A State-Space Model for a Nonlinear Time-Delayed Feedback Loop

Size: px
Start display at page:

Download "A State-Space Model for a Nonlinear Time-Delayed Feedback Loop"

Transcription

1 A for a Nonlinear Time-Delayed Feedback Loop Karl Schmitt Advisors: Jim Yorke, Rajarshi Roy, Tom Murphy AMSC 663 October 14, / 21

2 Goal To implement an alternative, discrete time model for coupled nonlinear (chaotic) time-delayed feedback loops. 2 / 21

3 Introduction to Chaos Properities of a Chaotic System sensitive to initial conditions topologically mixing periodic orbits are dense Classic Example: The Lorenz System ẋ = σ(y x) σ = 10 ẏ = rx y 20xz r = 60 ż = 5xy bz b = / 21

4 Lorenz Synchronization Coupled Lorenz Equations: ẋ 1 = σ(y 1 x 1 ) + γ(x 2 x 1 ) ẋ 2 = σ(y 2 x 2 ) + γ(x 1 x 2 ) y 1 = rx 1 y 1 20x 1 z 1 ẏ 2 = rx 2 y 2 20x 2 z 2 ż 1 = 5x 1 y 1 bz 1 ż 2 = 5x 2 y 2 bz 2 σ = 10 r = 60 b = / 21

5 System Overview Laser Diode MZM Bias Photoreceiver Amplifier Delay (τ) V(t) Low-pass High-pass x(t) + τẋ(t) + 1 θ t t o x(s)ds = βcos 2 [x(t T ) + φ] x(t) is normalized RF voltage τ is the low pass filter time constant θ is the high pass filter time constant T is the time delay in the loop β is the feedback strength φ is the phase offset in nonlinearity [Kouomou, Thesis] 5 / 21

6 Modeling the system β = 1.15 β = 2.00 β = 2.45 Traditional numeric methods can be applied Generates a variety of dynamics β = 3.05 β = 4.30 Problems Step-Size Concerns Speed (3+ Min per run) Complicated filters difficult to model t (ns) / 21

7 Comparing Differentials vs. State-Space Differential Form x(t) + τẋ(t) + 1 t θ t o x(s)ds = y(t) Laser Diode MZM Bias Photoreceiver Amplifier Delay (τ) V(t) Low-pass High-pass Discrete State-Space Form u[n + 1] = Au[n] + By[n] x[n] = Cu[n] + Dy[n] 7 / 21

8 Some Details Discrete State-Space Form u[n + 1] = Au[n] + By[n] x[n] = Cu[n] + Dy[n] Choose canonical form from z-space transform of discrete filter Include nonlinear delayed feedback (y[n] f (x[n k]) This gives us for matrices: A= B=1 C= D=0 8 / 21

9 Simplified Model With all of the previous simplifications we are left with: u[n + 1] = Au[n] + Bf (x[n k]) x[n] = Cu[n] u[n + 1] = Au[n] + Bf (Cu[n k]) u[n + 1] = Au[n] + Bβcos 2 (Cu[n k] + φ) Where we have reintroduced the nonlinearity from the Mach-Zehnder. 9 / 21

10 Simplified Model With all of the previous simplifications we are left with: u[n + 1] = Au[n] + Bf (x[n k]) x[n] = Cu[n] u[n + 1] = Au[n] + Bf (Cu[n k]) u[n + 1] = Au[n] + Bβcos 2 (Cu[n k] + φ) Where we have reintroduced the nonlinearity from the Mach-Zehnder. 10 / 21

11 Simplified Model With all of the previous simplifications we are left with: u[n + 1] = Au[n] + Bf (x[n k]) x[n] = Cu[n] u[n + 1] = Au[n] + Bf (Cu[n k]) u[n + 1] = Au[n] + Bβcos 2 (Cu[n k] + φ) Where we have reintroduced the nonlinearity from the Mach-Zehnder. 11 / 21

12 Coupled State-Space Finally we build a coupled system similar to the coupled Lorenz System (with abstraction for easy reading) u 1 [n + 1] = Au 1 [n] + Bf (Cu 1 [n k]) +γb(f (Cu 2 [n k]) f (Cu 1 [n k])) u 2 [n + 1] = Au 2 [n] + Bf (Cu 2 [n k]) +γb(f (Cu 1 [n k]) f (Cu 2 [n k])) u 1 [n + 1] = Au 1 [n] + B((1 γ)f (Cu 1 [n k]) + γf (Cu 2 [n k])) u 2 [n + 1] = Au 2 [n] + B((1 γ)f (Cu 2 [n k]) + γf (Cu 1 [n k])) 12 / 21

