More information

Chapter 6: NFA Applications

Chapter 6: NFA Applications Chapter 6: NFA Applications Implementing NFAs The problem with implementing NFAs is that, being nondeterministic, they define a more complex computational procedure for testing language membership. To

More information

CSE 311: Foundations of Computing. Lecture 25: Languages vs Representations: Limitations of Finite Automata and Regular Expressions

CSE 311: Foundations of Computing. Lecture 25: Languages vs Representations: Limitations of Finite Automata and Regular Expressions CSE 311: Foundations of Computing Lecture 25: Languages vs Representations: Limitations of Finite Automata and Regular Expressions Last time: NFA to DFA 0 a,b 0,1 a 1 0 1 0 c 1 0 0,1 NFA b ɛ 0 c b,c 1

More information

Lecture 5: Minimizing DFAs

Lecture 5: Minimizing DFAs 6.45 Lecture 5: Minimizing DFAs 6.45 Announcements: - Pset 2 is up (as of last night) - Dylan says: It s fire. - How was Pset? 2 DFAs NFAs DEFINITION Regular Languages Regular Expressions 3 4 Some Languages

More information

Lecture 4 Nondeterministic Finite Accepters

Lecture 4 Nondeterministic Finite Accepters Lecture 4 Nondeterministic Finite Accepters COT 4420 Theory of Computation Section 2.2, 2.3 Nondeterminism A nondeterministic finite automaton can go to several states at once. Transitions from one state

More information

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA)

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA) Languages Non deterministic finite automata with ε transitions Recall What is a language? What is a class of languages? Finite Automata Consists of A set of states (Q) A start state (q o ) A set of accepting

More information

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs CSE : Foundations of Computing Lecture : Finite State Machine Minimization & NFAs State Minimization Many different FSMs (DFAs) for the same problem Take a given FSM and try to reduce its state set by

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

Regular Language Equivalence and DFA Minimization. Equivalence of Two Regular Languages DFA Minimization

Regular Language Equivalence and DFA Minimization. Equivalence of Two Regular Languages DFA Minimization Regular Language Equivalence and DFA Minimization Equivalence of Two Regular Languages DFA Minimization Decision Property: Equivalence Given regular languages L and M, is L = M? Algorithm involves constructing

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Mahesh Viswanathan Introducing Nondeterminism Consider the machine shown in Figure. Like a DFA it has finitely many states and transitions labeled by symbols from an input

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

Nondeterministic Finite Automata. Nondeterminism Subset Construction

Nondeterministic Finite Automata. Nondeterminism Subset Construction Nondeterministic Finite Automata Nondeterminism Subset Construction 1 Nondeterminism A nondeterministic finite automaton has the ability to be in several states at once. Transitions from a state on an

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Theory of Regular Expressions DFAs and NFAs Reminders Project 1 due Sep. 24 Homework 1 posted Exam 1 on Sep. 25 Exam topics list posted Practice homework

More information

Lecture 1: Finite State Automaton

Lecture 1: Finite State Automaton Lecture 1: Finite State Automaton Instructor: Ketan Mulmuley Scriber: Yuan Li January 6, 2015 1 Deterministic Finite Automaton Informally, a deterministic finite automaton (DFA) has finite number of s-

More information

Deterministic Finite Automaton (DFA)

Deterministic Finite Automaton (DFA) 1 Lecture Overview Deterministic Finite Automata (DFA) o accepting a string o defining a language Nondeterministic Finite Automata (NFA) o converting to DFA (subset construction) o constructed from a regular

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

CSC236 Week 11. Larry Zhang

CSC236 Week 11. Larry Zhang CSC236 Week 11 Larry Zhang 1 Announcements Next week s lecture: Final exam review This week s tutorial: Exercises with DFAs PS9 will be out later this week s. 2 Recap Last week we learned about Deterministic

More information

Theory of Computation

Theory of Computation Theory of Computation COMP363/COMP6363 Prerequisites: COMP4 and COMP 6 (Foundations of Computing) Textbook: Introduction to Automata Theory, Languages and Computation John E. Hopcroft, Rajeev Motwani,

More information

CS243, Logic and Computation Nondeterministic finite automata

CS243, Logic and Computation Nondeterministic finite automata CS243, Prof. Alvarez NONDETERMINISTIC FINITE AUTOMATA (NFA) Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ Maloney Hall, room 569 alvarez@cs.bc.edu Computer Science Department voice: (67) 552-4333

