Ordonnancement robuste de réseaux de capteurs sans fil pour le suivi d une cible mobile sous incertitudes

Size: px
Start display at page:

Download "Ordonnancement robuste de réseaux de capteurs sans fil pour le suivi d une cible mobile sous incertitudes"

Transcription

1 Ordonnancement robuste de réseaux de capteurs sans fil pour le suivi d une cible mobile sous incertitudes Charly Lersteau Marc Sevaux André Rossi ROADEF 2016, Compiègne February 11, /17

2 Context 2/17

3 Context m static sensors s 1 s 3 2/17

4 Context m static sensors Battery capacity: E i s1 s 3 2/17

5 Context m static sensors Battery capacity: E i Sensing range: R S R S s 1 s 3 2/17

6 Context m static sensors Battery capacity: E i Sensing range: R S s 1 s 3 One moving target Known trajectory 2/17

7 Context m static sensors Battery capacity: E i Sensing range: R S s 1 s 3 One moving target Known trajectory Mission Continuously monitoring the target 2/17

8 Problem s 1 s 3 Sensing activity Action of monitoring the target using a sensor Decision 0 H Timeline 3/17

9 Problem s 1 s 3 Sensing activity Action of monitoring the target using a sensor Decision Design a static schedule of sensing activities Activities must be scheduled offline s 1 s 3 0 H Timeline 3/17

10 Problem s 1 s 3 Constraints Enforce full coverage Battery lifetime One active sensor s 1 s 3 0 H Timeline 3/17

11 Problem s 1 s 3 Uncertainty The target can be early or late from the prediction Objective Maximize the earliness and tardiness that the schedule can face s 1 s 3 0 H Timeline 3/17

12 Overview Initial instance Discretization Scheduling problem Solve Schedule Two-step algorithm Discretization: transform the initial instance into a scheduling problem Solve the scheduling problem: activate sensors so as to cover the target despite its lateless or earliness 4/17

13 Discretization s 1 s 3 Area split into disjoint faces Face: surface covered by the same set of sensors f 1 f 2 f 4 f 5 f 3 0 H Timeline 5/17

14 Discretization s 1 s 3 Area split into disjoint faces Face: surface covered by the same set of sensors f 1 f 2 f 4 f 5 Trajectory can be seen: as a sequence of the traversed faces f 3 f 1 f 2 f 3 f 4 f 5 0 H Timeline 5/17

15 Discretization s 1 s 3 Area split into disjoint faces Face: surface covered by the same set of sensors f 1 f 2 f 4 f 5 Trajectory can be seen: as a sequence of the traversed faces as a sequence of sets of candidate sensors f 1 {s 1} f 2 {s 1, } f 3 f 3 {} 0 H Timeline f 4 {, s 3} f 5 {s 3} 5/17

16 Discretization s 1 s 3 Ticks: dates of transition from a face to another Time window: interval between two consecutive ticks {s 1} {s 1, } {} {, s 3} {s 3} 0 H Timeline 5/17

17 Discretization output I Set of sensors {s 1,...,s m } E i Battery lifetime of the sensor i K Set of time windows {1,..., K } t k Starting time of time window k k Duration of time window k S(k) Set of candidate sensors covering the target during time window k {s 1} {s 1, } {} {, s 3} {s 3} t 3 t 4 t 5 t 6 Timeline 6/17

18 Discretization output {s 1} {s 1, } {} {, s 3} {s 3} t 3 t 4 t 5 t 6 Timeline Representation as availability intervals s 3 s 1 t 3 t 4 t 5 t 6 Timeline 7/17

19 Robustness study Uncertainty Earliness and tardiness can occur at every tick t k Candidates {s 1} {s 1, } {} Schedule (1) s 1 8/17

20 Robustness study Uncertainty Earliness and tardiness can occur at every tick t k Candidates (t 1 late) {s 1} {s 1, } {} t 1 t 1 t 2 target loss! Schedule (1) s 1 8/17

21 Robustness study Uncertainty Earliness and tardiness can occur at every tick t k Candidates {s 1} {s 1, } {} Schedule (1) s 1 Schedule (2) s 1 8/17

22 Robustness study Uncertainty Earliness and tardiness can occur at every tick t k Candidates (t 2 early) {s 1} {s 1, } {} t 2 Schedule (1) s 1 target loss! Schedule (2) s 1 8/17

23 Robustness study Uncertainty Earliness and tardiness can occur at every tick t k Candidates {s 1} {s 1, } {} Schedule (1) s 1 Schedule (2) s 1 Schedule (3) s 1 8/17

24 Robustness study Uncertainty Earliness and tardiness can occur at every tick t k Candidates (t 1 late) {s 1} {s 1, } {} t 1 t 1 t 2 Schedule (1) s 1 Schedule (2) s 1 Schedule (3) s 1 8/17

