High-latitude Bow Shock: Tilt Angle Effects

Size: px
Start display at page:

Download "High-latitude Bow Shock: Tilt Angle Effects"

Transcription

1 WDS'7 Proceedings of Contributed Papers, Part II, 9 33, 7. ISBN MATFYZPRESS High-latitude Bow Shock: Tilt Angle Effects K. Jelínek, Z. Němeček, and J. Šafránková Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic. Abstract. This paper deals with an influence of the tilt angle on the location of the Earth s bow shock. We present statistical study of more than five thousand bow shock crossings collected by five spacecraft (INTERBALL-1, MAGION, GEOTAIL, IMP 8 and CLUSTER) for which as a monitor of the solar wind we used data from the WIND satellite. We assume that the effect of the tilt angle (which is the angle between the Earth s magnetic dipole and Z axis of GSM coordinates) on the bow shock position is significant only at high latitudes. For the study, we compare our set of crossings with an analytical bow shock model (Jeřáb et al. [5]). We found that the position of the high-latitude bow shock is also measurably governed by the Earth s tilt angle. Introduction The Earth s bow shock (BS) is very frequently seen as an example of a collisionless shock in the space plasma and it was studied by many authors (e.g., Fairfield [1971]; Formisano et al. [1973]; Tsurutani and Stone [1985]; Burgess [1995]; Russell [1995], and references therein). A great amount of BS observations has been accumulated by satellites at significantly low latitudes. An advantage of the INTERBALL project was its relative large inclination of the orbit (63 o ) and this allows us to study also high-latitude bow shocks. Also several other spacecraft (e.g., HAWKEY or CLUSTER) recorded high-latitude BS but almost in the subsolar region or near tail because of their smaller apogee. Many studies were devoted to the influence of the tilt angle on formation of the magnetosphere as a whole and a location of the magnetopause in particular. Observations as well as MHD models reveal that the magnetotail is shifted vertically for non-zero dipole tilt. As it was showed by Sotirelis and Meng [1999], the magnetopause subsolar point varies its position nearly linearly with the tilt angle ( up to 3 R E ) from the Sun-Earth line. In the paper of Boardsen et al. [], an empirical model of the near-earth high-latitude magnetopause which depended on the solar wind dynamic pressure, the interplanetary magnetic field (IMF) B Z component and the dipole tilt angle was discussed. They found that the solar wind pressure and the tilt angle are the most significant parameters which govern the shape of the high-latitude bow shock. The tilt angle influences the location of magnetospheric cusps (Zhou and Russell [1997], Zhou et al. [1999] and Němeček et al. []) and therefore, the indentation of the magnetopause in the outer cusp depends on the tilt angle (e.g., Šafránková et al. [, 5]). Fig. 1 presents an example of the MHD simulation (BATSRUS for more information about this model see web page for zero and non-zero tilt angles and shows an asymmetry of the magnetosheath plasma density for the southern and northern hemispheres in the case of non-zero tilt. Moreover, the bow shock position and shape are controlled by the upstream Mach number, the IMF orientation and the current shape of the magnetopause, therefore the findings made on the magnetopause should be also taken into account for the bow shock. Měrka and Szabo [] showed that the tilt angle effect is important for the estimation of the bow shock position, however, the corresponding changes of the bow shock shape and location with the tilt angle variations were not taken into the bow shock models. We present a short study of the bow shock locations for varying tilt angles. The study is based on a comparison of bow shock model predictions with observations of several spacecraft. 9

2 Figure 1. Ion density plots (with a linear scale) in the XZ GSM plane as an output from the MHD BATSRUS simulation. a) tilt angle = and b) tilt angle = 3 degrees. Our statistics are directed to investigation of a similar dependence of the bow shock position on the tilt angle as it was reported for the magnetopause and to correction of current analytical models on this effect. Data set For our statistical study we have used set of 571 bow shock crossings (Fig. a) from the spacecraft IMP 8, GEOTAIL, INTERBALL-1, MAGION and CLUSTER. This set covers bow shock crossings observed from 1995 till. For these, we have identified parameters of the solar wind (the plasma and the magnetic field) from the WIND satellite shifted to the position of a relevant satellite and computed a position of the bow shock using the Jeřáb et al. [5] model. 3 < X <, gray: Z GSM <, black: Z GSM > Z (GSE) [Re] MG (18) IB1 (118) GEO ( 813) CLR ( 31) IM8 (69) Y (GSE) [Re] Figure. a) Positions of observed bow shock crossings in the Y Z GSE plane, b) Dependences of difference between observed and model bow shock positions on the tilt angle for southern (gray) and northern (black) hemispheres. (Here and in the following figures the horizontal lines represent median). 3

