Inference for Average Treatment Effects

Size: px
Start display at page:

Download "Inference for Average Treatment Effects"

Transcription

1 Inference for Average Treatment Effects Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

2 Social Pressure and Turnout (Gerber, et al Am. Political Sci. Rev.) August 2006 Primary Election in Michigan Statewide elections: Governor, US Senator 180,000 households Send postcards with different messages Randomly assign each household to a group (or treatment) 1 no message (control group) 2 civic duty message 3 you are being studied message (Hawthorne effect) 4 household social pressure message 5 neighborhood social pressure message Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

3 Neighborhood Social Pressure Message Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

4 You are being studied Message Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

5 Standard Empirical Analysis Groups Control Civic duty Hawthorne Self Neighbor Turnout rate 29.7% 31.5% 32.2% 34.5% 37.5% # of voters 191,243 38,218 38,204 38,218 38,201 Neighborhood social pressure vs. Control ˆτ = = ( ) 29.7 ( ) s.e. = %CI = [ , ] = [7.2, 8.4] This calculation ignores the fact that some households have multiple voters: we will discuss this issue later in the course How can we justify this standard difference-in-means analysis from the randomization perspective? Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

6 Theoretical Motivation Permutation inference has a difficult time handling heterogeneity Population inference is also difficult Can we address these limitations while keeping the design-based approach? inference about average treatment effects We will begin with randomization inference for sample survey: close connection to Neyman s randomization inference Causal inference as a missing data problem Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

7 Estimation of the Sample Average Treatment Effect Due to Neyman (1923) Neyman (translated to English) Stat. Sci. Difference-in-means estimator: ˆτ 1 n T i Y i 1 n 1 n 0 n (1 T i )Y i Define O {Y i (0), Y i (1)} n Unbiasedness (over repeated treatment assignments): E(ˆτ O) = 1 n E(T i O)Y i (1) 1 n 1 n 0 = 1 n n {1 E(T i O)}Y i (0) n (Y i (1) Y i (0)) = SATE Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

8 Randomization Inference for SATE Variance of ˆτ: where for t = 0, 1, V(ˆτ O) = 1 n ( n0 S1 2 n + n ) 1 S0 2 1 n + 2S 01, 0 S 2 t = S 01 = 1 n 1 1 n 1 n (Y i (t) Y (t)) 2 sample variance of Y i (t) n (Y i (0) Y (0))(Y i (1) Y (1)) sample covariance The variance is NOT identifiable Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

9 Details of Variance Derivation 1 Let X i = Y i (1) + n 1 Y i (0)/n 0 and D i = nt i /n 1 1, and write ( V(ˆτ O) = 1 n ) 2 n 2 E D i X i O 2 Show 3 Use ➊ and ➋ to show, E(D i O) = 0, E(D 2 i O) = n 0 n 1, n 0 E(D i D j O) = n 1 (n 1) V(ˆτ O) = n 0 n(n 1)n 1 n (X i X) 2 4 Substitute the potential outcome expressions for X i Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

10 Conservative Variance Estimator The usual variance estimator is conservative on average: ( ) V(ˆτ O) S2 1 + S2 0 ˆσ 1 2 = E + ˆσ2 0 O n 1 n 0 n 1 n 0 where ˆσ t = 1 n t 1 n 1{T i = t}(y i Y t ) 2 for t = 0, 1 Under the constant additive unit causal effect assumption, i.e., Y i (1) Y i (0) = c for all i, S 01 = 1 2 (S2 1 + S2 0 ) and V(ˆτ O) = S2 1 + S2 0 n 1 n 0 The optimal treatment assignment rule: n opt 1 = n 1 + S 0 /S 1, n opt 0 = n 1 + S 1 /S 0 Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

11 Bounds on the Variance Use of the Cauchy-Schwartz inequality: 1 Upper bound: sample correlation between Y i (1) and Y i (0) is 1 2 Lower bound: sample correlation between Y i (1) and Y i (0) is 1 n 0 n 1 n ( S1 S ) 2 0 V(ˆτ O) n ( 0n 1 S1 + S ) 2 0 n 1 n 0 n n 1 n 0 Constant additive unit causal effect sample correlation is 1 n 0 n 1 n ( S1 + S ) 2 0 = S2 1 + S2 0 n 1 n 0 n 1 n 0 Sharp bounds based on the entire marginal distributions application of Hoeffding s lemma (Aronow et al Ann. Stat.) Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