13 Coupled State-Space Finally we build a coupled system similar to the coupled Lorenz System (with abstraction for easy reading) u 1 [n + 1] = Au 1 [n] + Bf (Cu 1 [n k]) +γb(f (Cu 2 [n k]) f (Cu 1 [n k])) u 2 [n + 1] = Au 2 [n] + Bf (Cu 2 [n k]) +γb(f (Cu 1 [n k]) f (Cu 2 [n k])) u 1 [n + 1] = Au 1 [n] + B((1 γ)f (Cu 1 [n k]) + γf (Cu 2 [n k])) u 2 [n + 1] = Au 2 [n] + B((1 γ)f (Cu 2 [n k]) + γf (Cu 1 [n k])) 13 / 21

14 Implementation Considerations Quick Graphical Output Vector Operations In-built filter functions Decision: Matlab (w/ C) Major Concern: Quantization 14 / 21

15 Validation Stage 1: Single Loop Characteristic Curves from Kouomuo [1] Stage 2: Coupled Lorenz Conditions by Anishchenko [4] Stage 3: Coupled Mach-Zehnders Open Loop: Argysis [5] Symmetric 50/50 coupling: Piel [6] 15 / 21

16 Use of Code Previously Explored 50/50 Coupling Synchronization for Coupling vs. Feedback Strength To be Explored Synchronization for: Coupling vs. Delay Coupling vs. Optical Bias Noise and Quantization Non-Symmetric Coupling Variations in Other parameters 16 / 21

17 Milestones Implementation and Verification of individual simulations Implementation and Verification of final simulation Generation of new results Further Expansion of Code November 1 st week December 1 st Feburary 1 st To be Determined 17 / 21

18 Milestones Implementation and Verification of individual simulations Implementation and Verification of final simulation Generation of new results Further Expansion of Code November 1 st week December 1 st Feburary 1 st To be Determined 18 / 21

19 Milestones Implementation and Verification of individual simulations Implementation and Verification of final simulation Generation of new results Further Expansion of Code November 1 st week December 1 st Feburary 1 st To be Determined 19 / 21

20 Milestones Implementation and Verification of individual simulations Implementation and Verification of final simulation Generation of new results Further Expansion of Code November 1 st week December 1 st Feburary 1 st To be Determined 20 / 21

21 References Kouomou, Yanne. Nonlinear Dynamics of Semiconductor Laser systems with feedback Doctoral Thesis Cohen, Adam, et. al. Using synchronization for prediction of high-dimensional chaotic dynamics Phys. Rev. Let., Publication Pending Murphy, Thomas. Personal Communications Anischchenko, V. S. et. al, Mutual synchronization and desynchronization of Lorenz systems Tech. Phys. Lett., Vol. 24, Nmb 4, Apr 1998, Amer. Inst. Phys. Argysis, Apostolos, et. al. Chaos Based Communications at high bit-rates using commercial fibre-optics Nature, 2005 Nature Publishing Piel, Michael, et. al, Versatile and robust chaos synchronization phenomena imposed by delayed shared feedback coupling Phys. Rev. E Vol 76, 2007 Amer. Phys. Soc. 21 / 21

Modeling and Results for a Mach-Zehnder Chaotic System

Modeling and Results for a Mach-Zehnder Chaotic System Modeling and Results for a Mach-Zehnder Chaotic System Karl Schmitt Jim Yorke, Rajarshi Roy, and Tom Murphy,Adam Cohen, Bhargava Ravoori, University of Maryland April 3, 9 / 4 Motivation Why bother? Reduce

More information

Simulation of coupled nonlinear time-delayed feedback loops using state-space representation

Simulation of coupled nonlinear time-delayed feedback loops using state-space representation Simulation of coupled nonlinear time-delayed feedback loops using state-space representation Author: Karl Schmitt, krbschmitt_at_math.umd.edu Advisors: Jim Yorke,,3 yorke_at_umd.edu Rajarshi Roy 4,,3 lasynch_at_gmail.com

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

Dynamic synchronization of a time-evolving optical network of chaotic oscillators

Dynamic synchronization of a time-evolving optical network of chaotic oscillators Dynamic synchronization of a time-evolving optical network of chaotic oscillators Adam B. Cohen, Bhargava Ravoori, Francesco Sorrentino, Thomas E. Murphy, Edward Ott et al. Citation: Chaos 2, 4342 (2);