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Decidable Languages Haniel Barbosa Readings for this lecture Chapter 4 of [Sipser 1996], 3rd edition. Section 4.1. Decidable Languages We

More information

Finite Universes. L is a fixed-length language if it has length n for some

Finite Universes. L is a fixed-length language if it has length n for some Finite Universes Finite Universes When the universe is finite (e.g., the interval 0, 2 1 ), all objects can be encoded by words of the same length. A language L has length n 0 if L =, or every word of

More information

Theory of computation: initial remarks (Chapter 11)

Theory of computation: initial remarks (Chapter 11) Theory of computation: initial remarks (Chapter 11) For many purposes, computation is elegantly modeled with simple mathematical objects: Turing machines, finite automata, pushdown automata, and such.

More information

CSE 311 Lecture 28: Undecidability of the Halting Problem. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 28: Undecidability of the Halting Problem. Emina Torlak and Kevin Zatloukal CSE 311 Lecture 28: Undecidability of the Halting Problem Emina Torlak and Kevin Zatloukal 1 Topics Final exam Logistics, format, and topics. Countability and uncomputability A quick recap of Lecture 27.

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 6 CHAPTER 2 FINITE AUTOMATA 2. Nondeterministic Finite Automata NFA 3. Finite Automata and Regular Expressions 4. Languages

More information

Non-deterministic Finite Automata (NFAs)

Non-deterministic Finite Automata (NFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Non-deterministic Finite Automata (NFAs) Part I NFA Introduction Lecture 4 Thursday, September 7, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Sariel

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 35

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 35 Finite Automata Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Finite Automata Fall 2017 1 / 35 Outline Dantam (Mines CSCI-561) Finite Automata Fall 2017 2 / 35

More information

Nondeterminism and Epsilon Transitions

Nondeterminism and Epsilon Transitions Nondeterminism and Epsilon Transitions Mridul Aanjaneya Stanford University June 28, 22 Mridul Aanjaneya Automata Theory / 3 Challenge Problem Question Prove that any square with side length a power of

More information

Lecture 2: Regular Expression

Lecture 2: Regular Expression Lecture 2: Regular Expression Instructor: Ketan Mulmuley Scriber: Yuan Li January 8, 2015 In the last lecture, we proved that DFA, NFA, and NFA with ϵ-moves are equivalent. Recall that a language L Σ is

More information

Algorithms for NLP

Algorithms for NLP Regular Expressions Chris Dyer Algorithms for NLP 11-711 Adapted from materials from Alon Lavie Goals of Today s Lecture Understand the properties of NFAs with epsilon transitions Understand concepts and

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Lecture 6 Section 2.2 Robb T. Koether Hampden-Sydney College Mon, Sep 5, 2016 Robb T. Koether (Hampden-Sydney College) Nondeterministic Finite Automata Mon, Sep 5, 2016

More information

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy:

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy: Incorrect reasoning about RL Since L 1 = {w w=a n, n N}, L 2 = {w w = b n, n N} are regular, therefore L 1 L 2 = {w w=a n b n, n N} is regular If L 1 is a regular language, then L 2 = {w R w L 1 } is regular,

More information

Finite Automata. Seungjin Choi

Finite Automata. Seungjin Choi Finite Automata Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 28 Outline

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Review of CFG, CFL, ambiguity What is the language generated by the CFG below: G 1 = ({S,T 1,T 2 }, {0,1,2}, { S

More information

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata.

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata. CMSC 330: Organization of Programming Languages Last Lecture Languages Sets of strings Operations on languages Finite Automata Regular expressions Constants Operators Precedence CMSC 330 2 Clarifications

More information

September 7, Formal Definition of a Nondeterministic Finite Automaton

September 7, Formal Definition of a Nondeterministic Finite Automaton Formal Definition of a Nondeterministic Finite Automaton September 7, 2014 A comment first The formal definition of an NFA is similar to that of a DFA. Both have states, an alphabet, transition function,

More information

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Salil Vadhan September 13, 2012 Reading: Sipser, 1.2. How to simulate NFAs? NFA accepts w if there is at least one accepting computational

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 2 January 5, 2018 January 5, 2018 CS21 Lecture 2 1 Outline Finite Automata Nondeterministic Finite Automata Closure under regular operations NFA, FA equivalence