12 Inference for Population Average Treatment Effect Assumption: simple random sampling from an infinite population Unbiasedness (over repeated sampling): Variance: E{E(ˆτ O)} = E(SATE) = PATE V(ˆτ) = V(E(ˆτ O)) + E(V(ˆτ O)) = σ2 1 n 1 + σ2 0 n 0 where σ 2 t is the population variance of Y i (t) for t = 0, 1 Unbiased variance estimator: for t = 0, 1 V(ˆτ) = ˆσ2 1 n 1 + ˆσ2 0 n 0 where E( V(ˆτ)) = V(ˆτ) Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

13 Asymptotic Inference for PATE Hold k = n 1 /n constant Rewrite the difference-in-means estimator as ˆτ = 1 n ( Ti Y i (1) (1 T ) i)y i (0) n k 1 k }{{} i.i.d. with mean PATE & variance nv(ˆτ) Consistency via Law of large numbers: ˆτ p PATE Asymptotic normality via the Central Limit Theorem: ( ) d n(ˆτ PATE) N 0, σ2 1 k + σ2 0 1 k (1 α) 100% Confidence intervals: [ˆτ s.e. z α/2, ˆτ + s.e. z α/2 ] Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

14 Heated Exchange at the Royal Statistiacal Society Neyman et al. (1935) Suppl. of J. Royal Stat. Soc Neyman: So long as the average yields of any treatments are identical, the question as to whether these treatments affect separate yields on single plots seems to be uninteresting Fisher: It may be foolish, but that is what the z test was designed for, and the only purpose for which it has been used. Neyman: I am considering problems which are important from the point of view of agriculture. Fisher: It may be that the question which Dr. Neyman thinks should be answered is more important than the one I have proposed and attempted to answer. I suggest that before criticizing previous work it is always wise to give enough study to the subject to understand its purpose. Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

15 Summary: Fisher vs. Neyman Like Fisher, Neyman proposed randomization-based inference Unlike Fisher, 1 estimands are average treatment effects 2 heterogenous treatment effects are allowed 3 population as well as sample inference is possible 4 asymptotic approximation is required for inference Suggested reading: IMBENS AND RUBIN, CHAPTER 6 Kosuke Imai (Harvard) Average Treatment Effects Stat186/Gov2002 Fall / 15

Stratified Randomized Experiments

Stratified Randomized Experiments Stratified Randomized Experiments Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Stratified Randomized Experiments Stat186/Gov2002 Fall 2018 1 / 13 Blocking

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Simple Linear Regression Stat186/Gov2002 Fall 2018 1 / 18 Linear Regression and

More information

Weighting Methods. Harvard University STAT186/GOV2002 CAUSAL INFERENCE. Fall Kosuke Imai

Weighting Methods. Harvard University STAT186/GOV2002 CAUSAL INFERENCE. Fall Kosuke Imai Weighting Methods Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Weighting Methods Stat186/Gov2002 Fall 2018 1 / 13 Motivation Matching methods for improving

More information

Noncompliance in Randomized Experiments

Noncompliance in Randomized Experiments Noncompliance in Randomized Experiments Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Noncompliance in Experiments Stat186/Gov2002 Fall 2018 1 / 15 Encouragement

More information

Randomized Experiments

Randomized Experiments Randomized Experiments Teppei Yamamoto Keio University Introduction to Causal Inference Spring 2016 1 Introduction 2 Identification 3 Basic Inference 4 Covariate Adjustment 5 Threats to Validity 6 Advanced

More information

The Essential Role of Pair Matching in. Cluster-Randomized Experiments. with Application to the Mexican Universal Health Insurance Evaluation

The Essential Role of Pair Matching in. Cluster-Randomized Experiments. with Application to the Mexican Universal Health Insurance Evaluation The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation Kosuke Imai Princeton University Gary King Clayton Nall Harvard

More information

Potential Outcomes and Causal Inference I

Potential Outcomes and Causal Inference I Potential Outcomes and Causal Inference I Jonathan Wand Polisci 350C Stanford University May 3, 2006 Example A: Get-out-the-Vote (GOTV) Question: Is it possible to increase the likelihood of an individuals

More information

Instrumental Variables

Instrumental Variables Instrumental Variables Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Noncompliance in Experiments Stat186/Gov2002 Fall 2018 1 / 18 Instrumental Variables

More information

arxiv: v1 [math.st] 28 Feb 2017

arxiv: v1 [math.st] 28 Feb 2017 Bridging Finite and Super Population Causal Inference arxiv:1702.08615v1 [math.st] 28 Feb 2017 Peng Ding, Xinran Li, and Luke W. Miratrix Abstract There are two general views in causal analysis of experimental

More information

Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes

Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes Kosuke Imai Department of Politics Princeton University July 31 2007 Kosuke Imai (Princeton University) Nonignorable

More information

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Naoki Egami Kosuke Imai Princeton University Talk at the University of Macau June 16, 2017 Egami and Imai (Princeton) Causal