More information

Lag anti-synchronization of delay coupled chaotic systems via a scalar signal

Lag anti-synchronization of delay coupled chaotic systems via a scalar signal Lag anti-synchronization of delay coupled chaotic systems via a scalar signal Mohammad Ali Khan Abstract. In this letter, a chaotic anti-synchronization (AS scheme is proposed based on combining a nonlinear

More information

Nonlinear Prediction for Top and Bottom Values of Time Series

Nonlinear Prediction for Top and Bottom Values of Time Series Vol. 2 No. 1 123 132 (Feb. 2009) 1 1 Nonlinear Prediction for Top and Bottom Values of Time Series Tomoya Suzuki 1 and Masaki Ota 1 To predict time-series data depending on temporal trends, as stock price

More information

System Control Engineering 0

System Control Engineering 0 System Control Engineering 0 Koichi Hashimoto Graduate School of Information Sciences Text: Nonlinear Control Systems Analysis and Design, Wiley Author: Horacio J. Marquez Web: http://www.ic.is.tohoku.ac.jp/~koichi/system_control/

More information

ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT

ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT International Journal of Bifurcation and Chaos, Vol. 12, No. 7 (2002) 1599 1604 c World Scientific Publishing Company ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT KEVIN BARONE and SAHJENDRA

More information

Inducing Chaos in the p/n Junction

Inducing Chaos in the p/n Junction Inducing Chaos in the p/n Junction Renato Mariz de Moraes, Marshal Miller, Alex Glasser, Anand Banerjee, Ed Ott, Tom Antonsen, and Steven M. Anlage CSR, Department of Physics MURI Review 14 November, 2003

More information

The Conley Index and Rigorous Numerics of Attracting Periodic Orbits

The Conley Index and Rigorous Numerics of Attracting Periodic Orbits The Conley Index and Rigorous Numerics of Attracting Periodic Orbits Marian Mrozek Pawe l Pilarczyk Conference on Variational and Topological Methods in the Study of Nonlinear Phenomena (Pisa, 2000) 1

More information

No. 6 Determining the input dimension of a To model a nonlinear time series with the widely used feed-forward neural network means to fit the a

No. 6 Determining the input dimension of a To model a nonlinear time series with the widely used feed-forward neural network means to fit the a Vol 12 No 6, June 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(06)/0594-05 Chinese Physics and IOP Publishing Ltd Determining the input dimension of a neural network for nonlinear time series prediction

More information

Complex Dynamics of Microprocessor Performances During Program Execution

Complex Dynamics of Microprocessor Performances During Program Execution Complex Dynamics of Microprocessor Performances During Program Execution Regularity, Chaos, and Others Hugues BERRY, Daniel GRACIA PÉREZ, Olivier TEMAM Alchemy, INRIA, Orsay, France www-rocq.inria.fr/

More information

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters Computers and Mathematics with Applications 59 (21) 3234 3244 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Adaptive

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN Journal of Circuits, Systems, and Computers, Vol. 11, No. 1 (22) 1 16 c World Scientific Publishing Company A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN GIUSEPPE GRASSI Dipartimento

More information

Time-delay feedback control in a delayed dynamical chaos system and its applications

Time-delay feedback control in a delayed dynamical chaos system and its applications Time-delay feedback control in a delayed dynamical chaos system and its applications Ye Zhi-Yong( ), Yang Guang( ), and Deng Cun-Bing( ) School of Mathematics and Physics, Chongqing University of Technology,

More information

RF Upset and Chaos in Circuits: Basic Investigations. Steven M. Anlage, Vassili Demergis, Ed Ott, Tom Antonsen

RF Upset and Chaos in Circuits: Basic Investigations. Steven M. Anlage, Vassili Demergis, Ed Ott, Tom Antonsen RF Upset and Chaos in Circuits: Basic Investigations Steven M. Anlage, Vassili Demergis, Ed Ott, Tom Antonsen AFOSR Presentation Research funded by the AFOSR-MURI and DURIP programs OVERVIEW HPM Effects

More information

Self-Control of Chaotic Dynamics using LTI Filters

Self-Control of Chaotic Dynamics using LTI Filters 1 arxiv:chao-dyn/9713v1 8 Oct 1997 Self-Control of Chaotic Dynamics using LTI Filters Pabitra Mitra Author is with the Institute for Robotics and Intelligent Systems, Bangalore, India. EMail: pabitra@cair.res.in

More information

ABSTRACT. Aaron Morgan Hagerstrom Doctor of Philosophy, Professor Rajarshi Roy Department of Physics