25 Robustness study Uncertainty Earliness and tardiness can occur at every tick t k Candidates (t 2 early) {s 1} {s 1, } {} t 2 Schedule (1) s 1 Schedule (2) s 1 Schedule (3) s 1 8/17

26 Robustness study Uncertainty Earliness and tardiness can occur at every tick t k Candidates {s 1} {s 1, } {} Schedule (1) s 1 Schedule (2) s 1 Schedule (3) s 1 Stability radius ρ: Maximal tick time variation allowed (in units of time) Schedule (3) has a greater stability radius than schedules (1) and (2) 8/17

27 Solution approach Definition: Optimization problem Find a feasible schedule such that its stability radius is maximized Definition: Decision problem Let ρ be an arbitrary positive value Does there exist a feasible schedule such that its stability radius is at least ρ? Answer: yes/no Suggested approach Dichotomy 9/17

28 Solution approach Algorithm Compute an upper bound UB on ρ = ρ [0, UB] Compute UB 10/17

29 Solution approach Algorithm Compute an upper bound UB on ρ = ρ [0, UB] Collect all the positive distances t k t k < UB in a list D, sorted by increasing order Compute UB D {t k t k < UB} 10/17

30 Solution approach Algorithm Compute an upper bound UB on ρ = ρ [0, UB] Collect all the positive distances t k t k < UB in a list D, sorted by increasing order Run a dichotomy on ρ by solving a decision problem at each iteration = returns a value D l from the list Compute UB D {t k t k < UB} Dichotomy 10/17

31 Solution approach Algorithm Compute an upper bound UB on ρ = ρ [0, UB] Collect all the positive distances t k t k < UB in a list D, sorted by increasing order Run a dichotomy on ρ by solving a decision problem at each iteration = returns a value D l from the list Final step: solve a linear program to maximize ρ [D l,d l+1 ) Compute UB D {t k t k < UB} Dichotomy Solve LP Schedule activities 10/17

32 Decision problem s 1 Solve the decision problem Generate an instance I ρ such that the stability radius is guaranteed = move the ticks to restrict the availability intervals s 3 t 3 t 4 t 5 t H time 1 ρ = 0 11/17

33 Decision problem s 1 Solve the decision problem Generate an instance I ρ such that the stability radius is guaranteed = move the ticks to restrict the availability intervals 1 ρ = 0 2 ρ = 1 s 1 s 3 s 3 t 3 t 4 t 5 t H t t 2 t 3 t 5 H t 6 t 4 time time 11/17

34 Decision problem s 1 Solve the decision problem Generate an instance I ρ such that the stability radius is guaranteed = move the ticks to restrict the availability intervals 1 ρ = 0 2 ρ = 1 3 ρ = 1.5 s 1 s 3 s 1 s 3 s 3 t 3 t 4 t 5 t H t t 2 t 3 t 5 H t 6 t 4 time time time t t 2 H t 4 t 3 11/17

35 Decision problem s 1 Solve the decision problem Generate an instance I ρ such that the stability radius is guaranteed = move the ticks to restrict the availability intervals 1 ρ = 0 2 ρ = 1 3 ρ = 1.5 s 1 s 3 s 1 s 3 s 3 t 3 t 4 t 5 t H t t 2 t 3 t 5 H t 6 t 4 time time time t t 2 H t 4 t 3 11/17

36 Decision problem For a given ρ Solve the decision problem as a transportation problem Suppliers: sensors of capacity E i Customers: time windows of duration k Decision variables: x ik Costs: c ik = 0 if sensor i is candidate for time window k, 1 otherwise Optimal objective value is 0 instance is feasible E 3 s 3 k 5 5 k 4 4 Sensors E 2 k 3 3 Time windows k 2 2 E 1 s 1 k /17

37 Final step Final step: Solve a linear program Dichotomy returns a value D l from the list D = ρ [D l,d l+1 ) Objective of LP: maximize ρ = D l +δ For each x ik > 0, schedule an activity of duration x ik involving the sensor i in the time window k max δ (1) x ik E i i I (2) k K i S(k) i S(k) x ik = k +(σ k+1 σ k )δ k K (3) δ 0 (4) x ik 0 k K, i S(k) (5) 13/17

38 Solution approach Complexity Scheduling problem solvable in O(m K (m+ K ) log K ), where m is the number of sensors, K the number of time windows Global problem: pseudo-polynomial Compute UB D {t k t k < UB} Dichotomy Solve LP Schedule activities 14/17

39 Experiments Experiments on random instances Language: C++ Machine: Xeon processor W3520 (2.67 GHz 8), 8GB RAM, Linux Instances up to 1000 sensors are solved in less than 20 s in average Discretization Dichotomy Average time (s) Number of sensors 15/17

40 Extensions and further research Flexible scheduling (i.e. with recourse) s2 s3 t3 t4 s1 s2 t1 t2 s2 s3 t3 t4 16/17

41 Extensions and further research Flexible scheduling (i.e. with recourse) Spatial uncertainty s2 s3 t3 t4 s1 s2 t1 t2 s2 s3 t3 t4 16/17