3 BS: 5 < X < -15 dr=.*tilt-. [Re] BS: -5 < X < 5 dr=.6*tilt-.3 [Re] BS: -15 < X < -5 dr=.9*tilt-. [Re] BS: 5 < X < 15 dr=-.1*tilt+. [Re] MP: 5 < X < -15 dr=.*tilt+. [Re] MP: -5 < X < 5 dr=.36*tilt-1. [Re] MP: -15 < X < -5 dr=.8*tilt-. [Re] MP: 5 < X < 15 dr=-.*tilt-. [Re] Figure 3. a) Dependence of differences between observed and model bow shock positions on the tilt angle in the northern hemisphere for several intervals along the Sun-Earth line. b) The same figure as in the left part for the magnetopause. Tilt angle effects The study is directed to high latitudes (in our definition it means > 3 o of latitude) because the north-south shift with the dipole tilt angle is expected in this latitude range. The following figures present results as a difference between observed and predicted radial distances of a particular bow shock (or in Fig. 3b for the magnetopause) crossing from the Earth center for positive X GSM and from the Earth-Sun line for negative X GSM. Fig. b shows the dependence of this difference on the tilt angle for northern (black) and southern (gray) hemispheres. This figure shows opposite trends of the tilt angle dependence for positive and negative Z GSM coordinates. A detail investigation of these dependences is depicted in Fig. 3a where four panels present 1 R E wide layers along the X GSM axis for the northern hemisphere. In each plot, there is drawn always a linear regression and its equation. From this figure, one can see that the near and tail flank (interval of X GSM in the range of 5, 5 R E ) bow shock crossings are located closer to the Earth for negative tilt angles and further from the Earth for positive tilts. This dependence is most significant in the range of 5, -5 R E X GSM. On the other hand, the dayside bow shock location exhibits only a weak and opposite (if any) dependence on the tilt angle. We have done the same procedure for the magnetopause (Fig. 3b) and it is evident that both plots correspond each other qualitatively and almost quantitatively. The difference between observed and model bow shock positions as a function of the X GSM position for positive (black) and negative (gray) tilt angles is shown in following series of figures. Fig. a documents our assumption that the low-latitude bow shock does not response to the tilt angle changes. Fig. b shows the tilt angle dependence of high-latitude bow shock locations for a comparison. As a next step, we make correction of the bow shock model in the interval 8 < X GSM < R E. We did not include dayside crossings because there is an opposite sense of the tilt influence. From Fig. 3a it is clear that the dependence on the tilt angle decreases farther to the tail, therefore we did not involve the tilt angle as a parameter for aberration in the XZ GSM plane but we used a simple formula, R MOD = R MOD + k tilt sin latitude, with the linear dependence on the tilt angle with respect to latitude of observed crossings. To find out free parameter k, we used minimalization of standard deviations of R OBS R MOD. The best 31

4 gray: tilt >=, black: tilt < gray: tilt >=, black: tilt < 1-1 gray: tilt >=, black: tilt < 1-1 R mod =R mod +.8*tilt*sin(latitude) 1-1 (c) Figure. Dependence of difference for positive and negative tilt angle and for the northern hemisphere between observed and model bow shocks on the X GSM axis for a) low-latitude bow shock, b) high-latitude bow shock and c) high-latitude bow shock with a correction of the Jeřáb et al. [5] model in the interval of 8 < X GSM < R E. value of the k parameter is.8. Fig. c presents the result of the correction. When we compare Fig. b and c in the interval 8 < X GSM < R E, we can note a slight indentation which we consider as a result of the magnetopause deformation in the cusp vicinity, however, this is not statistically significant and it will be a subject of further study. Conclusion We have analyzed changes of the bow shock location as a function of the Earth s dipole tilt angle, and we compared the results with a similar study of the magnetopause position. Our results can be written as follows: The low-latitude bow shock does not depend on the tilt angle. The bow shock moves in the direction of the positive Z GSM axis for positive tilt angles. The displacement can reach 1R E for the maximum tilt in the range from 8 to R E along the Earth-Sun line. 3

5 The high-latitude bow shock shows a similar dependence on the tilt angle as the magnetopause. We suggested a small correction of the model (Jeřáb et al. [5]) at high latitudes and for X GSM ranges of 8, R E. We found out a signature of the bow shock indentation caused by the magnetopause deformation in a location of the magnetospheric cusp. The present results should be considered as preliminary and their confirmation requires a further investigation. Acknowledgments. The present work was supported by the Czech Grant Agency under Contracts /3/H16, and 5/5/17, by the Charles University Grant Agency under Contract 737, and partly by Research project MSM1686 financed by the Ministry of Education of Czech Republic. References Boardsen, S. A., T. E. Eastman, T. Sotirelis, and J. L. Green, An empirical model of the high-latitude magnetopause, J. Geophys. Res., 15, 3193,. Burgess, D., Collisionless Shocks, In: Introduction to Space Physics, M.G. Kivelson and C.T.Russell (eds), Cambridge: Cambridge University Press, Chapt. 5, pp , Fairfield, D.H., Average and unusual location of the Earth s magnetopause and bow shock, J. Geophys. Res., 76, 67, Formisano, V., G. Hedgecock, G. Moreno, F. Palmiotto, and J.K. Chao, Solar wind interaction with the Earth s magnetic field,, Magnetohydrodynamics bow shock, J. Geophys. Res., 87, 3731, Jeřáb, M., Z. Němeček, J. Šafránková, K. Jelínek, J. Měrka, Improved bow shock model with dependence on the IMF strength, Planet. Space Sci., 53, 85-93, 5. Měrka J. and A. Szabo, Bow shock s geometry at the magnetospheric flanks, J. Geophys. Res., 19 (1), 1, doi:1.19/ja1567,. Němeček, Z., J. Měrka and J. Šafránková, The tilt angle control of the outer cusp position, Geophys. Res. Lett., 7 (1), 77-8,. Russell, C.T. (ed.), Physics of collisionless shocks: Proceedings of the Symposium of COSRAR Scientific Commission D, Vol. D.1, Pergamon Press, Šafránková, J., Z. Němeček, Š. Dušík, L. Přech, D. G. Sibeck, and N. N. Borodkova, The magnetopause shape and location: a comparison of the Interball and Geotail observations with models Ann. Geophys., 31,. Šafránková, J., Š. Dušík, Z. Němeček, The shape and location of the high-latitude magnetopause, Adv. Space Res., 36 (1), 193, 5. Sotirelis, T. and C. T. Meng, Magnetopause from pressure balance, J. Geophys. Res. 1, 6889, Tsurutani, B.T. and R.G. Stone, Collisionless shock in the heliosphere: Reviews of current research, Washington DC, American Geophysical Union, Geophysical Monograph Series 35, AGU, Washington, D.C., Zhou, X.-W. and C. T. Russell, The location of the high-latitude polar cusp and the shape of the surrounding magnetopause, J. Geophys. Res. 1, Zhou, X.-W., C. T. Russell, G. Le, S. A. Fuselier, and J. D. Scudder, The polar cusp location and its dependence on dipole tilt, Geophys. Res. Lett. 6, 93,

A Study of the LLBL Profile Using n-t Plots

A Study of the LLBL Profile Using n-t Plots WDS'07 Proceedings of Contributed Papers, Part II, 42 49, 2007. ISBN 978-80-7378-024-1 MATFYZPRESS A Study of the LLBL Profile Using n-t Plots Š. Dušík, J. Šafránková, and Z. Němeček Charles University

More information

Low-Latitude Boundary Layer Under Different IMF Orientations

Low-Latitude Boundary Layer Under Different IMF Orientations WDS'05 Proceedings of Contributed Papers, Part I, 225 233, 2005. ISBN 80-86732-59-2 MATFYZPRESS Low-Latitude Boundary Layer Under Different IMF Orientations Š. Dušík, J. Šafránková, Z. Němeček, and L.