More information

Applied Statistics Lecture Notes

Applied Statistics Lecture Notes Applied Statistics Lecture Notes Kosuke Imai Department of Politics Princeton University February 2, 2008 Making statistical inferences means to learn about what you do not observe, which is called parameters,

More information

Regression Discontinuity Designs

Regression Discontinuity Designs Regression Discontinuity Designs Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Regression Discontinuity Design Stat186/Gov2002 Fall 2018 1 / 1 Observational

More information

Gov 2002: 3. Randomization Inference

Gov 2002: 3. Randomization Inference Gov 2002: 3. Randomization Inference Matthew Blackwell September 10, 2015 Where are we? Where are we going? Last week: This week: What can we identify using randomization? Estimators were justified via

More information

Use of Matching Methods for Causal Inference in Experimental and Observational Studies. This Talk Draws on the Following Papers:

Use of Matching Methods for Causal Inference in Experimental and Observational Studies. This Talk Draws on the Following Papers: Use of Matching Methods for Causal Inference in Experimental and Observational Studies Kosuke Imai Department of Politics Princeton University April 27, 2007 Kosuke Imai (Princeton University) Matching

More information

arxiv: v1 [stat.me] 3 Feb 2017

arxiv: v1 [stat.me] 3 Feb 2017 On randomization-based causal inference for matched-pair factorial designs arxiv:702.00888v [stat.me] 3 Feb 207 Jiannan Lu and Alex Deng Analysis and Experimentation, Microsoft Corporation August 3, 208

More information

Use of Matching Methods for Causal Inference in Experimental and Observational Studies. This Talk Draws on the Following Papers:

Use of Matching Methods for Causal Inference in Experimental and Observational Studies. This Talk Draws on the Following Papers: Use of Matching Methods for Causal Inference in Experimental and Observational Studies Kosuke Imai Department of Politics Princeton University April 13, 2009 Kosuke Imai (Princeton University) Matching

More information

Causal Inference Lecture Notes: Causal Inference with Repeated Measures in Observational Studies

Causal Inference Lecture Notes: Causal Inference with Repeated Measures in Observational Studies Causal Inference Lecture Notes: Causal Inference with Repeated Measures in Observational Studies Kosuke Imai Department of Politics Princeton University November 13, 2013 So far, we have essentially assumed

More information

Estimation of the Conditional Variance in Paired Experiments

Estimation of the Conditional Variance in Paired Experiments Estimation of the Conditional Variance in Paired Experiments Alberto Abadie & Guido W. Imbens Harvard University and BER June 008 Abstract In paired randomized experiments units are grouped in pairs, often

More information

Advanced Quantitative Research Methodology, Lecture Notes: Research Designs for Causal Inference 1

Advanced Quantitative Research Methodology, Lecture Notes: Research Designs for Causal Inference 1 Advanced Quantitative Research Methodology, Lecture Notes: Research Designs for Causal Inference 1 Gary King GaryKing.org April 13, 2014 1 c Copyright 2014 Gary King, All Rights Reserved. Gary King ()

More information

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits

An Experimental Evaluation of High-Dimensional Multi-Armed Bandits An Experimental Evaluation of High-Dimensional Multi-Armed Bandits Naoki Egami Romain Ferrali Kosuke Imai Princeton University Talk at Political Data Science Conference Washington University, St. Louis

More information

Causal inference in multilevel data structures:

Causal inference in multilevel data structures: Causal inference in multilevel data structures: Discussion of papers by Li and Imai Jennifer Hill May 19 th, 2008 Li paper Strengths Area that needs attention! With regard to propensity score strategies

More information

What s New in Econometrics. Lecture 1

What s New in Econometrics. Lecture 1 What s New in Econometrics Lecture 1 Estimation of Average Treatment Effects Under Unconfoundedness Guido Imbens NBER Summer Institute, 2007 Outline 1. Introduction 2. Potential Outcomes 3. Estimands and

More information

Causal Directed Acyclic Graphs

Causal Directed Acyclic Graphs Causal Directed Acyclic Graphs Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Causal DAGs Stat186/Gov2002 Fall 2018 1 / 15 Elements of DAGs (Pearl. 2000.