42 Extensions and further research Flexible scheduling (i.e. with recourse) Spatial uncertainty s2 s3 Communication costs t3 t4 s1 s2 t1 t2 s2 s3 t3 t4 16/17

43 Conclusion Lersteau C, Rossi A, and Sevaux M, Robust scheduling of wireless sensor networks for target tracking under uncertainty, European Journal of Operational Research, 2016, DOI: /j.ejor Thank you for your attention. Questions? 17/17

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling

A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling A comparison of sequencing formulations in a constraint generation procedure for avionics scheduling Department of Mathematics, Linköping University Jessika Boberg LiTH-MAT-EX 2017/18 SE Credits: Level:

More information

Single Machine Scheduling: Comparison of MIP Formulations and Heuristics for. Interfering Job Sets. Ketan Khowala

Single Machine Scheduling: Comparison of MIP Formulations and Heuristics for. Interfering Job Sets. Ketan Khowala Single Machine Scheduling: Comparison of MIP Formulations and Heuristics for Interfering Job Sets by Ketan Khowala A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor

More information

CS 6901 (Applied Algorithms) Lecture 3

CS 6901 (Applied Algorithms) Lecture 3 CS 6901 (Applied Algorithms) Lecture 3 Antonina Kolokolova September 16, 2014 1 Representative problems: brief overview In this lecture we will look at several problems which, although look somewhat similar

More information

CS 6783 (Applied Algorithms) Lecture 3

CS 6783 (Applied Algorithms) Lecture 3 CS 6783 (Applied Algorithms) Lecture 3 Antonina Kolokolova January 14, 2013 1 Representative problems: brief overview of the course In this lecture we will look at several problems which, although look

More information

Time Aggregation for Network Design to Meet Time-Constrained Demand

Time Aggregation for Network Design to Meet Time-Constrained Demand 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Time Aggregation for Network Design to Meet Time-Constrained Demand N. Boland

More information

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows

A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows A Mixed-Integer Linear Program for the Traveling Salesman Problem with Structured Time Windows Philipp Hungerländer Christian Truden 5th January 2017 Abstract In this extended abstract we introduce the

More information

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems Zhishan Guo and Sanjoy Baruah Department of Computer Science University of North Carolina at Chapel

More information

Development of a Deep Recurrent Neural Network Controller for Flight Applications

Development of a Deep Recurrent Neural Network Controller for Flight Applications Development of a Deep Recurrent Neural Network Controller for Flight Applications American Control Conference (ACC) May 26, 2017 Scott A. Nivison Pramod P. Khargonekar Department of Electrical and Computer

More information

Batching Identical Jobs

Batching Identical Jobs Mathematical Methods of Operations Research manuscript No. (will be inserted by the editor) Batching Identical Jobs Philippe Baptiste CNRS, UMR 6599 HeuDiaSyC, Univ. de Tech. de Compiègne, F-60205 Compiègne

More information

Task Models and Scheduling

Task Models and Scheduling Task Models and Scheduling Jan Reineke Saarland University June 27 th, 2013 With thanks to Jian-Jia Chen at KIT! Jan Reineke Task Models and Scheduling June 27 th, 2013 1 / 36 Task Models and Scheduling

More information

Recoverable Robust Knapsacks: Γ -Scenarios

Recoverable Robust Knapsacks: Γ -Scenarios Recoverable Robust Knapsacks: Γ -Scenarios Christina Büsing, Arie M. C. A. Koster, and Manuel Kutschka Abstract In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty

More information

A Global Constraint for Total Weighted Completion Time for Unary Resources

A Global Constraint for Total Weighted Completion Time for Unary Resources A Global Constraint for Total Weighted Completion Time for Unary Resources András Kovács Computer and Automation Research Institute Hungarian Academy of Sciences akovacs@sztaki.hu J. Christopher Beck Department

More information

Single Machine Problems Polynomial Cases

Single Machine Problems Polynomial Cases DM204, 2011 SCHEDULING, TIMETABLING AND ROUTING Lecture 2 Single Machine Problems Polynomial Cases Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline

More information

A heuristic algorithm for the Aircraft Landing Problem

A heuristic algorithm for the Aircraft Landing Problem 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 A heuristic algorithm for the Aircraft Landing Problem Amir Salehipour

More information

Online Appendix for Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs

Online Appendix for Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs Submitted to Operations Research manuscript OPRE-2009-04-180 Online Appendix for Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs Xiaoqiang

More information

Global planning in a multi-terminal and multi-modal maritime container port

Global planning in a multi-terminal and multi-modal maritime container port Global planning in a multi-terminal and multi-modal maritime container port Xavier Schepler 1 Eric Sanlaville 2 Sophie Michel 2 Stefan Balev 2 1 École des Mines de Saint-Étienne (LIMOS) 2 Normandy University