More information

Bow shock s geometry at the magnetospheric flanks

Bow shock s geometry at the magnetospheric flanks JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2004ja010567, 2004 Bow shock s geometry at the magnetospheric flanks J. Merka L-3 Communications Government Services, Inc., Vienna, Virginia, USA

More information

Three dimensional shape of the magnetopause: Global MHD results

Three dimensional shape of the magnetopause: Global MHD results JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja016418, 2011 Three dimensional shape of the magnetopause: Global MHD results J. Y. Lu, 1 Z. Q. Liu, 2 K. Kabin, 3 M. X. Zhao, 1 D. D. Liu,

More information

The January 10{11, 1997 magnetic cloud: Multipoint. measurements. J. Safrankova 1,Z.Nemecek 1,L.Prech 1, G. Zastenker 2, K.I.

The January 10{11, 1997 magnetic cloud: Multipoint. measurements. J. Safrankova 1,Z.Nemecek 1,L.Prech 1, G. Zastenker 2, K.I. 1 The January 1{11, 1997 magnetic cloud: Multipoint measurements J. Safrankova 1,Z.Nemecek 1,L.Prech 1, G. Zastenker 2, K.I. Paularena 3, N. Nikolaeva 2, M. Nozdrachev 2,A.Skalsky 2, T. Mukai 4 Short title:

More information

The Dependence of the Magnetic Field Near the Subsolar Magnetopause on IMF in Accordance with THEMIS Data

The Dependence of the Magnetic Field Near the Subsolar Magnetopause on IMF in Accordance with THEMIS Data WDS'11 Proceedings of Contributed Papers, Part II, 45 50, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS The Dependence of the Magnetic Field Near the Subsolar Magnetopause on IMF in Accordance with THEMIS Data

More information

Simultaneous Geotail and Wind observations of reconnection at the subsolar and tail flank magnetopause

Simultaneous Geotail and Wind observations of reconnection at the subsolar and tail flank magnetopause GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L09104, doi:10.1029/2006gl025756, 2006 Simultaneous Geotail and Wind observations of reconnection at the subsolar and tail flank magnetopause T. D. Phan, 1 H. Hasegawa,

More information

Multipoint study of magnetosheath magnetic field fluctuations and their relation to the foreshock

Multipoint study of magnetosheath magnetic field fluctuations and their relation to the foreshock JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011ja017240, 2012 Multipoint study of magnetosheath magnetic field fluctuations and their relation to the foreshock O. Gutynska, 1 J. Šimůnek, 2

More information

A comparison of IMP 8 observed bow shock positions with model predictions

A comparison of IMP 8 observed bow shock positions with model predictions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A2, 1077, doi:10.1029/2002ja009384, 2003 A comparison of IMP 8 observed bow shock positions with model predictions J. Merka, 1,2 A. Szabo, 1 T. W. Narock,

More information

Study of the plasma flow and magnetic filed in the Earth s magnetosheath

Study of the plasma flow and magnetic filed in the Earth s magnetosheath CHARLES UNIVERSITY PRAGUE FACULTY OF MATHEMATICS AND PHYSICS Study of the plasma flow and magnetic filed in the Earth s magnetosheath by Mykhaylo Hayosh Abstract of Doctoral thesis Supervisor: Prof. RNDr.

More information

Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation

Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006ja011889, 2007 Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation J. Šafránková, 1 Z.

More information

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND

Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND WDS'10 Proceedings of Contributed Papers, Part II, 128 134, 2010. ISBN 978-80-7378-140-8 MATFYZPRESS Deformation of ICME and MC on 1 30 AU Seen by Voyager 2 and WIND A. Lynnyk, J. Šafránková, Z. Němeček

More information

Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt Annales Geophysicae (2) 22: 273 29 SRef-ID: 132-576/ag/2-22-273 European Geosciences Union 2 Annales Geophysicae Plasma depletion layer: its dependence on solar wind conditions and the Earth dipole tilt

More information

Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields

Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L18112, doi:10.1029/2009gl039842, 2009 Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic

More information

Earth s bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison

Earth s bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A7, 1269, doi:10.1029/2002ja009697, 2003 Earth s bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison

More information

DAYSIDE MAGNETOPAUSE MODELS

DAYSIDE MAGNETOPAUSE MODELS DAYSIDE MAGNETOPAUSE MODELS A.V. SUVOROVA, A. V. DMITRIEV and S. N. KUZNETSOV Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119899, Moscow, Russia, alla@srdlan.npi.msu.su ABSTRACT -

More information

Mercury's three-dimensional asymmetric magnetopause. J. Rong 1, X. H. Han 1

Mercury's three-dimensional asymmetric magnetopause. J. Rong 1, X. H. Han 1 Mercury's three-dimensional asymmetric magnetopause J. Zhong 1, W. X. Wan 1, J. A. Slavin 2, Y. Wei 1, R. L. Lin 3, L. H. Chai 1, J. M. Raines 2, Z. J. Rong 1, X. H. Han 1 1 Key Laboratory of Earth and

More information

Magnetic Reconnection in ICME Sheath

Magnetic Reconnection in ICME Sheath WDS'11 Proceedings of Contributed Papers, Part II, 14 18, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Magnetic Reconnection in ICME Sheath J. Enzl, L. Prech, K. Grygorov, A. Lynnyk Charles University, Faculty