More information

Covariate Balancing Propensity Score for General Treatment Regimes

Covariate Balancing Propensity Score for General Treatment Regimes Covariate Balancing Propensity Score for General Treatment Regimes Kosuke Imai Princeton University October 14, 2014 Talk at the Department of Psychiatry, Columbia University Joint work with Christian

More information

Statistical Analysis of Causal Mechanisms

Statistical Analysis of Causal Mechanisms Statistical Analysis of Causal Mechanisms Kosuke Imai Princeton University November 17, 2008 Joint work with Luke Keele (Ohio State) and Teppei Yamamoto (Princeton) Kosuke Imai (Princeton) Causal Mechanisms

More information

Combining multiple observational data sources to estimate causal eects

Combining multiple observational data sources to estimate causal eects Department of Statistics, North Carolina State University Combining multiple observational data sources to estimate causal eects Shu Yang* syang24@ncsuedu Joint work with Peng Ding UC Berkeley May 23,

More information

Discussion of Papers on the Extensions of Propensity Score

Discussion of Papers on the Extensions of Propensity Score Discussion of Papers on the Extensions of Propensity Score Kosuke Imai Princeton University August 3, 2010 Kosuke Imai (Princeton) Generalized Propensity Score 2010 JSM (Vancouver) 1 / 11 The Theme and

More information

Clustering as a Design Problem

Clustering as a Design Problem Clustering as a Design Problem Alberto Abadie, Susan Athey, Guido Imbens, & Jeffrey Wooldridge Harvard-MIT Econometrics Seminar Cambridge, February 4, 2016 Adjusting standard errors for clustering is common

More information

Understanding Ding s Apparent Paradox

Understanding Ding s Apparent Paradox Submitted to Statistical Science Understanding Ding s Apparent Paradox Peter M. Aronow and Molly R. Offer-Westort Yale University 1. INTRODUCTION We are grateful for the opportunity to comment on A Paradox

More information

1 Introduction Overview of the Book How to Use this Book Introduction to R 10

1 Introduction Overview of the Book How to Use this Book Introduction to R 10 List of Tables List of Figures Preface xiii xv xvii 1 Introduction 1 1.1 Overview of the Book 3 1.2 How to Use this Book 7 1.3 Introduction to R 10 1.3.1 Arithmetic Operations 10 1.3.2 Objects 12 1.3.3

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

AN EVALUATION OF PARAMETRIC AND NONPARAMETRIC VARIANCE ESTIMATORS IN COMPLETELY RANDOMIZED EXPERIMENTS. Stanley A. Lubanski. and. Peter M.

AN EVALUATION OF PARAMETRIC AND NONPARAMETRIC VARIANCE ESTIMATORS IN COMPLETELY RANDOMIZED EXPERIMENTS. Stanley A. Lubanski. and. Peter M. AN EVALUATION OF PARAMETRIC AND NONPARAMETRIC VARIANCE ESTIMATORS IN COMPLETELY RANDOMIZED EXPERIMENTS by Stanley A. Lubanski and Peter M. Steiner UNIVERSITY OF WISCONSIN-MADISON 018 Background To make

More information

Statistical Models for Causal Analysis

Statistical Models for Causal Analysis Statistical Models for Causal Analysis Teppei Yamamoto Keio University Introduction to Causal Inference Spring 2016 Three Modes of Statistical Inference 1. Descriptive Inference: summarizing and exploring

More information

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Kosuke Imai Department of Government Department of Statistics Harvard University Talk at the Harvard Data Science Initiative

More information

Research Note: A more powerful test statistic for reasoning about interference between units

Research Note: A more powerful test statistic for reasoning about interference between units Research Note: A more powerful test statistic for reasoning about interference between units Jake Bowers Mark Fredrickson Peter M. Aronow August 26, 2015 Abstract Bowers, Fredrickson and Panagopoulos (2012)

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Kosuke Imai Princeton University January 31, 2010 Kosuke Imai (Princeton) Introduction to Statistical Inference January 31, 2010 1 / 21 What is Statistics? Statistics

More information

Causal Mechanisms Short Course Part II:

Causal Mechanisms Short Course Part II: Causal Mechanisms Short Course Part II: Analyzing Mechanisms with Experimental and Observational Data Teppei Yamamoto Massachusetts Institute of Technology March 24, 2012 Frontiers in the Analysis of Causal

More information

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Causal Interaction in Factorial Experiments: Application to Conjoint Analysis Naoki Egami Kosuke Imai Princeton University Talk at the Institute for Mathematics and Its Applications University of Minnesota

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2015 Paper 334 Targeted Estimation and Inference for the Sample Average Treatment Effect Laura B. Balzer

More information

Optimal Blocking by Minimizing the Maximum Within-Block Distance

Optimal Blocking by Minimizing the Maximum Within-Block Distance Optimal Blocking by Minimizing the Maximum Within-Block Distance Michael J. Higgins Jasjeet Sekhon Princeton University University of California at Berkeley November 14, 2013 For the Kansas State University

More information

The propensity score with continuous treatments

The propensity score with continuous treatments 7 The propensity score with continuous treatments Keisuke Hirano and Guido W. Imbens 1 7.1 Introduction Much of the work on propensity score analysis has focused on the case in which the treatment is binary.