More information

RCPSP Single Machine Problems

RCPSP Single Machine Problems DM204 Spring 2011 Scheduling, Timetabling and Routing Lecture 3 Single Machine Problems Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Resource

More information

Lower Bounds for Parallel Machine Scheduling Problems

Lower Bounds for Parallel Machine Scheduling Problems Lower Bounds for Parallel Machine Scheduling Problems Philippe Baptiste 1, Antoine Jouglet 2, David Savourey 2 1 Ecole Polytechnique, UMR 7161 CNRS LIX, 91128 Palaiseau, France philippe.baptiste@polytechnique.fr

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Minimizing the number of tardy jobs in single machine scheduling using MIP

Minimizing the number of tardy jobs in single machine scheduling using MIP MISTA 2009 Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) Minimizing the number of tardy jobs in single machine scheduling using MIP S. Ourari C. Briand

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer environment,

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal October 16, 2012 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer

More information

A MIP approach for the minimization of the number of late jobs in single machine scheduling

A MIP approach for the minimization of the number of late jobs in single machine scheduling A MIP approach for the minimization of the number of late jobs in single machine scheduling Samia Ourari,a,b,c, Cyril Briand,a,b, Brahim Bouzouia c a CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse,

More information

Set-based Min-max and Min-min Robustness for Multi-objective Robust Optimization

Set-based Min-max and Min-min Robustness for Multi-objective Robust Optimization Proceedings of the 2017 Industrial and Systems Engineering Research Conference K. Coperich, E. Cudney, H. Nembhard, eds. Set-based Min-max and Min-min Robustness for Multi-objective Robust Optimization

More information

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands Axel Nyberg Åbo Aademi University Ignacio E. Grossmann Dept. of Chemical Engineering, Carnegie Mellon University,

More information

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD Course Overview Material that will be covered in the course: Basic graph algorithms Algorithm Design Techniques Greedy Algorithms Divide and Conquer Dynamic Programming Network Flows Computational intractability

More information

Resource Constrained Project Scheduling Linear and Integer Programming (1)

Resource Constrained Project Scheduling Linear and Integer Programming (1) DM204, 2010 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Resource Constrained Project Linear and Integer Programming (1) Marco Chiarandini Department of Mathematics & Computer Science University of Southern

More information

An efficient ILP formulation for the single machine scheduling problem

An efficient ILP formulation for the single machine scheduling problem An efficient ILP formulation for the single machine scheduling problem Cyril Briand a,b,, Samia Ourari a,b,c, Brahim Bouzouia c a CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France b Université

More information

Minimizing total weighted tardiness on a single machine with release dates and equal-length jobs

Minimizing total weighted tardiness on a single machine with release dates and equal-length jobs Minimizing total weighted tardiness on a single machine with release dates and equal-length jobs G. Diepen J.M. van den Akker J.A. Hoogeveen institute of information and computing sciences, utrecht university

More information

Multi-Objective Scheduling Using Rule Based Approach

Multi-Objective Scheduling Using Rule Based Approach Multi-Objective Scheduling Using Rule Based Approach Mohammad Komaki, Shaya Sheikh, Behnam Malakooti Case Western Reserve University Systems Engineering Email: komakighorban@gmail.com Abstract Scheduling

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund Scheduling Periodic Real-Time Tasks on Uniprocessor Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 08, Dec., 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 38 Periodic Control System Pseudo-code

More information

Table of Contents. Best-Case Lower Bounds in a Group Sequence for the Job Shop Problem. Group Sequencing. Introduction IFAC 2008 WC

Table of Contents. Best-Case Lower Bounds in a Group Sequence for the Job Shop Problem. Group Sequencing. Introduction IFAC 2008 WC Table of Contents Best-Case Lower Bounds in a Group Sequence for the Job Shop Problem 1 Introduction Group Sequencing Guillaume Pinot Nasser Mebarki 3 The Best-Case Completion Time of an Operation IRCCyN

More information

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Lecture #14 Risat Pathan Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Specification Implementation Multiprocessor scheduling -- Partitioned

More information

Minimizing the number of tardy jobs for the single machine scheduling problem: MIP-based lower and upper bounds

Minimizing the number of tardy jobs for the single machine scheduling problem: MIP-based lower and upper bounds Minimizing the number of tardy jobs for the single machine scheduling problem: MIP-based lower and upper bounds Cyril Briand 1,a,b, Samia Ourari c a CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse,

More information

Mohammad Saidi-Mehrabad a, Samira Bairamzadeh b,*

Mohammad Saidi-Mehrabad a, Samira Bairamzadeh b,* Journal of Optimization in Industrial Engineering, Vol. 11, Issue 1,Winter and Spring 2018, 3-0 DOI:10.22094/JOIE.2018.272 Design of a Hybrid Genetic Algorithm for Parallel Machines Scheduling to Minimize