More information

CS 322 D: Formal languages and automata theory

CS 322 D: Formal languages and automata theory CS 322 D: Formal languages and automata theory Tutorial NFA DFA Regular Expression T. Najla Arfawi 2 nd Term - 26 Finite Automata Finite Automata. Q - States 2. S - Alphabets 3. d - Transitions 4. q -

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

Inf2A: Converting from NFAs to DFAs and Closure Properties

Inf2A: Converting from NFAs to DFAs and Closure Properties 1/43 Inf2A: Converting from NFAs to DFAs and Stuart Anderson School of Informatics University of Edinburgh October 13, 2009 Starter Questions 2/43 1 Can you devise a way of testing for any FSM M whether

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Nondeterministic Finite Automata with empty moves (-NFA) Definition A nondeterministic finite automaton

More information

TDDD65 Introduction to the Theory of Computation

TDDD65 Introduction to the Theory of Computation TDDD65 Introduction to the Theory of Computation Lecture 2 Gustav Nordh, IDA gustav.nordh@liu.se 2012-08-31 Outline - Lecture 2 Closure properties of regular languages Regular expressions Equivalence of

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 3 January 9, 2017 January 9, 2017 CS21 Lecture 3 1 Outline NFA, FA equivalence Regular Expressions FA and Regular Expressions January 9, 2017 CS21 Lecture 3 2

More information

Regular expressions and Kleene s theorem

Regular expressions and Kleene s theorem Regular expressions and Kleene s theorem Informatics 2A: Lecture 5 Mary Cryan School of Informatics University of Edinburgh mcryan@inf.ed.ac.uk 26 September 2018 1 / 18 Finishing DFA minimization An algorithm

More information

2017/08/29 Chapter 1.2 in Sipser Ø Announcement:

2017/08/29 Chapter 1.2 in Sipser Ø Announcement: Nondeterministic Human-aware Finite Robo.cs Automata 2017/08/29 Chapter 1.2 in Sipser Ø Announcement: q Piazza registration: http://piazza.com/asu/fall2017/cse355 q First poll will be posted on Piazza

More information

Takeaway Notes: Finite State Automata

Takeaway Notes: Finite State Automata Takeaway Notes: Finite State Automata Contents 1 Introduction 1 2 Basics and Ground Rules 2 2.1 Building Blocks.............................. 2 2.2 The Name of the Game.......................... 2 3 Deterministic

More information

CSE 311: Foundations of Computing I Autumn 2014 Practice Final: Section X. Closed book, closed notes, no cell phones, no calculators.

CSE 311: Foundations of Computing I Autumn 2014 Practice Final: Section X. Closed book, closed notes, no cell phones, no calculators. CSE 311: Foundations of Computing I Autumn 014 Practice Final: Section X YY ZZ Name: UW ID: Instructions: Closed book, closed notes, no cell phones, no calculators. You have 110 minutes to complete the

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

DFA to Regular Expressions

DFA to Regular Expressions DFA to Regular Expressions Proposition: If L is regular then there is a regular expression r such that L = L(r). Proof Idea: Let M = (Q,Σ, δ, q 1, F) be a DFA recognizing L, with Q = {q 1,q 2,...q n },

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) September,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.  ETH Zürich (D-ITET) September, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) September, 24 2015 Last week was all about Deterministic Finite Automaton We saw three main

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Lecture 10 GNFA to RE Conversion Welcome to the 10th lecture of this course.

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 2 Define push down automata Trace the computation of a push down automaton Design

More information

highlights CSE 311: Foundations of Computing highlights 1 in third position from end Fall 2013 Lecture 25: Non-regularity and limits of FSMs

highlights CSE 311: Foundations of Computing highlights 1 in third position from end Fall 2013 Lecture 25: Non-regularity and limits of FSMs CSE 3: Foundations of Computing Fall 23 Lecture 25: Non-regularity and limits of FSMs highlights NFAs from Regular Epressions ( )* highlights in third position from end Subset construction : NFA to DFA

More information

Chap. 1.2 NonDeterministic Finite Automata (NFA)

Chap. 1.2 NonDeterministic Finite Automata (NFA) Chap. 1.2 NonDeterministic Finite Automata (NFA) DFAs: exactly 1 new state for any state & next char NFA: machine may not work same each time More than 1 transition rule for same state & input Any one

More information

Introduction to Language Theory and Compilation: Exercises. Session 2: Regular expressions

Introduction to Language Theory and Compilation: Exercises. Session 2: Regular expressions Introduction to Language Theory and Compilation: Exercises Session 2: Regular expressions Regular expressions (RE) Finite automata are an equivalent formalism to regular languages (for each regular language,

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable?