More information

A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations

A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 11, 2173 214, doi:1./jgra.5226, 213 A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple

More information

Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity

Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A9, 1227, doi:10.1029/2001ja000144, 2002 Effects of fast and slow solar wind on the correlations between interplanetary medium and geomagnetic activity Paola

More information

THE ACCURACY OF PRESENT MODELS OF THE HIGH ALTITUDE POLAR MAGNETOSPHERE

THE ACCURACY OF PRESENT MODELS OF THE HIGH ALTITUDE POLAR MAGNETOSPHERE THE ACCURAC OF PRESENT MODELS OF THE HIGH ALTITUDE POLAR MAGNETOSPHERE C. T. Russell 1, J. G. Luhmann 2 and F. R. Fenrich 3 1 Department of Earth and Space Sciences, University of California Los Angeles

More information

ROTATIONAL ASYMMETRY OF EARTH S BOW SHOCK

ROTATIONAL ASYMMETRY OF EARTH S BOW SHOCK CHINESE JOURNAL OF GEOPHYSICS Vol.53, No.2, 2010, pp: 198 208 ROTATIONAL ASYMMETRY OF EARTH S BOW SHOCK HU You-Qiu 1, PENG Zhong 2, WANG Chi 2 1 CAS Key Laboratory of Basic Plasma Physics, School of Earth

More information

Stability of the High-Latitude Reconnection Site for Steady. Lockheed Martin Advanced Technology Center, Palo Alto, CA

Stability of the High-Latitude Reconnection Site for Steady. Lockheed Martin Advanced Technology Center, Palo Alto, CA Page 1 Stability of the High-Latitude Reconnection Site for Steady Northward IMF S. A. Fuselier, S. M. Petrinec, K. J. Trattner Lockheed Martin Advanced Technology Center, Palo Alto, CA Abstract: The stability

More information

Extended cusp-like regions and their dependence on the Polar orbit, seasonal variations, and interplanetary conditions

Extended cusp-like regions and their dependence on the Polar orbit, seasonal variations, and interplanetary conditions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010163, 2004 Extended cusp-like regions and their dependence on the Polar orbit, seasonal variations, and interplanetary conditions T. J. Stubbs,

More information

Intro to magnetosphere (Chap. 8) Schematic of Bow Shock and Foreshock. Flow around planetary magnetic field obstacle. Homework #3 posted

Intro to magnetosphere (Chap. 8) Schematic of Bow Shock and Foreshock. Flow around planetary magnetic field obstacle. Homework #3 posted Intro to magnetosphere (Chap. 8) Homework #3 posted Reading: Finish Chap. 8 of Kallenrode Interaction with solar wind a. Magnetopause b. Structure of magnetosphere - open vs closed c. Convection d. Magnetotail

More information

The dayside magnetopause location during radial interplanetary magnetic field periods: Cluster observation and model comparison

The dayside magnetopause location during radial interplanetary magnetic field periods: Cluster observation and model comparison doi:.59/angeo--7-5 Author(s 5. CC Attribution. License. The dayside magnetopause location during radial interplanetary magnetic field periods: Cluster observation and model comparison T. Huang, H. Wang,,

More information

Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere

Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere Remote sensing of magnetospheric processes: Lesson 1: Configura7on of the magnetosphere AGF-351 Optical methods in auroral physics research UNIS, 24.-25.11.2011 Anita Aikio Dept. Physics University of

More information

High-altitude cusp flow dependence on IMF orientation: A 3-year Cluster statistical study

High-altitude cusp flow dependence on IMF orientation: A 3-year Cluster statistical study JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010804, 2005 High-altitude cusp flow dependence on IMF orientation: A 3-year Cluster statistical study B. Lavraud, 1 A. Fedorov, 2 E. Budnik,

More information

Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& &

Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& & Solar&wind+magnetosphere&coupling&via&magnetic&reconnection&likely&becomes& less&efficient&the&further&a&planetary&magnetosphere&is&from&the&sun& & Although&most&of&the&planets&in&the&Solar&System&have&an&intrinsic&magnetic&field&

More information

Observational Evidence of Component and Antiparallel Reconnection at the Earthʼs Magnetopause

Observational Evidence of Component and Antiparallel Reconnection at the Earthʼs Magnetopause Observational Evidence of Component and Antiparallel Reconnection at the Earthʼs Magnetopause Stephen A. Fuselier, Karlheinz J. Trattner, Steven M. Petrinec Lockheed Martin Advanced Technology Center 1

More information

Uneven compression levels of Earth s magnetic fields by shocked solar wind

Uneven compression levels of Earth s magnetic fields by shocked solar wind JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja016149, 2011 Uneven compression levels of Earth s magnetic fields by shocked solar wind J. H. Shue, 1 Y. S. Chen, 1 W. C. Hsieh, 1 M. Nowada,

More information

Why Study Magnetic Reconnection?

Why Study Magnetic Reconnection? Why Study Magnetic Reconnection? Fundamental Process Sun: Solar flares, Flare loops, CMEs Interplanetary Space Planetary Magnetosphere: solar wind plasma entry, causes Aurora Ultimate goal of the project

More information

Role of IMF B x in the solar wind magnetosphere ionosphere coupling

Role of IMF B x in the solar wind magnetosphere ionosphere coupling JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015454, 2010 Role of IMF B x in the solar wind magnetosphere ionosphere coupling Z. Peng, 1 C. Wang, 1 and Y. Q. Hu 2 Received 14 March 2010;

More information

The Structure of the Magnetosphere

The Structure of the Magnetosphere The Structure of the Magnetosphere The earth s magnetic field would resemble a simple magnetic dipole, much like a big bar magnet, except that the solar wind distorts its shape. As illustrated below, the