ABSTRACT. Aaron Morgan Hagerstrom Doctor of Philosophy, Professor Rajarshi Roy Department of Physics ABSTRACT Title of dissertation: EXPERIMENTAL STUDY OF ENTROPY GENERATION AND SYNCHRONIZATION IN NETWORKS OF COUPLED DYNAMICAL SYSTEMS Aaron Morgan Hagerstrom Doctor of Philosophy, 2015 Dissertation directed

More information

Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line

Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line Delayed Feedback and GHz-Scale Chaos on the Driven Diode-Terminated Transmission Line Steven M. Anlage, Vassili Demergis, Renato Moraes, Edward Ott, Thomas Antonsen Thanks to Alexander Glasser, Marshal

More information

Real Randomness with Noise and Chaos

Real Randomness with Noise and Chaos Real Randomness with Noise and Chaos by Kevin Fei working with Professor Rajarshi Roy, Professor Tom Murphy, and Joe Hart Random numbers are instrumental to modern computing. They are used by scientists

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

ABSTRACT. Professor Rajarshi Roy Department of Physics

ABSTRACT. Professor Rajarshi Roy Department of Physics ABSTRACT Title of dissertation: SYNCHRONIZATION OF CHAOTIC OPTOELECTRONIC OSCILLATORS: ADAPTIVE TECHNIQUES AND THE DESIGN OF OPTIMAL NETWORKS Bhargava Ravoori, Doctor of Philosophy, 2011 Dissertation directed

More information

Unstable Periodic Orbits as a Unifying Principle in the Presentation of Dynamical Systems in the Undergraduate Physics Curriculum

Unstable Periodic Orbits as a Unifying Principle in the Presentation of Dynamical Systems in the Undergraduate Physics Curriculum Unstable Periodic Orbits as a Unifying Principle in the Presentation of Dynamical Systems in the Undergraduate Physics Curriculum Bruce M. Boghosian 1 Hui Tang 1 Aaron Brown 1 Spencer Smith 2 Luis Fazendeiro

More information

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos Introduction Knot Theory Nonlinear Dynamics Open Questions Summary A tangled tale about knot, link, template, and strange attractor Centre for Chaos & Complex Networks City University of Hong Kong Email:

More information

CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE LORENZ SYSTEM AND CHUA S CIRCUIT

CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE LORENZ SYSTEM AND CHUA S CIRCUIT Letters International Journal of Bifurcation and Chaos, Vol. 9, No. 7 (1999) 1425 1434 c World Scientific Publishing Company CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE

More information

The Big, Big Picture (Bifurcations II)

The Big, Big Picture (Bifurcations II) The Big, Big Picture (Bifurcations II) Reading for this lecture: NDAC, Chapter 8 and Sec. 10.0-10.4. 1 Beyond fixed points: Bifurcation: Qualitative change in behavior as a control parameter is (slowly)

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

Chaos Control for the Lorenz System

Chaos Control for the Lorenz System Advanced Studies in Theoretical Physics Vol. 12, 2018, no. 4, 181-188 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2018.8413 Chaos Control for the Lorenz System Pedro Pablo Cárdenas Alzate

More information

11 Chaos in Continuous Dynamical Systems.

11 Chaos in Continuous Dynamical Systems. 11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

More information

Anticipating Synchronization Based on Optical Injection-Locking in Chaotic Semiconductor Lasers

Anticipating Synchronization Based on Optical Injection-Locking in Chaotic Semiconductor Lasers IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 12, DECEMBER 2003 1531 Anticipating Synchronization Based on Optical Injection-Locking in Chaotic Semiconductor Lasers Kenji Kusumoto and Junji Ohtsubo,

More information

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Anti-synchronization of a new hyperchaotic system via small-gain theorem Anti-synchronization of a new hyperchaotic system via small-gain theorem Xiao Jian( ) College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China (Received 8 February 2010; revised

More information

Een vlinder in de wiskunde: over chaos en structuur

Een vlinder in de wiskunde: over chaos en structuur Een vlinder in de wiskunde: over chaos en structuur Bernard J. Geurts Enschede, November 10, 2016 Tuin der Lusten (Garden of Earthly Delights) In all chaos there is a cosmos, in all disorder a secret

More information

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system

Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Dynamical analysis and circuit simulation of a new three-dimensional chaotic system Wang Ai-Yuan( 王爱元 ) a)b) and Ling Zhi-Hao( 凌志浩 ) a) a) Department of Automation, East China University of Science and