More information

The treatment of uncertainty in uniform workload distribution problems

The treatment of uncertainty in uniform workload distribution problems The treatment of uncertainty in uniform workload distribution problems tefan PE KO, Roman HAJTMANEK University of šilina, Slovakia 34 th International Conference Mathematical Methods in Economics Liberec,

More information

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Collaborative Target Detection in Wireless Sensor Networks with Reactive Mobility

Collaborative Target Detection in Wireless Sensor Networks with Reactive Mobility 1 / 24 Collaborative Target Detection in Wireless Sensor Networks with Reactive Mobility Rui Tan 1 Guoliang Xing 1 Jianping Wang 1 Hing Cheung So 2 1 Department of Computer Science City University of Hong

More information

Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs

Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs This is the Pre-Published Version. Multi-agent scheduling on a single machine to minimize total weighted number of tardy obs T.C.E. Cheng 1, C.T. Ng 1 and J.J. Yuan 2 1 Department of Logistics, The Hong

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano ... Our contribution PIPS-PSBB*: Multi-level parallelism for Stochastic

More information

Event-based formulations for the RCPSP with production and consumption of resources

Event-based formulations for the RCPSP with production and consumption of resources Event-based formulations for the RCPSP with production and consumption of resources Oumar KONE 1, Christian ARTIGUES 1, Pierre LOPEZ 1, and Marcel MONGEAU 2 May 2010 1: CNRS ; LAAS ; 7 avenue du colonel

More information

Highly-scalable branch and bound for maximum monomial agreement

Highly-scalable branch and bound for maximum monomial agreement Highly-scalable branch and bound for maximum monomial agreement Jonathan Eckstein (Rutgers) William Hart Cynthia A. Phillips Sandia National Laboratories Sandia National Laboratories is a multi-program

More information

Batch delivery scheduling with simple linear deterioration on a single machine 1

Batch delivery scheduling with simple linear deterioration on a single machine 1 Acta Technica 61, No. 4A/2016, 281 290 c 2017 Institute of Thermomechanics CAS, v.v.i. Batch delivery scheduling with simple linear deterioration on a single machine 1 Juan Zou 2,3 Abstract. Several single

More information

A Mixed Integer Linear Program for Optimizing the Utilization of Locomotives with Maintenance Constraints

A Mixed Integer Linear Program for Optimizing the Utilization of Locomotives with Maintenance Constraints A Mixed Integer Linear Program for with Maintenance Constraints Sarah Frisch Philipp Hungerländer Anna Jellen Dominic Weinberger September 10, 2018 Abstract In this paper we investigate the Locomotive

More information

Lower Bounds for Parallel Machine Scheduling Problems

Lower Bounds for Parallel Machine Scheduling Problems Lower Bounds for Parallel Machine Scheduling Problems Philippe Baptiste 1, Antoine Jouglet 2,, David Savourey 2 1 Ecole Polytechnique, UMR 7161 CNRS LIX, 91128 Palaiseau, France philippe.baptiste@polytechnique.fr

More information

Outline. Outline. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Scheduling CPM/PERT Resource Constrained Project Scheduling Model

Outline. Outline. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Scheduling CPM/PERT Resource Constrained Project Scheduling Model Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 and Mixed Integer Programg Marco Chiarandini 1. Resource Constrained Project Model 2. Mathematical Programg 2 Outline Outline 1. Resource Constrained

More information

Bounds for the Permutation Flowshop Scheduling Problem with Exact Time Lags while Minimizing the Total Earliness and Tardiness

Bounds for the Permutation Flowshop Scheduling Problem with Exact Time Lags while Minimizing the Total Earliness and Tardiness Bounds for the Permutation Flowshop Scheduling Problem with Exact Time Lags while Minimizing the Total Earliness and Tardiness Imen Hamdi, Taïcir Loukil Abstract- We consider the problem of n-jobs scheduling

More information

Federal Aviation Administration Optimal Aircraft Rerouting During Commercial Space Launches

Federal Aviation Administration Optimal Aircraft Rerouting During Commercial Space Launches Federal Aviation Administration Optimal Aircraft Rerouting During Commercial Space Launches Rachael Tompa Mykel Kochenderfer Stanford University Oct 28, 2015 1 Motivation! Problem: Launch vehicle anomaly

More information

Throughput Optimization in Single and Dual-Gripper Robotic Cells

Throughput Optimization in Single and Dual-Gripper Robotic Cells Throughput Optimization in Single and Dual-Gripper Robotic Cells U.V. Manoj; manojuv@tamu.edu College of Engineering, Texas A&M University, College Station, TX Chelliah Sriskandarajah Mays Business School,

More information

Multi-Area Stochastic Unit Commitment for High Wind Penetration

Multi-Area Stochastic Unit Commitment for High Wind Penetration Multi-Area Stochastic Unit Commitment for High Wind Penetration Workshop on Optimization in an Uncertain Environment Anthony Papavasiliou, UC Berkeley Shmuel S. Oren, UC Berkeley March 25th, 2011 Outline