More information

COMPARISON OF GOES MAGNETOSPHERE MAGNETIC FIELD MEASUREMENTS WITH IMECH MAGNETOSPHERE MAGNETOSHEATH MODEL PREDICTIONS *

COMPARISON OF GOES MAGNETOSPHERE MAGNETIC FIELD MEASUREMENTS WITH IMECH MAGNETOSPHERE MAGNETOSHEATH MODEL PREDICTIONS * 11 th National Congress on Theoretical and Applied Mechanics, 2-5 Sept. 2009, Borovets, Bulgaria COMPARISON OF GOES MAGNETOSPHERE MAGNETIC FIELD MEASUREMENTS WITH IMECH MAGNETOSPHERE MAGNETOSHEATH MODEL

More information

Dependence of magnetic field just inside the magnetopause on subsolar standoff distance: Global MHD results

Dependence of magnetic field just inside the magnetopause on subsolar standoff distance: Global MHD results Article SPECIAL ISSUE Basic Plasma Processes in Solar-Terrestrial Activities April 2012 Vol.57 No.12: 1438 1442 doi: 10.1007/s11434-011-4961-6 SPECIAL TOPICS: Dependence of magnetic field just inside the

More information

Cone angle control of the interaction of magnetic clouds with the Earth's bow shock

Cone angle control of the interaction of magnetic clouds with the Earth's bow shock Cone angle control of the interaction of magnetic clouds with the Earth's bow shock L. Turc1, P. Escoubet1, D. Fontaine2, E. Kilpua3 1 ESA/ESTEC, Noordwijk, The Netherlands 2 LPP-CNRS-Ecole Polytechnique-UPMC,

More information

THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements

THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L17S03, doi:10.1029/2008gl033475, 2008 THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and ground-based measurements

More information

THEMIS observations of a Hot Flow Anomaly at the Earth s bow shock: simultaneous solar wind, magnetosheath and ground based measurements

THEMIS observations of a Hot Flow Anomaly at the Earth s bow shock: simultaneous solar wind, magnetosheath and ground based measurements THEMIS observations of a Hot Flow Anomaly at the Earth s bow shock: simultaneous solar wind, magnetosheath and ground based measurements J. P. Eastwood (1), D. G. Sibeck (), V. Angelopoulos (,1), T.-D.

More information

Correlation properties of magnetosheath magnetic field fluctuations

Correlation properties of magnetosheath magnetic field fluctuations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014173, 2009 Correlation properties of magnetosheath magnetic field fluctuations O. Gutynska, 1 J. Šafránková, 1 and Z. Němeček 1 Received

More information

CLUSTER OBSERVATIONS AND GLOBAL SIMULATION OF THE COLD DENSE PLASMA SHEET DURING NORTHWARD IMF

CLUSTER OBSERVATIONS AND GLOBAL SIMULATION OF THE COLD DENSE PLASMA SHEET DURING NORTHWARD IMF 1 CLUSTER OBSERVATIONS AND GLOBAL SIMULATION OF THE COLD DENSE PLASMA SHEET DURING NORTHWARD IMF J. Raeder 1, W. Li 1, J. Dorelli 1, M. Øieroset 2, and T. Phan 2 1 Space Science Center, University of New

More information

Wind observations of the terrestrial bow shock: 3-D shape and motion

Wind observations of the terrestrial bow shock: 3-D shape and motion Earth Planets Space, 53, 1 9, 1 Wind observations of the terrestrial bow shock: 3-D shape and motion M. Verigin 1,G.Kotova 1, A. Szabo, J. Slavin, T. Gombosi 3, K. Kabin 4, F. Shugaev 5, and A. Kalinchenko

More information

Configuration of high-latitude and high-altitude boundary layers

Configuration of high-latitude and high-altitude boundary layers JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. A10, PAGES 23,221-23,238, OCTOBER 1, 2000 Configuration of high-latitude and high-altitude boundary layers T. E. Eastman Plasmas International, Silver Spring,

More information

GLOBAL HYBRID SIMULATIONS OF SOLAR WIND INTERACTION WITH MERCURY: MAGNETOSPHERIC BOUNDARIES

GLOBAL HYBRID SIMULATIONS OF SOLAR WIND INTERACTION WITH MERCURY: MAGNETOSPHERIC BOUNDARIES GLOBAL HYBRID SIMULATIONS OF SOLAR WIND INTERACTION WITH MERCURY: MAGNETOSPHERIC BOUNDARIES N. Omidi 1, X. Blanco-Cano 2, C.T. Russell 3 and H. Karimabadi 1 1 University of California San Diego, MC 0407,

More information

Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause

Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011728, 2006 Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause H. Hasegawa, 1 M. Fujimoto, 1 K.

More information

Energetic particle fluxes in the exterior cusp and the high-latitude dayside magnetosphere: statistical results from the Cluster/RAPID instrument

Energetic particle fluxes in the exterior cusp and the high-latitude dayside magnetosphere: statistical results from the Cluster/RAPID instrument Annales Geophysicae, 23, 2217 2230, 2005 SRef-ID: 1432-0576/ag/2005-23-2217 European Geosciences Union 2005 Annales Geophysicae Energetic particle fluxes in the exterior cusp and the high-latitude dayside

More information

A global study of hot flow anomalies using Cluster multi-spacecraft measurements

A global study of hot flow anomalies using Cluster multi-spacecraft measurements Ann. Geophys., 27, 2057 2076, 2009 Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Annales Geophysicae A global study of hot flow anomalies using Cluster multi-spacecraft

More information

Probabilistic models of the Jovian magnetopause and bow shock locations

Probabilistic models of the Jovian magnetopause and bow shock locations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1309, doi:10.1029/2001ja009146, 2002 Probabilistic models of the Jovian magnetopause and bow shock locations S. P. Joy, 1 M. G. Kivelson, 1,2 R. J. Walker,

More information

Cluster observations of sudden impulses in the magnetotail caused by interplanetary shocks and pressure increases