More information

Complex system approach to geospace and climate studies. Tatjana Živković

Complex system approach to geospace and climate studies. Tatjana Živković Complex system approach to geospace and climate studies Tatjana Živković 30.11.2011 Outline of a talk Importance of complex system approach Phase space reconstruction Recurrence plot analysis Test for

More information

COMPARISON OF THE INFLUENCES OF INITIAL ERRORS AND MODEL PARAMETER ERRORS ON PREDICTABILITY OF NUMERICAL FORECAST

COMPARISON OF THE INFLUENCES OF INITIAL ERRORS AND MODEL PARAMETER ERRORS ON PREDICTABILITY OF NUMERICAL FORECAST CHINESE JOURNAL OF GEOPHYSICS Vol.51, No.3, 2008, pp: 718 724 COMPARISON OF THE INFLUENCES OF INITIAL ERRORS AND MODEL PARAMETER ERRORS ON PREDICTABILITY OF NUMERICAL FORECAST DING Rui-Qiang, LI Jian-Ping

More information

Phase-Space Reconstruction. Gerrit Ansmann

Phase-Space Reconstruction. Gerrit Ansmann Phase-Space Reconstruction Gerrit Ansmann Reprise: The Need for Non-Linear Methods. Lorenz oscillator x = 1(y x), y = x(28 z) y, z = xy 8z 3 Autoregressive process measured with non-linearity: y t =.8y

More information

Multistability in the Lorenz System: A Broken Butterfly

Multistability in the Lorenz System: A Broken Butterfly International Journal of Bifurcation and Chaos, Vol. 24, No. 10 (2014) 1450131 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127414501314 Multistability in the Lorenz System: A Broken

More information

Part II. Dynamical Systems. Year

Part II. Dynamical Systems. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 34 Paper 1, Section II 30A Consider the dynamical system where β > 1 is a constant. ẋ = x + x 3 + βxy 2, ẏ = y + βx 2

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

Adaptive feedback synchronization of a unified chaotic system

Adaptive feedback synchronization of a unified chaotic system Physics Letters A 39 (4) 37 333 www.elsevier.com/locate/pla Adaptive feedback synchronization of a unified chaotic system Junan Lu a, Xiaoqun Wu a, Xiuping Han a, Jinhu Lü b, a School of Mathematics and

More information

CHUA S ATOM. Received March 16, 1999; Revised April 20, 1999

CHUA S ATOM. Received March 16, 1999; Revised April 20, 1999 Letters International Journal of Bifurcation and Chaos, Vol. 9, No. 6 (1999) 1153 1157 c World Scientific Publishing Company CHUA S ATOM DANIELA ROMANO,, MIRKO BOVATI and FRANCO MELONI INFM Dipartimento

More information

A conjecture on sustained oscillations for a closed-loop heat equation

A conjecture on sustained oscillations for a closed-loop heat equation A conjecture on sustained oscillations for a closed-loop heat equation C.I. Byrnes, D.S. Gilliam Abstract The conjecture in this paper represents an initial step aimed toward understanding and shaping

More information

150 Zhang Sheng-Hai et al Vol. 12 doped fibre, and the two rings are coupled with each other by a coupler C 0. I pa and I pb are the pump intensities

150 Zhang Sheng-Hai et al Vol. 12 doped fibre, and the two rings are coupled with each other by a coupler C 0. I pa and I pb are the pump intensities Vol 12 No 2, February 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(02)/0149-05 Chinese Physics and IOP Publishing Ltd Controlling hyperchaos in erbium-doped fibre laser Zhang Sheng-Hai(ΞΛ ) y and Shen

More information

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS International Journal of Bifurcation and Chaos, Vol. 12, No. 6 (22) 1417 1422 c World Scientific Publishing Company CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS JINHU LÜ Institute of Systems

More information

arxiv: v1 [nlin.cd] 7 Oct 2016

arxiv: v1 [nlin.cd] 7 Oct 2016 Persistence of Chaos in Coupled Lorenz Systems Mehmet Onur Fen Basic Sciences Unit, TED University, 06420 Ankara, Turkey E-mail: monur.fen@gmail.com, Tel: +90 312 585 0217 Abstract The dynamics of unidirectionally

More information

Generating a Complex Form of Chaotic Pan System and its Behavior

Generating a Complex Form of Chaotic Pan System and its Behavior Appl. Math. Inf. Sci. 9, No. 5, 2553-2557 (2015) 2553 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090540 Generating a Complex Form of Chaotic Pan