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Networked Embedded Systems WS 2016/17

Networked Embedded Systems WS 2016/17 Networked Embedded Systems WS 2016/17 Lecture 2: Real-time Scheduling Marco Zimmerling Goal of Today s Lecture Introduction to scheduling of compute tasks on a single processor Tasks need to finish before

More information

Non-preemptive multiprocessor scheduling of strict periodic systems with precedence constraints

Non-preemptive multiprocessor scheduling of strict periodic systems with precedence constraints Non-preemptive multiprocessor scheduling of strict periodic systems with precedence constraints Liliana Cucu, Yves Sorel INRIA Rocquencourt, BP 105-78153 Le Chesnay Cedex, France liliana.cucu@inria.fr,

More information

Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure

Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure Downlink Traffic Scheduling in Green Vehicular Roadside Infrastructure Abdulla A. Hammad, Terence D. Todd, George Karakostas and Dongmei Zhao Department of Electrical and Computer Engineering McMaster

More information

Linear Model Predictive Control for Queueing Networks in Manufacturing and Road Traffic

Linear Model Predictive Control for Queueing Networks in Manufacturing and Road Traffic Linear Model Predictive Control for ueueing Networks in Manufacturing and Road Traffic Yoni Nazarathy Swinburne University of Technology, Melbourne. Joint work with: Erjen Lefeber (manufacturing), Hai

More information

Faster Algorithms for some Optimization Problems on Collinear Points

Faster Algorithms for some Optimization Problems on Collinear Points Faster Algorithms for some Optimization Problems on Collinear Points Ahmad Biniaz Prosenjit Bose Paz Carmi Anil Maheshwari J. Ian Munro Michiel Smid June 29, 2018 Abstract We propose faster algorithms

More information

Feasibility of Periodic Scan Schedules

Feasibility of Periodic Scan Schedules Feasibility of Periodic Scan Schedules Ants PI Meeting, Seattle, May 2000 Bruno Dutertre System Design Laboratory SRI International e-mail: bruno@sdl.sri.com 1 Scan Scheduling Scan scheduling: Given n

More information

Tightening a Discrete Formulation of the Quadratic Assignment Problem

Tightening a Discrete Formulation of the Quadratic Assignment Problem A publication of 1309 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

An Approximate Pareto Set for Minimizing the Maximum Lateness and Makespan on Parallel Machines

An Approximate Pareto Set for Minimizing the Maximum Lateness and Makespan on Parallel Machines 1 An Approximate Pareto Set for Minimizing the Maximum Lateness Makespan on Parallel Machines Gais Alhadi 1, Imed Kacem 2, Pierre Laroche 3, Izzeldin M. Osman 4 arxiv:1802.10488v1 [cs.ds] 28 Feb 2018 Abstract

More information

Practical Tips for Modelling Lot-Sizing and Scheduling Problems. Waldemar Kaczmarczyk

Practical Tips for Modelling Lot-Sizing and Scheduling Problems. Waldemar Kaczmarczyk Decision Making in Manufacturing and Services Vol. 3 2009 No. 1 2 pp. 37 48 Practical Tips for Modelling Lot-Sizing and Scheduling Problems Waldemar Kaczmarczyk Abstract. This paper presents some important

More information

SINGLE MACHINE SEQUENCING Part 2. ISE480 Sequencing and Scheduling Fall semestre

SINGLE MACHINE SEQUENCING Part 2. ISE480 Sequencing and Scheduling Fall semestre SINGLE MACHINE SEQUENCING Part 2 2011 2012 Fall semestre Minimizing Total Weighted Flowtime In a common variation of the F-problem, obs do not have equal importance. One way of distinguishing the obs is

More information

Lecture 22 Integer Linear Programming Prototype Examples. November 2, 2009

Lecture 22 Integer Linear Programming Prototype Examples. November 2, 2009 Integer Linear Programming Prototype Examples November 2, 2009 Outline Lecture 22 Examples of ILP problems - modeling aspect Chapter 9.1 of the book Operations Research Methods 1 Example: Project Selection

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

A Re-optimization Approach for Train Dispatching

A Re-optimization Approach for Train Dispatching Zuse Institute Berlin Takustr. 7 14195 Berlin Germany FRANK FISCHER 1 BORIS GRIMM 2 TORSTEN KLUG 2 THOMAS SCHLECHTE 2 A Re-optimization Approach for Train Dispatching 1 University of Kassel, Algorithmic

More information

Capacity Planning with uncertainty in Industrial Gas Markets

Capacity Planning with uncertainty in Industrial Gas Markets Capacity Planning with uncertainty in Industrial Gas Markets A. Kandiraju, P. Garcia Herreros, E. Arslan, P. Misra, S. Mehta & I.E. Grossmann EWO meeting September, 2015 1 Motivation Industrial gas markets