Cluster observations of sudden impulses in the magnetotail caused by interplanetary shocks and pressure increases Annales Geophysicae (25) 23: 69 624 SRef-ID: 1432-576/ag/25-23-69 European Geosciences Union 25 Annales Geophysicae Cluster observations of sudden impulses in the magnetotail caused by interplanetary shocks

More information

The DOK-2 Experiment to Study Energetic Particles by the Tail Probe and Auroral Probe Satellites in the INTERBALL Project

The DOK-2 Experiment to Study Energetic Particles by the Tail Probe and Auroral Probe Satellites in the INTERBALL Project Cosmic Research, Vol. 6, No., 998, pp. 9. Translated from Kosmicheskie Issledovaniya, Vol. 6, No., 998, pp. 98 7. Original Russian Text Copyright 998 by Lutsenko, Kudela, Sarris. The DOK- Experiment to

More information

Magnetopause erosion: A global view from MHD simulation

Magnetopause erosion: A global view from MHD simulation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A6, 1235, doi:10.1029/2002ja009564, 2003 Magnetopause erosion: A global view from MHD simulation M. Wiltberger High Altitude Observatory, National Center

More information

CHAPTER 2 DATA. 2.1 Data Used

CHAPTER 2 DATA. 2.1 Data Used CHAPTER DATA For the analysis, it is required to use geomagnetic indices, which are representatives of geomagnetic activity, and Interplanetary Magnetic Field (IMF) data in addition to f F,which is used

More information

Kinetic signatures during a quasi-continuous lobe reconnection event: Cluster Ion Spectrometer (CIS) observations

Kinetic signatures during a quasi-continuous lobe reconnection event: Cluster Ion Spectrometer (CIS) observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011623, 2006 Kinetic signatures during a quasi-continuous lobe reconnection event: Cluster Ion Spectrometer (CIS) observations M. B. Bavassano

More information

On the importance of antiparallel reconnection when the dipole tilt and IMF B y are nonzero

On the importance of antiparallel reconnection when the dipole tilt and IMF B y are nonzero JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2004ja010972, 2006 On the importance of antiparallel reconnection when the dipole tilt and IMF B y are nonzero K. S. Park, 1 T. Ogino, 1 and R. J.

More information

Sharp boundaries of small- and middle-scale solar wind structures

Sharp boundaries of small- and middle-scale solar wind structures JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011307, 2005 Sharp boundaries of small- and middle-scale solar wind structures M. O. Riazantseva 1 and G. N. Zastenker Space Research Institute,

More information

Comment on Effects of fast and slow solar wind on the correlation between interplanetary medium and geomagnetic activity by P.

Comment on Effects of fast and slow solar wind on the correlation between interplanetary medium and geomagnetic activity by P. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A10, 1386, doi:10.1029/2002ja009746, 2003 Correction published 20 January 2004 Comment on Effects of fast and slow solar wind on the correlation between interplanetary

More information

Temporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure

Temporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L02101, doi:10.1029/2007gl031766, 2008 Temporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure A. Boudouridis, 1 E.

More information

Planetary magnetospheres

Planetary magnetospheres Lecture 19 Planetary magnetospheres The Aim of this Lecture is to compare the magnetospheres of planets in our solar system, describing the similarities and differences, and to explore the solar wind s

More information

Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus

Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Y.-D. Jia, Y. J. Ma, C.T. Russell, G. Toth, T.I. Gombosi, M.K. Dougherty Magnetospheres

More information

Imaging the effect of dipole tilt on magnetotail boundaries

Imaging the effect of dipole tilt on magnetotail boundaries JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. A4, PAGES 6079-6092, APRIL 1, 1994 Imaging the effect of dipole tilt on magnetotail boundaries C. Max Hammond, '2 Margaret G. Kivelson, and Raymond J. Walker

More information

Mercury s magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field during the MESSENGER Flybys

Mercury s magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field during the MESSENGER Flybys Mercury s magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field during the MESSENGER Flybys P. M. Trávníček 1,3, D. Schriver 2, D. Herčík 3, P. Hellinger 3, J.

More information

Mercury s magnetopause and bow shock from MESSENGER Magnetometer observations

Mercury s magnetopause and bow shock from MESSENGER Magnetometer observations JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 1 7, doi:1.1/jgra.7, 1 Mercury s magnetopause and bow shock from MESSENGER Magnetometer observations Reka M. Winslow, 1 Brian J. Anderson, Catherine

More information

The Locations and Shapes of Jupiter s Bow Shock and Magnetopause

The Locations and Shapes of Jupiter s Bow Shock and Magnetopause The Locations and Shapes of Jupiter s Bow Shock and Magnetopause Raymond J. Walker 1,2, Steven P. Joy 1,2, Margaret G. Kivelson 1,2, Krishan Khurana 1, Tatsuki Ogino 3, Keiichiro Fukazawa 3 1 Institute

More information

Cluster observations of hot flow anomalies

Cluster observations of hot flow anomalies JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010016, 2004 Cluster observations of hot flow anomalies E. A. Lucek, T. S. Horbury, and A. Balogh Blackett Laboratory, Imperial College, London,

More information

A small magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results

A small magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results A small magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results Pavel M. Trávníček Institute of Geophysics and Planetary Physics, UCLA,

More information

Cluster multispacecraft observations at the high-latitude duskside magnetopause: implications for continuous and component magnetic reconnection

Cluster multispacecraft observations at the high-latitude duskside magnetopause: implications for continuous and component magnetic reconnection Annales Geophysicae (25) 23: 461 473 SRef-ID: 1432-576/ag/25-23-461 European Geosciences Union 25 Annales Geophysicae Cluster multispacecraft observations at the high-latitude duskside magnetopause: implications

More information

Effects of the surface conductivity and IMF strength on dynamics of planetary ions in Mercury s magnetosphere

Effects of the surface conductivity and IMF strength on dynamics of planetary ions in Mercury s magnetosphere 1! 5 th SERENA-HEWG workshop (6/16/2014)! Effects of the surface conductivity and IMF strength on dynamics of planetary ions in Mercury s magnetosphere K. Seki 1, M. Yagi 2, Y. Matsumoto 3, N. Terada 4,!