More information

Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium

Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium Pattern Formation and Spatiotemporal Chaos in Systems Far from Equilibrium Michael Cross California Institute of Technology Beijing Normal University May 2006 Michael Cross (Caltech, BNU) Pattern Formation

More information

Chaos. Lendert Gelens. KU Leuven - Vrije Universiteit Brussel Nonlinear dynamics course - VUB

Chaos. Lendert Gelens. KU Leuven - Vrije Universiteit Brussel   Nonlinear dynamics course - VUB Chaos Lendert Gelens KU Leuven - Vrije Universiteit Brussel www.gelenslab.org Nonlinear dynamics course - VUB Examples of chaotic systems: the double pendulum? θ 1 θ θ 2 Examples of chaotic systems: the

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Transform The z-transform is a very important tool in describing and analyzing digital systems. It offers the techniques for digital filter design and frequency analysis of digital signals. Definition

More information

Chaos suppression of uncertain gyros in a given finite time

Chaos suppression of uncertain gyros in a given finite time Chin. Phys. B Vol. 1, No. 11 1 1155 Chaos suppression of uncertain gyros in a given finite time Mohammad Pourmahmood Aghababa a and Hasan Pourmahmood Aghababa bc a Electrical Engineering Department, Urmia

More information

Manifesto on Numerical Integration of Equations of Motion Using Matlab

Manifesto on Numerical Integration of Equations of Motion Using Matlab Manifesto on Numerical Integration of Equations of Motion Using Matlab C. Hall April 11, 2002 This handout is intended to help you understand numerical integration and to put it into practice using Matlab

More information

ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS

ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS Letters International Journal of Bifurcation and Chaos, Vol. 12, No. 7 (2002) 1579 1597 c World Scientific Publishing Company ADAPTIVE SYNCHRONIZATION FOR RÖSSLER AND CHUA S CIRCUIT SYSTEMS A. S. HEGAZI,H.N.AGIZA

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

A GALLERY OF LORENZ-LIKE AND CHEN-LIKE ATTRACTORS

A GALLERY OF LORENZ-LIKE AND CHEN-LIKE ATTRACTORS International Journal of Bifurcation and Chaos, Vol. 23, No. 4 (2013) 1330011 (20 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127413300115 A GALLERY OF LORENZ-LIKE AND CHEN-LIKE ATTRACTORS

More information

Controlling the Period-Doubling Bifurcation of Logistic Model

Controlling the Period-Doubling Bifurcation of Logistic Model ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.20(2015) No.3,pp.174-178 Controlling the Period-Doubling Bifurcation of Logistic Model Zhiqian Wang 1, Jiashi Tang

More information

Synchronization of a General Delayed Complex Dynamical Network via Adaptive Feedback

Synchronization of a General Delayed Complex Dynamical Network via Adaptive Feedback Synchronization of a General Delayed Complex Dynamical Network via Adaptive Feedback Qunjiao Zhang and Junan Lu College of Mathematics and Statistics State Key Laboratory of Software Engineering Wuhan

More information

DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS

DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS Letters International Journal of Bifurcation and Chaos, Vol. 8, No. 8 (1998) 1733 1738 c World Scientific Publishing Company DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS I. P.

More information

Chimera State Realization in Chaotic Systems. The Role of Hyperbolicity

Chimera State Realization in Chaotic Systems. The Role of Hyperbolicity Chimera State Realization in Chaotic Systems. The Role of Hyperbolicity Vadim S. Anishchenko Saratov State University, Saratov, Russia Nizhny Novgorod, July 20, 2015 My co-authors Nadezhda Semenova, PhD

More information

Breather and Pulse-Package Dynamics in Multinonlinear Electrooptical Systems With Delayed Feedback

Breather and Pulse-Package Dynamics in Multinonlinear Electrooptical Systems With Delayed Feedback in Multinonlinear Electrooptical Systems With Delayed Feedback Volume 8, Number 4, August 2016 Alain F. Talla Romain Martinenghi Paul Woafo Yanne K. Chembo, Senior Member, IEEE DOI: 10.1109/JPHOT.2016.2593790

More information

Bifurcation control and chaos in a linear impulsive system

Bifurcation control and chaos in a linear impulsive system Vol 8 No 2, December 2009 c 2009 Chin. Phys. Soc. 674-056/2009/82)/5235-07 Chinese Physics B and IOP Publishing Ltd Bifurcation control and chaos in a linear impulsive system Jiang Gui-Rong 蒋贵荣 ) a)b),