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Identification Analysis for Randomized Experiments with Noncompliance and Truncation-by-Death

Identification Analysis for Randomized Experiments with Noncompliance and Truncation-by-Death Identification Analysis for Randomized Experiments with Noncompliance and Truncation-by-Death Kosuke Imai First Draft: January 19, 2007 This Draft: August 24, 2007 Abstract Zhang and Rubin 2003) derives

More information

Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies

Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies Kosuke Imai Princeton University January 23, 2012 Joint work with L. Keele (Penn State)

More information

Statistical Analysis of Causal Mechanisms

Statistical Analysis of Causal Mechanisms Statistical Analysis of Causal Mechanisms Kosuke Imai Princeton University April 13, 2009 Kosuke Imai (Princeton) Causal Mechanisms April 13, 2009 1 / 26 Papers and Software Collaborators: Luke Keele,

More information

ESTIMATION OF TREATMENT EFFECTS VIA MATCHING

ESTIMATION OF TREATMENT EFFECTS VIA MATCHING ESTIMATION OF TREATMENT EFFECTS VIA MATCHING AAEC 56 INSTRUCTOR: KLAUS MOELTNER Textbooks: R scripts: Wooldridge (00), Ch.; Greene (0), Ch.9; Angrist and Pischke (00), Ch. 3 mod5s3 General Approach The

More information

Discussion: Can We Get More Out of Experiments?

Discussion: Can We Get More Out of Experiments? Discussion: Can We Get More Out of Experiments? Kosuke Imai Princeton University September 4, 2010 Kosuke Imai (Princeton) Discussion APSA 2010 (Washington D.C.) 1 / 9 Keele, McConnaughy, and White Question:

More information

Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies

Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies Kosuke Imai Princeton University February 23, 2012 Joint work with L. Keele (Penn State)

More information

arxiv: v3 [stat.me] 17 Apr 2018

arxiv: v3 [stat.me] 17 Apr 2018 Unbiased Estimation and Sensitivity Analysis for etwork-specific Spillover Effects: Application to An Online etwork Experiment aoki Egami arxiv:1708.08171v3 [stat.me] 17 Apr 2018 Princeton University Abstract

More information

Regression Discontinuity Designs Using Covariates

Regression Discontinuity Designs Using Covariates Regression Discontinuity Designs Using Covariates Sebastian Calonico Matias D. Cattaneo Max H. Farrell Rocío Titiunik May 25, 2018 We thank the co-editor, Bryan Graham, and three reviewers for comments.

More information

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean Interval estimation October 3, 2018 STAT 151 Class 7 Slide 1 Pandemic data Treatment outcome, X, from n = 100 patients in a pandemic: 1 = recovered and 0 = not recovered 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0

More information

A randomization-based perspective of analysis of variance: a test statistic robust to treatment effect heterogeneity

A randomization-based perspective of analysis of variance: a test statistic robust to treatment effect heterogeneity Biometrika, pp 1 25 C 2012 Biometrika Trust Printed in Great Britain A randomization-based perspective of analysis of variance: a test statistic robust to treatment effect heterogeneity One-way analysis

More information

The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation

The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation arxiv:0910.3752v1 [stat.me] 20 Oct 2009 Statistical Science 2009, Vol. 24, No. 1, 29 53 DOI: 10.1214/08-STS274 c Institute of Mathematical Statistics, 2009 The Essential Role of Pair Matching in Cluster-Randomized

More information

Causal inference from 2 K factorial designs using potential outcomes

Causal inference from 2 K factorial designs using potential outcomes Causal inference from 2 K factorial designs using potential outcomes Tirthankar Dasgupta Department of Statistics, Harvard University, Cambridge, MA, USA 02138. atesh S. Pillai Department of Statistics,

More information

CompSci Understanding Data: Theory and Applications

CompSci Understanding Data: Theory and Applications CompSci 590.6 Understanding Data: Theory and Applications Lecture 17 Causality in Statistics Instructor: Sudeepa Roy Email: sudeepa@cs.duke.edu Fall 2015 1 Today s Reading Rubin Journal of the American

More information

How to Use the Internet for Election Surveys

How to Use the Internet for Election Surveys How to Use the Internet for Election Surveys Simon Jackman and Douglas Rivers Stanford University and Polimetrix, Inc. May 9, 2008 Theory and Practice Practice Theory Works Doesn t work Works Great! Black

More information

Balancing Covariates via Propensity Score Weighting

Balancing Covariates via Propensity Score Weighting Balancing Covariates via Propensity Score Weighting Kari Lock Morgan Department of Statistics Penn State University klm47@psu.edu Stochastic Modeling and Computational Statistics Seminar October 17, 2014