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable? } We ll now take a look at Turing Machines at a high level and consider what types of problems can be solved algorithmically and what types can t: What languages are Turing-decidable? What languages are

More information

Constructions on Finite Automata

Constructions on Finite Automata Constructions on Finite Automata Informatics 2A: Lecture 4 Mary Cryan School of Informatics University of Edinburgh mcryan@inf.ed.ac.uk 24 September 2018 1 / 33 Determinization The subset construction

More information

CSE 105 Theory of Computation Professor Jeanne Ferrante

CSE 105 Theory of Computation  Professor Jeanne Ferrante CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s agenda NFA Review and Design NFA s Equivalence to DFA s Another Closure Property proof for Regular Languages

More information

Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs Equivalence of NFAs and DFAs Mark Greenstreet, CpSc 421, Term 1, 2008/09 15 September 2008 p.1/15 Lecture Outline Equivalence of NFAs and DFAs Implementing NFAs in software using exhaustive enumeration

More information

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 43

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 43 Finite Automata Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Finite Automata Fall 2018 1 / 43 Outline Languages Review Traffic Light Example Deterministic Finite

More information

Course 4 Finite Automata/Finite State Machines

Course 4 Finite Automata/Finite State Machines Course 4 Finite Automata/Finite State Machines The structure and the content of the lecture is based on (1) http://www.eecs.wsu.edu/~ananth/cpts317/lectures/index.htm, (2) W. Schreiner Computability and

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/19/2016 LECTURE 3 Last time: DFAs and NFAs Operations on languages Today: Nondeterminism Equivalence of NFAs and DFAs Closure properties of regular languages Sofya Raskhodnikova

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

CSE 135: Introduction to Theory of Computation Equivalence of DFA and NFA

CSE 135: Introduction to Theory of Computation Equivalence of DFA and NFA CSE 135: Introduction to Theory of Computation Equivalence of DFA and NFA Sungjin Im University of California, Merced 02-03-2015 Expressive Power of NFAs and DFAs Is there a language that is recognized

More information

Further discussion of Turing machines

Further discussion of Turing machines Further discussion of Turing machines In this lecture we will discuss various aspects of decidable and Turing-recognizable languages that were not mentioned in previous lectures. In particular, we will

More information

Java II Finite Automata I

Java II Finite Automata I Java II Finite Automata I Bernd Kiefer Bernd.Kiefer@dfki.de Deutsches Forschungszentrum für künstliche Intelligenz November, 23 Processing Regular Expressions We already learned about Java s regular expression

More information

CMSC 330: Organization of Programming Languages. Theory of Regular Expressions Finite Automata

CMSC 330: Organization of Programming Languages. Theory of Regular Expressions Finite Automata : Organization of Programming Languages Theory of Regular Expressions Finite Automata Previous Course Review {s s defined} means the set of string s such that s is chosen or defined as given s A means

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont )

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) Sungjin Im University of California, Merced 2-3-214 Example II A ɛ B ɛ D F C E Example II A ɛ B ɛ D F C E NFA accepting

More information

September 11, Second Part of Regular Expressions Equivalence with Finite Aut

September 11, Second Part of Regular Expressions Equivalence with Finite Aut Second Part of Regular Expressions Equivalence with Finite Automata September 11, 2013 Lemma 1.60 If a language is regular then it is specified by a regular expression Proof idea: For a given regular language

More information

Name: Student ID: Instructions:

Name: Student ID: Instructions: Instructions: Name: CSE 322 Autumn 2001: Midterm Exam (closed book, closed notes except for 1-page summary) Total: 100 points, 5 questions, 20 points each. Time: 50 minutes 1. Write your name and student

More information

COMP4141 Theory of Computation

COMP4141 Theory of Computation COMP4141 Theory of Computation Lecture 4 Regular Languages cont. Ron van der Meyden CSE, UNSW Revision: 2013/03/14 (Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner, Rob van Glabbeek) Regular

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

Lecture 2: Connecting the Three Models

Lecture 2: Connecting the Three Models IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 2: Connecting the Three Models David Mix Barrington and Alexis Maciel July 18, 2000

More information

Figure 1: NFA N. Figure 2: Equivalent DFA N obtained through function nfa2dfa

Figure 1: NFA N. Figure 2: Equivalent DFA N obtained through function nfa2dfa CS 3100 Models of Computation Fall 2011 FIRST MIDTERM CLOSED BOOK 100 points I ve standardized on @ for representing Epsilons in all my figures as well as my code (liked equally by dot and our Python programs).