More information

David versus Goliath 1

David versus Goliath 1 David versus Goliath 1 or A Comparison of the Magnetospheres between Jupiter and Earth 1 David and Goliath is a story from the Bible that is about a normal man (David) who meets a giant (Goliath) Tomas

More information

MESSENGER observations of large flux transfer events at Mercury

MESSENGER observations of large flux transfer events at Mercury Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L02105, doi:10.1029/2009gl041485, 2010 MESSENGER observations of large flux transfer events at Mercury James A. Slavin, 1 Ronald P. Lepping,

More information

Electromagnetic Fields Inside the Magnetoshpere. Outline

Electromagnetic Fields Inside the Magnetoshpere. Outline Electromagnetic Fields Inside the Magnetoshpere P. K. Toivanen Finnish Meteorological Institute, Space Research Outline Introduction to large-scale electromagnetic fields Magnetic field geometry Modelling

More information

Plasma depletion layer: the role of the slow mode waves

Plasma depletion layer: the role of the slow mode waves Plasma depletion layer: the role of the slow mode waves Y. L. Wang, J. Raeder, C. T. Russell To cite this version: Y. L. Wang, J. Raeder, C. T. Russell. Plasma depletion layer: the role of the slow mode

More information

Statistical study of the alteration of the magnetic structure of þÿ m a g n e t i c c l o u d s i n t h e E a r t h s m a g n e t o s h e a t h

Statistical study of the alteration of the magnetic structure of þÿ m a g n e t i c c l o u d s i n t h e E a r t h s m a g n e t o s h e a t h https://helda.helsinki.fi Statistical study of the alteration of the magnetic structure of þÿ m a g n e t i c c l o u d s i n t h e E a r t h s m a g n e t o s h e a t h Turc, Lucile Francoise 2017 Turc,

More information

Generation and properties of in vivo flux transfer events

Generation and properties of in vivo flux transfer events JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011ja017166, 2012 Generation and properties of in vivo flux transfer events H. Zhang, 1,2,3 M. G. Kivelson, 1,2 V. Angelopoulos, 1,2 K. K. Khurana,

More information

Magnetic Reconnection

Magnetic Reconnection Magnetic Reconnection? On small scale-lengths (i.e. at sharp gradients), a diffusion region (physics unknown) can form where the magnetic field can diffuse through the plasma (i.e. a breakdown of the frozenin

More information

Comparison of energetic electron flux and phase space density in the magnetosheath and in the magnetosphere

Comparison of energetic electron flux and phase space density in the magnetosheath and in the magnetosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja017520, 2012 Comparison of energetic electron flux and phase space density in the magnetosheath and in the magnetosphere Bingxian Luo, 1 Xinlin

More information

Time history effects at the magnetopause: Hysteresis in power input and its implications to substorm processes

Time history effects at the magnetopause: Hysteresis in power input and its implications to substorm processes 219 Time history effects at the magnetopause: Hysteresis in power input and its implications to substorm processes M. Palmroth, T. I. Pulkkinen, T. V. Laitinen, H. E. J. Koskinen, and P. Janhunen 1. Introduction

More information

Reconnection at the dayside magnetopause: Comparisons of global MHD simulation results with Cluster and Double Star observations

Reconnection at the dayside magnetopause: Comparisons of global MHD simulation results with Cluster and Double Star observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007ja012743, 2008 Reconnection at the dayside magnetopause: Comparisons of global MHD simulation results with Cluster and Double Star observations

More information

Observations of Mercury s northern cusp region with MESSENGER s Magnetometer

Observations of Mercury s northern cusp region with MESSENGER s Magnetometer GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051472, 2012 Observations of Mercury s northern cusp region with MESSENGER s Magnetometer Reka M. Winslow, 1 Catherine L. Johnson, 1,2 Brian J.

More information

Direct observation of warping in the plasma sheet of Saturn

Direct observation of warping in the plasma sheet of Saturn GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L24201, doi:10.1029/2008gl035970, 2008 Direct observation of warping in the plasma sheet of Saturn J. F. Carbary, 1 D. G. Mitchell, 1 C. Paranicas, 1 E. C. Roelof,

More information

Earth s Magnetosphere

Earth s Magnetosphere Earth s Magnetosphere General Description of the Magnetosphere Shape Pressure Balance The Earth s Magnetic Field The Geodynamo, Magnetic Reversals, Discovery Current Systems Chapman Ferraro Cross Tail

More information

Relation of polar auroral arcs to magnetotail twisting and IMF rotation: a systematic MHD simulation study

Relation of polar auroral arcs to magnetotail twisting and IMF rotation: a systematic MHD simulation study Annales Geophysicae (24) 22: 951 97 SRef-ID: 1432-576/ag/24-22-951 European Geosciences Union 24 Annales Geophysicae Relation of polar auroral arcs to magnetotail twisting and IMF rotation: a systematic

More information

Magnetopause energy and mass transfer: Results from a global MHD simulation

Magnetopause energy and mass transfer: Results from a global MHD simulation Magnetopause energy and mass transfer: Results from a global MHD simulation M. Palmroth, T. V. Laitinen, and T. I. Pulkkinen Finnish Meteorological Institute, Space Research Division, Helsinki, Finland

More information

Response of morning auroras and cosmic noise absorption to the negative solar wind pressure pulse: A case study

Response of morning auroras and cosmic noise absorption to the negative solar wind pressure pulse: A case study ÓPTICA PURA Y APLICADA. www.sedoptica.es Sección Especial: 37 th AMASON / Special Section: 37 th AMASON Aurora Response of morning auroras and cosmic noise absorption to the negative solar wind pressure

More information

Earth s Foreshock and Magnetopause

Earth s Foreshock and Magnetopause Chapter 13 Earth s Foreshock and Magnetopause Aims and Expected Learning Outcomes The Aims are to explore the physics of planetary magnetopauses and foreshocks, focusing on the particle motions and their