More information

Econ 2148, fall 2017 Instrumental variables I, origins and binary treatment case

Econ 2148, fall 2017 Instrumental variables I, origins and binary treatment case Econ 2148, fall 2017 Instrumental variables I, origins and binary treatment case Maximilian Kasy Department of Economics, Harvard University 1 / 40 Agenda instrumental variables part I Origins of instrumental

More information

Identification and Inference in Causal Mediation Analysis

Identification and Inference in Causal Mediation Analysis Identification and Inference in Causal Mediation Analysis Kosuke Imai Luke Keele Teppei Yamamoto Princeton University Ohio State University November 12, 2008 Kosuke Imai (Princeton) Causal Mediation Analysis

More information

Flexible Estimation of Treatment Effect Parameters

Flexible Estimation of Treatment Effect Parameters Flexible Estimation of Treatment Effect Parameters Thomas MaCurdy a and Xiaohong Chen b and Han Hong c Introduction Many empirical studies of program evaluations are complicated by the presence of both

More information

Gov 2000: 6. Hypothesis Testing

Gov 2000: 6. Hypothesis Testing Gov 2000: 6. Hypothesis Testing Matthew Blackwell October 11, 2016 1 / 55 1. Hypothesis Testing Examples 2. Hypothesis Test Nomenclature 3. Conducting Hypothesis Tests 4. p-values 5. Power Analyses 6.

More information

Causal Inference from Experimental Data

Causal Inference from Experimental Data 30th Fisher Memorial Lecture 10 November 2011 hypothetical approach counterfactual approach data Decision problem I have a headache. Should I take aspirin? Two possible treatments: t: take 2 aspirin c:

More information

DEALING WITH MULTIVARIATE OUTCOMES IN STUDIES FOR CAUSAL EFFECTS

DEALING WITH MULTIVARIATE OUTCOMES IN STUDIES FOR CAUSAL EFFECTS DEALING WITH MULTIVARIATE OUTCOMES IN STUDIES FOR CAUSAL EFFECTS Donald B. Rubin Harvard University 1 Oxford Street, 7th Floor Cambridge, MA 02138 USA Tel: 617-495-5496; Fax: 617-496-8057 email: rubin@stat.harvard.edu

More information

Fundamental Probability and Statistics

Fundamental Probability and Statistics Fundamental Probability and Statistics "There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

A Theory of Statistical Inference for Matching Methods in Causal Research

A Theory of Statistical Inference for Matching Methods in Causal Research A Theory of Statistical Inference for Matching Methods in Causal Research Stefano M. Iacus Gary King Giuseppe Porro October 4, 2017 Abstract Researchers who generate data often optimize efficiency and

More information

Regression Discontinuity Designs in Stata

Regression Discontinuity Designs in Stata Regression Discontinuity Designs in Stata Matias D. Cattaneo University of Michigan July 30, 2015 Overview Main goal: learn about treatment effect of policy or intervention. If treatment randomization

More information

Beyond LATE: A Simple Method for Estimation of the. Average Treatment Effect with an Instrumental Variable

Beyond LATE: A Simple Method for Estimation of the. Average Treatment Effect with an Instrumental Variable Beyond LATE: A Simple Method for Estimation of the Average Treatment Effect with an Instrumental Variable Peter M. Aronow and Allison Carnegie August 30, 2012 Peter M. Aronow is Doctoral Candidate, Department

More information

Selection on Observables: Propensity Score Matching.

Selection on Observables: Propensity Score Matching. Selection on Observables: Propensity Score Matching. Department of Economics and Management Irene Brunetti ireneb@ec.unipi.it 24/10/2017 I. Brunetti Labour Economics in an European Perspective 24/10/2017

More information

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data?

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data? When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data? Kosuke Imai Department of Politics Center for Statistics and Machine Learning Princeton University Joint

More information

Beyond the Sharp Null: Permutation Tests Actually Test Heterogeneous Effects

Beyond the Sharp Null: Permutation Tests Actually Test Heterogeneous Effects Beyond the Sharp Null: Permutation Tests Actually Test Heterogeneous Effects Devin Caughey Allan Dafoe Luke Miratrix July 20, 2016 Abstract Permutation and randomization tests, despite their appealing

More information

TECHNICAL WORKING PAPER SERIES ON THE FAILURE OF THE BOOTSTRAP FOR MATCHING ESTIMATORS. Alberto Abadie Guido W. Imbens

TECHNICAL WORKING PAPER SERIES ON THE FAILURE OF THE BOOTSTRAP FOR MATCHING ESTIMATORS. Alberto Abadie Guido W. Imbens TECHNICAL WORKING PAPER SERIES ON THE FAILURE OF THE BOOTSTRAP FOR MATCHING ESTIMATORS Alberto Abadie Guido W. Imbens Technical Working Paper 325 http://www.nber.org/papers/t0325 NATIONAL BUREAU OF ECONOMIC

More information

Adjusting treatment effect estimates by post-stratification in randomized experiments

Adjusting treatment effect estimates by post-stratification in randomized experiments J. R. Statist. Soc. B (2013) 75, Part 2, pp. 369 396 Adjusting treatment effect estimates by post-stratification in randomized experiments Luke W. Miratrix Harvard University, Cambridge, USA and Jasjeet

More information

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data?