More information

Nondeterminism. September 7, Nondeterminism

Nondeterminism. September 7, Nondeterminism September 7, 204 Introduction is a useful concept that has a great impact on the theory of computation Introduction is a useful concept that has a great impact on the theory of computation So far in our

More information

CMPSCI 250: Introduction to Computation. Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013

CMPSCI 250: Introduction to Computation. Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013 CMPSCI 250: Introduction to Computation Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013 λ-nfa s to NFA s to DFA s Reviewing the Three Models and Kleene s Theorem The Subset

More information

What we have done so far

What we have done so far What we have done so far DFAs and regular languages NFAs and their equivalence to DFAs Regular expressions. Regular expressions capture exactly regular languages: Construct a NFA from a regular expression.

More information

Regular Expressions and Language Properties

Regular Expressions and Language Properties Regular Expressions and Language Properties Mridul Aanjaneya Stanford University July 3, 2012 Mridul Aanjaneya Automata Theory 1/ 47 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

CSE 555 Homework Three Sample Solutions

CSE 555 Homework Three Sample Solutions CSE 555 Homework Three Sample Solutions Question 1 Let Σ be a fixed alphabet. A PDA M with n states and stack alphabet of size σ may recognize the empty language; if its language is non-empty then denote

More information

(Refer Slide Time: 0:21)

(Refer Slide Time: 0:21) Theory of Computation Prof. Somenath Biswas Department of Computer Science and Engineering Indian Institute of Technology Kanpur Lecture 7 A generalisation of pumping lemma, Non-deterministic finite automata

More information

CS 154 Formal Languages and Computability Assignment #2 Solutions

CS 154 Formal Languages and Computability Assignment #2 Solutions CS 154 Formal Languages and Computability Assignment #2 Solutions Department of Computer Science San Jose State University Spring 2016 Instructor: Ron Mak www.cs.sjsu.edu/~mak Assignment #2: Question 1

More information

Finite Automata. BİL405 - Automata Theory and Formal Languages 1

Finite Automata. BİL405 - Automata Theory and Formal Languages 1 Finite Automata BİL405 - Automata Theory and Formal Languages 1 Deterministic Finite Automata (DFA) A Deterministic Finite Automata (DFA) is a quintuple A = (Q,,, q 0, F) 1. Q is a finite set of states

More information

CSE 460: Computabilty and Formal Languages. S. Pramanik

CSE 460: Computabilty and Formal Languages. S. Pramanik CSE 46: Computabilty and Formal Languages NF A Λ S. Pramanik NF A Λ Concatanation of languages and () : () 2 O,, O * FA () * FA Λ 2 2 * ()* NFA * ()* NFA- Figure : NF A Λ is an NFA but it also allows Λ-transitions.

More information

Constructions on Finite Automata

Constructions on Finite Automata Constructions on Finite Automata Informatics 2A: Lecture 4 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 23rd September, 2014 1 / 29 1 Closure properties of regular languages

More information

Equivalence of Regular Expressions and FSMs

Equivalence of Regular Expressions and FSMs Equivalence of Regular Expressions and FSMs Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Regular Language Recall that a language

More information

Lecture 3: Finite Automata

Lecture 3: Finite Automata Administrivia Lecture 3: Finite Automata Everyone should now be registered electronically using the link on our webpage. If you haven t, do so today! I d like to have teams formed by next Monday at the

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 206 Slides by Katya Lebedeva. COMP 2600 Nondeterministic Finite

More information

Finite Automata. Wen-Guey Tzeng Computer Science Department National Chiao Tung University

Finite Automata. Wen-Guey Tzeng Computer Science Department National Chiao Tung University Finite Automata Wen-Guey Tzeng Computer Science Department National Chiao Tung University Syllabus Deterministic finite acceptor Nondeterministic finite acceptor Equivalence of DFA and NFA Reduction of

More information