More information

Single Machine Scheduling with a Non-renewable Financial Resource

Single Machine Scheduling with a Non-renewable Financial Resource Single Machine Scheduling with a Non-renewable Financial Resource Evgeny R. Gafarov a, Alexander A. Lazarev b Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya st. 65, 117997

More information

PRAM lower bounds. 1 Overview. 2 Definitions. 3 Monotone Circuit Value Problem

PRAM lower bounds. 1 Overview. 2 Definitions. 3 Monotone Circuit Value Problem U.C. Berkeley CS273: Parallel and Distributed Theory PRAM lower bounds. Professor Satish Rao October 16, 2006 Lecturer: Satish Rao Last revised Scribe so far: Satish Rao cribbing from previous years lectures

More information

Solution of Large-scale LP Problems Using MIP Solvers: Repeated Assignment Problem

Solution of Large-scale LP Problems Using MIP Solvers: Repeated Assignment Problem The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 190 197 Solution of Large-scale LP Problems

More information

EFFICIENT ALGORITHMS FOR THE REVERSE SHORTEST PATH PROBLEM ON TREES UNDER THE HAMMING DISTANCE

EFFICIENT ALGORITHMS FOR THE REVERSE SHORTEST PATH PROBLEM ON TREES UNDER THE HAMMING DISTANCE Yugoslav Journal of Operations Research 27 (2017), Number 1, 46 60 DOI: 10.2298/YJOR150624009T EFFICIENT ALGORITHMS FOR THE REVERSE SHORTEST PATH PROBLEM ON TREES UNDER THE HAMMING DISTANCE Javad TAYYEBI*

More information

Santa Claus Schedules Jobs on Unrelated Machines

Santa Claus Schedules Jobs on Unrelated Machines Santa Claus Schedules Jobs on Unrelated Machines Ola Svensson (osven@kth.se) Royal Institute of Technology - KTH Stockholm, Sweden March 22, 2011 arxiv:1011.1168v2 [cs.ds] 21 Mar 2011 Abstract One of the

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design Noname manuscript No. (will be inserted by the editor) A comparison of routing sets for robust network design Michael Poss Received: date / Accepted: date Abstract Designing a network able to route a set

More information

NP-Completeness. NP-Completeness 1

NP-Completeness. NP-Completeness 1 NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Stochastic Sequencing and Scheduling of an Operating Room

Stochastic Sequencing and Scheduling of an Operating Room Stochastic Sequencing and Scheduling of an Operating Room Camilo Mancilla and Robert H. Storer Lehigh University, Department of Industrial and Systems Engineering, November 14, 2009 1 abstract We develop

More information

Real-Time Scheduling and Resource Management

Real-Time Scheduling and Resource Management ARTIST2 Summer School 2008 in Europe Autrans (near Grenoble), France September 8-12, 2008 Real-Time Scheduling and Resource Management Lecturer: Giorgio Buttazzo Full Professor Scuola Superiore Sant Anna

More information

Reformulations for Integrated Planning of Railway Traffic and Network Maintenance

Reformulations for Integrated Planning of Railway Traffic and Network Maintenance Reformulations for Integrated Planning of Railway Traffic and Network Maintenance Tomas Lidén Linköping University, Department of Science and Technology Norrköping SE-601 74, Sweden tomas.liden@liu.se

More information

Vehicle Routing and Scheduling. Martin Savelsbergh The Logistics Institute Georgia Institute of Technology

Vehicle Routing and Scheduling. Martin Savelsbergh The Logistics Institute Georgia Institute of Technology Vehicle Routing and Scheduling Martin Savelsbergh The Logistics Institute Georgia Institute of Technology Vehicle Routing and Scheduling Part II: Algorithmic Enhancements Handling Practical Complexities

More information

Robust optimization for resource-constrained project scheduling with uncertain activity durations

Robust optimization for resource-constrained project scheduling with uncertain activity durations Robust optimization for resource-constrained project scheduling with uncertain activity durations Christian Artigues 1, Roel Leus 2 and Fabrice Talla Nobibon 2 1 LAAS-CNRS, Université de Toulouse, France

More information

Chapter 3: Discrete Optimization Integer Programming

Chapter 3: Discrete Optimization Integer Programming Chapter 3: Discrete Optimization Integer Programming Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-16-17.shtml Academic year 2016-17

More information

Bicriteria models to minimize the total weighted number of tardy jobs with convex controllable processing times and common due date assignment

Bicriteria models to minimize the total weighted number of tardy jobs with convex controllable processing times and common due date assignment MISTA 2009 Bicriteria models to minimize the total weighted number of tardy jobs with convex controllable processing times and common due date assignment Dvir Shabtay George Steiner Abstract We study a

More information

Scheduling jobs with agreeable processing times and due dates on a single batch processing machine