More information

APPM 2460 CHAOTIC DYNAMICS

APPM 2460 CHAOTIC DYNAMICS APPM 2460 CHAOTIC DYNAMICS 1. Introduction Today we ll continue our exploration of dynamical systems, focusing in particular upon systems who exhibit a type of strange behavior known as chaos. We will

More information

Nonlinear Control Lecture 1: Introduction

Nonlinear Control Lecture 1: Introduction Nonlinear Control Lecture 1: Introduction Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Nonlinear Control Lecture 1 1/15 Motivation

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

ON STABILIZING N-DIMENSIONAL CHAOTIC SYSTEMS

ON STABILIZING N-DIMENSIONAL CHAOTIC SYSTEMS International Journal of Bifurcation and Chaos, Vol. 3, No. 2 (23) 473 48 c World Scientific Publishing Company ON STABILIZING N-DIMENSIONAL CHAOTIC SYSTEMS LAURENT LAVAL and NACER K. M SIRDI Laboratoire

More information

Constructing a chaotic system with any number of equilibria

Constructing a chaotic system with any number of equilibria Nonlinear Dyn (2013) 71:429 436 DOI 10.1007/s11071-012-0669-7 ORIGINAL PAPER Constructing a chaotic system with any number of equilibria Xiong Wang Guanrong Chen Received: 9 June 2012 / Accepted: 29 October

More information

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback Lucas Illing and Daniel J. Gauthier Department of Physics Center for Nonlinear and Complex Systems Duke University, North Carolina

More information

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon email: callafon@ucsd.edu TA: Younghee Han tel. (858) 8221763/8223457, email: y3han@ucsd.edu class information and lab handouts will be available

More information

Discrete-time signals and systems

Discrete-time signals and systems Discrete-time signals and systems 1 DISCRETE-TIME DYNAMICAL SYSTEMS x(t) G y(t) Linear system: Output y(n) is a linear function of the inputs sequence: y(n) = k= h(k)x(n k) h(k): impulse response of the

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016 ACM/CMS 17 Linear Analysis & Applications Fall 216 Assignment 4: Linear ODEs and Control Theory Due: 5th December 216 Introduction Systems of ordinary differential equations (ODEs) can be used to describe

More information

1 (30 pts) Dominant Pole

1 (30 pts) Dominant Pole EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +

More information

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli

SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE. Itishree Priyadarshini. Prof. Biplab Ganguli SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE By Itishree Priyadarshini Under the Guidance of Prof. Biplab Ganguli Department of Physics National Institute of Technology, Rourkela CERTIFICATE This is to

More information

Generalized projective synchronization between two chaotic gyros with nonlinear damping

Generalized projective synchronization between two chaotic gyros with nonlinear damping Generalized projective synchronization between two chaotic gyros with nonlinear damping Min Fu-Hong( ) Department of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China

More information

An Application of Perturbation Methods in Evolutionary Ecology

An Application of Perturbation Methods in Evolutionary Ecology Dynamics at the Horsetooth Volume 2A, 2010. Focused Issue: Asymptotics and Perturbations An Application of Perturbation Methods in Evolutionary Ecology Department of Mathematics Colorado State University

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu Chapter : Time-Domain Representations of Linear Time-Invariant Systems Chih-Wei Liu Outline Characteristics of Systems Described by Differential and Difference Equations Block Diagram Representations State-Variable

More information

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 682 688 c International Academic Publishers Vol. 35, No. 6, June 15, 2001 Phase Desynchronization as a Mechanism for Transitions to High-Dimensional

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

Bifurcations of Fractional-order Diffusionless Lorenz System

Bifurcations of Fractional-order Diffusionless Lorenz System EJTP 6, No. 22 (2009) 123 134 Electronic Journal of Theoretical Physics Bifurcations of Fractional-order Diffusionless Lorenz System Kehui Sun 1,2 and J. C. Sprott 2 1 School of Physics Science and Technology,

More information

Experimental verification of the Chua s circuit designed with UGCs

Experimental verification of the Chua s circuit designed with UGCs Experimental verification of the Chua s circuit designed with UGCs C. Sánchez-López a), A. Castro-Hernández, and A. Pérez-Trejo Autonomous University of Tlaxcala Calzada Apizaquito S/N, Apizaco, Tlaxcala,

More information

Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 265 269 c International Academic Publishers Vol. 47, No. 2, February 15, 2007 Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

More information

Scenarios for the transition to chaos

Scenarios for the transition to chaos Scenarios for the transition to chaos Alessandro Torcini alessandro.torcini@cnr.it Istituto dei Sistemi Complessi - CNR - Firenze Istituto Nazionale di Fisica Nucleare - Sezione di Firenze Centro interdipartimentale