More information

Solutions to Merav Opher (2010) Problems

Solutions to Merav Opher (2010) Problems Solutions to Merav Opher 00 Problems. The normal of the shock is Since from the plot you can obtain all the three components of Bu and Bd, the normal can be easily found. The shock speed is: With the shock

More information

DYNAMICS OF THE EARTH S MAGNETOSPHERE

DYNAMICS OF THE EARTH S MAGNETOSPHERE DYNAMICS OF THE EARTH S MAGNETOSPHERE PROF JIM WILD j.wild@lancaster.ac.uk @jim_wild With thanks to: Stan Cowley, Rob Fear & Steve Milan OUTLINE So far: Dungey cycle - the stirring of the magnetosphere

More information

Modeling the Size and Shape of Saturn s Magnetopause with Variable Dynamic Pressure

Modeling the Size and Shape of Saturn s Magnetopause with Variable Dynamic Pressure JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Modeling the Size and Shape of Saturn s Magnetopause with Variable Dynamic Pressure C.S. Arridge, N. Achilleos, and M.K. Dougherty Space and

More information

A Cluster Multi-Spacecraft Study of Earth s Bow Shock

A Cluster Multi-Spacecraft Study of Earth s Bow Shock A Cluster Multi-Spacecraft Study of Earth s Bow Shock by Thamer Yousef Saeed Alrefay Previous Degrees (Master of Science, Florida Institute of Technology, 2003) Bachelor of Science,King Abdulaziz University,

More information

arxiv: v1 [physics.space-ph] 19 Jul 2018

arxiv: v1 [physics.space-ph] 19 Jul 2018 Manuscript prepared for Ann. Geophys. with version 1.3 of the L A TEX class copernicus.cls. Date: 20 July 2018 arxiv:1807.07368v1 [physics.space-ph] 19 Jul 2018 A global study of hot flow anomalies using

More information

Density fluctuations measured by ISEE 1-2 in the Earth s magnetosheath and the resultant scattering of radio waves

Density fluctuations measured by ISEE 1-2 in the Earth s magnetosheath and the resultant scattering of radio waves Ann. Geophysicae 15, 387 396 (1997) EGS Springer-Verlag 1997 Density fluctuations measured by ISEE 1-2 in the Earth s magnetosheath and the resultant scattering of radio waves C. Lacombe, J.-L. Steinberg,

More information

Auroral Disturbances During the January 10, 1997 Magnetic Storm

Auroral Disturbances During the January 10, 1997 Magnetic Storm Auroral Disturbances During the January 10, 1997 Magnetic Storm L. R. Lyons and E. Zesta J. C. Samson G. D. Reeves Department of Atmospheric Sciences Department of Physics NIS-2 Mail Stop D436 University

More information

Global modeling of the magnetosphere in terms of paraboloid model of magnetospheric magnetic field

Global modeling of the magnetosphere in terms of paraboloid model of magnetospheric magnetic field Global modeling of the magnetosphere in terms of paraboloid model of magnetospheric magnetic field I. Alexeev, V. Kalegaev The solar wind influence on the magnetospheric state is sufficiently nonlinear

More information

Ordering the Earth's magnetic field by geocentric magnetospheric equatorial coordinates: Lessons from HEOS

Ordering the Earth's magnetic field by geocentric magnetospheric equatorial coordinates: Lessons from HEOS JOURNAL OF GEOPHYSCAL RESEARCH, VOL. 104, NO. A8, PAGES 17,449-17,457, AUGUST 1, 1999 Ordering the Earth's magnetic field by geocentric magnetospheric equatorial coordinates: Lessons from HEOS Malcolm

More information

Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation

Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation Response of the Earth s magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the MHD simulation Kyung Sun Park 1, Dae-Young Lee 1, Myeong Joon Kim 1, Rok Soon Kim 2, Kyungsuk

More information

Crater FTEs: Simulation results and THEMIS observations

Crater FTEs: Simulation results and THEMIS observations Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L17S06, doi:10.1029/2008gl033568, 2008 Crater FTEs: Simulation results and THEMIS observations D. G. Sibeck, 1 M. Kuznetsova, 1 V. Angelopoulos,

More information

High latitude magnetospheric topology and magnetospheric substorm

High latitude magnetospheric topology and magnetospheric substorm Ann. Geophys., 27, 4069 4073, 2009 Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Annales Geophysicae High latitude magnetospheric topology and magnetospheric

More information

Sun-Earth Connection Missions

Sun-Earth Connection Missions ACE (1997 ) Cosmic and Heliospheric Study of the physics and chemistry Advanced Composition Explorer Learning Center of the solar corona, the solar wind, http://helios.gsfc.nasa.gov/ace/ http://helios.gsfc.nasa.gov

More information

The magnetic field draping direction at Mars from April 1999 through August 2004

The magnetic field draping direction at Mars from April 1999 through August 2004 Icarus 182 (2006) 464 473 www.elsevier.com/locate/icarus The magnetic field draping direction at Mars from April 1999 through August 2004 David A. Brain, David L. Mitchell, Jasper S. Halekas UC Berkeley

More information

Zach Meeks. Office: Ford ES&T Phone: (918) Please let me know if you have any questions!

Zach Meeks. Office: Ford ES&T Phone: (918) Please let me know if you have any questions! Zach Meeks Office: Ford ES&T 2114 Email: zachary.meeks@gatech.edu Phone: (918) 515-0052 Please let me know if you have any questions! The scope of space physics Solar-Terrestrial Relations Solar-Terrestrial

More information

High-latitude aurora during steady northward interplanetary magnetic field and changing IMF B y

High-latitude aurora during steady northward interplanetary magnetic field and changing IMF B y JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010867, 2005 High-latitude aurora during steady northward interplanetary magnetic field and changing IMF B y J. A. Cumnock 1 Center for Space

More information