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data? When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data? Kosuke Imai Department of Politics Center for Statistics and Machine Learning Princeton University

More information

arxiv: v1 [stat.me] 15 May 2011

arxiv: v1 [stat.me] 15 May 2011 Working Paper Propensity Score Analysis with Matching Weights Liang Li, Ph.D. arxiv:1105.2917v1 [stat.me] 15 May 2011 Associate Staff of Biostatistics Department of Quantitative Health Sciences, Cleveland

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

High Dimensional Propensity Score Estimation via Covariate Balancing

High Dimensional Propensity Score Estimation via Covariate Balancing High Dimensional Propensity Score Estimation via Covariate Balancing Kosuke Imai Princeton University Talk at Columbia University May 13, 2017 Joint work with Yang Ning and Sida Peng Kosuke Imai (Princeton)

More information

arxiv: v4 [math.st] 23 Jun 2016

arxiv: v4 [math.st] 23 Jun 2016 A Paradox From Randomization-Based Causal Inference Peng Ding arxiv:1402.0142v4 [math.st] 23 Jun 2016 Abstract Under the potential outcomes framework, causal effects are defined as comparisons between

More information

Why experimenters should not randomize, and what they should do instead

Why experimenters should not randomize, and what they should do instead Why experimenters should not randomize, and what they should do instead Maximilian Kasy Department of Economics, Harvard University Maximilian Kasy (Harvard) Experimental design 1 / 42 project STAR Introduction

More information

Unpacking the Black-Box: Learning about Causal Mechanisms from Experimental and Observational Studies

Unpacking the Black-Box: Learning about Causal Mechanisms from Experimental and Observational Studies Unpacking the Black-Box: Learning about Causal Mechanisms from Experimental and Observational Studies Kosuke Imai Princeton University Joint work with Keele (Ohio State), Tingley (Harvard), Yamamoto (Princeton)

More information

Causal Inference with a Continuous Treatment and Outcome: Alternative Estimators for Parametric Dose-Response Functions

Causal Inference with a Continuous Treatment and Outcome: Alternative Estimators for Parametric Dose-Response Functions Causal Inference with a Continuous Treatment and Outcome: Alternative Estimators for Parametric Dose-Response Functions Joe Schafer Office of the Associate Director for Research and Methodology U.S. Census

More information

arxiv: v2 [math.st] 18 Oct 2017

arxiv: v2 [math.st] 18 Oct 2017 Inference on a ew Class of Sample Average Treatment Effects Jasjeet S. Sekhon UC Berkeley Yotam Shem-Tov UC Berkeley arxiv:708.0240v2 [math.st] 8 Oct 207 October 9, 207 Abstract We derive new variance

More information

Review of probability and statistics 1 / 31

Review of probability and statistics 1 / 31 Review of probability and statistics 1 / 31 2 / 31 Why? This chapter follows Stock and Watson (all graphs are from Stock and Watson). You may as well refer to the appendix in Wooldridge or any other introduction

More information

Attributing Effects to A Cluster Randomized Get-Out-The-Vote Campaign: An Application of Randomization Inference Using Full Matching

Attributing Effects to A Cluster Randomized Get-Out-The-Vote Campaign: An Application of Randomization Inference Using Full Matching Attributing Effects to A Cluster Randomized Get-Out-The-Vote Campaign: An Application of Randomization Inference Using Full Matching Jake Bowers and Ben Hansen Political Science and Statistics University

More information

Weighting. Homework 2. Regression. Regression. Decisions Matching: Weighting (0) W i. (1) -å l i. )Y i. (1-W i 3/5/2014. (1) = Y i.