Scheduling jobs with agreeable processing times and due dates on a single batch processing machine Theoretical Computer Science 374 007 159 169 www.elsevier.com/locate/tcs Scheduling jobs with agreeable processing times and due dates on a single batch processing machine L.L. Liu, C.T. Ng, T.C.E. Cheng

More information

Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints

Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints Operator assignment problem in aircraft assembly lines: a new planning approach taking into account economic and ergonomic constraints Dmitry Arkhipov, Olga Battaïa, Julien Cegarra, Alexander Lazarev May

More information

Approximation Basics

Approximation Basics Approximation Basics, Concepts, and Examples Xiaofeng Gao Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China Fall 2012 Special thanks is given to Dr. Guoqiang Li for

More information

Verteilte modellprädiktive Regelung intelligenter Stromnetze

Verteilte modellprädiktive Regelung intelligenter Stromnetze Verteilte modellprädiktive Regelung intelligenter Stromnetze Institut für Mathematik Technische Universität Ilmenau in Zusammenarbeit mit Philipp Braun, Lars Grüne (U Bayreuth) und Christopher M. Kellett,

More information

Discrete Multi-material Topology Optimization under Total Mass Constraint

Discrete Multi-material Topology Optimization under Total Mass Constraint Discrete Multi-material Topology Optimization under Total Mass Constraint Xingtong Yang Ming Li State Key Laboratory of CAD&CG, Zhejiang University Solid and Physical Modeling Bilbao, June 12, 2018 Problem

More information

Solving the Order-Preserving Submatrix Problem via Integer Programming

Solving the Order-Preserving Submatrix Problem via Integer Programming Solving the Order-Preserving Submatrix Problem via Integer Programming Andrew C. Trapp, Oleg A. Prokopyev Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261,

More information

Distributed and Real-time Predictive Control

Distributed and Real-time Predictive Control Distributed and Real-time Predictive Control Melanie Zeilinger Christian Conte (ETH) Alexander Domahidi (ETH) Ye Pu (EPFL) Colin Jones (EPFL) Challenges in modern control systems Power system: - Frequency

More information

Multistage Methods for Freight Train Classification

Multistage Methods for Freight Train Classification Multistage Methods for Freight Train Classification Riko Jacob, Peter Marton, Jens Maue, Marc Nunkesser Institute of Theoretical Computer Science, ETH Zürich ATMOS 7 - November 7 Jens Maue (ETH) Multistage

More information

Clock-driven scheduling

Clock-driven scheduling Clock-driven scheduling Also known as static or off-line scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Hermann Härtig WS 2018/19 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed Priority schedulers

More information

An Efficient Knapsack-Based Approach for Calculating the Worst-Case Demand of AVR Tasks

An Efficient Knapsack-Based Approach for Calculating the Worst-Case Demand of AVR Tasks An Efficient Knapsack-Based Approach for Calculating the Worst-Case Demand of AVR Tasks Sandeep Kumar Bijinemula *, Aaron Willcock, Thidapat Chantem *, Nathan Fisher * Department of Electrical and Computer

More information

Single Machine Scheduling with Generalized Total Tardiness Objective Function

Single Machine Scheduling with Generalized Total Tardiness Objective Function Single Machine Scheduling with Generalized Total Tardiness Objective Function Evgeny R. Gafarov a, Alexander A. Lazarev b Institute of Control Sciences of the Russian Academy of Sciences, Profsoyuznaya

More information

Separation Techniques for Constrained Nonlinear 0 1 Programming

Separation Techniques for Constrained Nonlinear 0 1 Programming Separation Techniques for Constrained Nonlinear 0 1 Programming Christoph Buchheim Computer Science Department, University of Cologne and DEIS, University of Bologna MIP 2008, Columbia University, New

More information

Logic, Optimization and Data Analytics

Logic, Optimization and Data Analytics Logic, Optimization and Data Analytics John Hooker Carnegie Mellon University United Technologies Research Center, Cork, Ireland August 2015 Thesis Logic and optimization have an underlying unity. Ideas

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 6.4/43 Principles of Autonomy and Decision Making Lecture 8: (Mixed-Integer) Linear Programming for Vehicle Routing and Motion Planning Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute

More information

Solving an integrated Job-Shop problem with human resource constraints

Solving an integrated Job-Shop problem with human resource constraints Solving an integrated Job-Shop problem with human resource constraints Olivier Guyon, Pierre Lemaire, Eric Pinson, David Rivreau To cite this version: Olivier Guyon, Pierre Lemaire, Eric Pinson, David

More information

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem

Lecture 3. 1 Polynomial-time algorithms for the maximum flow problem ORIE 633 Network Flows August 30, 2007 Lecturer: David P. Williamson Lecture 3 Scribe: Gema Plaza-Martínez 1 Polynomial-time algorithms for the maximum flow problem 1.1 Introduction Let s turn now to considering

More information