More information

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of:

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Lecture 6 Chaos Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Chaos, Attractors and strange attractors Transient chaos Lorenz Equations

More information

Some explicit formulas of Lyapunov exponents for 3D quadratic mappings

Some explicit formulas of Lyapunov exponents for 3D quadratic mappings Some explicit formulas of Lyapunov exponents for 3D quadratic mappings Zeraoulia Elhadj 1,J.C.Sprott 2 1 Department of Mathematics, University of Tébessa, (12002), Algeria. E-mail: zeraoulia@mail.univ-tebessa.dz

More information

Synchronization between different motifs

Synchronization between different motifs Synchronization between different motifs Li Ying( ) a) and Liu Zeng-Rong( ) b) a) College of Information Technology, Shanghai Ocean University, Shanghai 201306, China b) Institute of Systems Biology, Shanghai

More information

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 ca. 1974 Central theorem of chaos (Lorenz, 1960s): a) Unstable systems have finite predictability

More information

Why are Discrete Maps Sufficient?

Why are Discrete Maps Sufficient? Why are Discrete Maps Sufficient? Why do dynamical systems specialists study maps of the form x n+ 1 = f ( xn), (time is discrete) when much of the world around us evolves continuously, and is thus well

More information

Controlling a Novel Chaotic Attractor using Linear Feedback

Controlling a Novel Chaotic Attractor using Linear Feedback ISSN 746-7659, England, UK Journal of Information and Computing Science Vol 5, No,, pp 7-4 Controlling a Novel Chaotic Attractor using Linear Feedback Lin Pan,, Daoyun Xu 3, and Wuneng Zhou College of

More information

Delay Coordinate Embedding

Delay Coordinate Embedding Chapter 7 Delay Coordinate Embedding Up to this point, we have known our state space explicitly. But what if we do not know it? How can we then study the dynamics is phase space? A typical case is when

More information

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit

Experimental Characterization of Nonlinear Dynamics from Chua s Circuit Experimental Characterization of Nonlinear Dynamics from Chua s Circuit John Parker*, 1 Majid Sodagar, 1 Patrick Chang, 1 and Edward Coyle 1 School of Physics, Georgia Institute of Technology, Atlanta,

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

Electronics and Communication Exercise 1

Electronics and Communication Exercise 1 Electronics and Communication Exercise 1 1. For matrices of same dimension M, N and scalar c, which one of these properties DOES NOT ALWAYS hold? (A) (M T ) T = M (C) (M + N) T = M T + N T (B) (cm)+ =

More information

PHYSICAL REVIEW E VOLUME 56, NUMBER 3 ARTICLES. Data-based control trajectory planning for nonlinear systems

PHYSICAL REVIEW E VOLUME 56, NUMBER 3 ARTICLES. Data-based control trajectory planning for nonlinear systems PHYSICAL REVIEW E VOLUME 56, NUMBER 3 SEPTEMBER 1997 ARTICLES Data-based control trajectory planning for nonlinear systems Carl Rhodes Chemical Engineering 210-41, California Institute of Technology, Pasadena,

More information

Problem Set 4 Solutions 1

Problem Set 4 Solutions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6245: MULTIVARIABLE CONTROL SYSTEMS by A Megretski Problem Set 4 Solutions Problem 4T For the following transfer

More information

Model Reduction for Unstable Systems

Model Reduction for Unstable Systems Model Reduction for Unstable Systems Klajdi Sinani Virginia Tech klajdi@vt.edu Advisor: Serkan Gugercin October 22, 2015 (VT) SIAM October 22, 2015 1 / 26 Overview 1 Introduction 2 Interpolatory Model

More information

2.10 Saddles, Nodes, Foci and Centers

2.10 Saddles, Nodes, Foci and Centers 2.10 Saddles, Nodes, Foci and Centers In Section 1.5, a linear system (1 where x R 2 was said to have a saddle, node, focus or center at the origin if its phase portrait was linearly equivalent to one

More information

Lorenz System Parameter Determination and Application to Break the Security of Two-channel Chaotic Cryptosystems

Lorenz System Parameter Determination and Application to Break the Security of Two-channel Chaotic Cryptosystems 1 Lorenz System Parameter Determination and Application to Break the Security of Two-channel Chaotic Cryptosystems A. B. Orue, G. Alvarez, M. Romera, G. Pastor, F. Montoya and Shujun Li arxiv:nlin/669v

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information