Weighting. Homework 2. Regression. Regression. Decisions Matching: Weighting (0) W i. (1) -å l i. )Y i. (1-W i 3/5/2014. (1) = Y i. Weighting Unconfounded Homework 2 Describe imbalance direction matters STA 320 Design and Analysis of Causal Studies Dr. Kari Lock Morgan and Dr. Fan Li Department of Statistical Science Duke University

More information

A Sensitivity Analysis for Missing Outcomes Due to Truncation-by-Death under the Matched-Pairs Design

A Sensitivity Analysis for Missing Outcomes Due to Truncation-by-Death under the Matched-Pairs Design Research Article Statistics Received XXXX www.interscience.wiley.com DOI: 10.1002/sim.0000 A Sensitivity Analysis for Missing Outcomes Due to Truncation-by-Death under the Matched-Pairs Design Kosuke Imai

More information

STATISTICAL INFERENCE FOR SURVEY DATA ANALYSIS

STATISTICAL INFERENCE FOR SURVEY DATA ANALYSIS STATISTICAL INFERENCE FOR SURVEY DATA ANALYSIS David A Binder and Georgia R Roberts Methodology Branch, Statistics Canada, Ottawa, ON, Canada K1A 0T6 KEY WORDS: Design-based properties, Informative sampling,

More information

Robust Estimation of Inverse Probability Weights for Marginal Structural Models

Robust Estimation of Inverse Probability Weights for Marginal Structural Models Robust Estimation of Inverse Probability Weights for Marginal Structural Models Kosuke IMAI and Marc RATKOVIC Marginal structural models (MSMs) are becoming increasingly popular as a tool for causal inference

More information

Online Appendix to Yes, But What s the Mechanism? (Don t Expect an Easy Answer) John G. Bullock, Donald P. Green, and Shang E. Ha

Online Appendix to Yes, But What s the Mechanism? (Don t Expect an Easy Answer) John G. Bullock, Donald P. Green, and Shang E. Ha Online Appendix to Yes, But What s the Mechanism? (Don t Expect an Easy Answer) John G. Bullock, Donald P. Green, and Shang E. Ha January 18, 2010 A2 This appendix has six parts: 1. Proof that ab = c d

More information

Large Sample Properties of Estimators in the Classical Linear Regression Model

Large Sample Properties of Estimators in the Classical Linear Regression Model Large Sample Properties of Estimators in the Classical Linear Regression Model 7 October 004 A. Statement of the classical linear regression model The classical linear regression model can be written in

More information

Instance Selection. Motivation. Sample Selection (1) Sample Selection (2) Sample Selection (3) Sample Size (1)

Instance Selection. Motivation. Sample Selection (1) Sample Selection (2) Sample Selection (3) Sample Size (1) Instance Selection Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 Motivation The need for preprocessing of data for effective data mining is important. Tel: 319-335 5934 Fax: 319-335 5669

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

A Course in Applied Econometrics. Lecture 10. Partial Identification. Outline. 1. Introduction. 2. Example I: Missing Data

A Course in Applied Econometrics. Lecture 10. Partial Identification. Outline. 1. Introduction. 2. Example I: Missing Data Outline A Course in Applied Econometrics Lecture 10 1. Introduction 2. Example I: Missing Data Partial Identification 3. Example II: Returns to Schooling 4. Example III: Initial Conditions Problems in

More information

network-correlated outcomes

network-correlated outcomes Optimal design of experiments in the presence of network-correlated outcomes arxiv:1507.00803v1 [stat.me] 3 Jul 2015 Guillaume W. Basse, Edoardo M. Airoldi Department of Statistics Harvard University,

More information

Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning

Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning Sören R. Künzel a, Jasjeet S. Sekhon a,b, Peter J. Bickel a, and Bin Yu a,c arxiv:176.3461v3 math.st] 17 Oct 217 a Department

More information

Primal-dual Covariate Balance and Minimal Double Robustness via Entropy Balancing

Primal-dual Covariate Balance and Minimal Double Robustness via Entropy Balancing Primal-dual Covariate Balance and Minimal Double Robustness via (Joint work with Daniel Percival) Department of Statistics, Stanford University JSM, August 9, 2015 Outline 1 2 3 1/18 Setting Rubin s causal

More information

Bootstrapping Sensitivity Analysis

Bootstrapping Sensitivity Analysis Bootstrapping Sensitivity Analysis Qingyuan Zhao Department of Statistics, The Wharton School University of Pennsylvania May 23, 2018 @ ACIC Based on: Qingyuan Zhao, Dylan S. Small, and Bhaswar B. Bhattacharya.

More information

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006 Hypothesis Testing Part I James J. Heckman University of Chicago Econ 312 This draft, April 20, 2006 1 1 A Brief Review of Hypothesis Testing and Its Uses values and pure significance tests (R.A. Fisher)

More information

Randomization-Based Inference With Complex Data Need Not Be Complex!

Randomization-Based Inference With Complex Data Need Not Be Complex! Randomization-Based Inference With Complex Data Need Not Be Complex! JITAIs JITAIs Susan Murphy 07.18.17 HeartSteps JITAI JITAIs Sequential Decision Making Use data to inform science and construct decision

More information