EW Baryogenesis and Dimensional Reduction in SM extensions

Size: px
Start display at page:

Download "EW Baryogenesis and Dimensional Reduction in SM extensions"

Transcription

1 EW Baryogenesis and Dimensional Reduction in SM extensions Tuomas V.I. Tenkanen In collaboration with: T. Brauner, A. Tranberg, A. Vuorinen and D. J. Weir (SM+real singlet) J. O. Anderssen, T. Gorda, L. Niemi, A. Vuorinen and D. J. Weir (2HDM) L. Niemi, H. H. Patel, M. Ramsey-Musolf and D. J. Weir (SM+real triplet) University of Helsinki and Helsinki Institute of Physics Making the Electroweak Phase Transition (Theoretically) Strong, Umass, Amherst MA Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

2 Contents EW phase transition and baryogenesis. Scalar sector extensions of SM: singlet, doublet, triplet... 3d effective theory and dimensional reduction. Results in SM+real (superheavy) singlet Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

3 EW Baryogenesis Baryogenesis - mechanism to explain observed baryon-antibaryon asymmetry. General criteria for imbalance (Sakharov conditions) and candidate Electroweak (EW) baryogenesis: Baryon number violating interactions (sphaleron transitions). C and CP violations (no counterbalance) (EW interactions). Deviation from thermal equilibrium (1st order phase transition, bubble nucleation). Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

4 Ingredients for EW baryogenesis 1 Electroweak interactions cause C and CP violations. B conserved at tree level, but violated by sphalerons (unstable nonperturbative field configurations with topological charge). effective interaction for all left-handed fermions, which violates baryon and lepton number. At T = 0 vanishing rate, but rapid at high T. EW phase transition should be 1st order, and also strong: when Higgs vev is large, sphaleron transitions are "turned off" in the broken phase. 1 See e.g. Farrar & Shaposhnikov (1993). Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

5 EW phase transition and baryogenesis Morrisey et al. If 1st order transition: bubble nucleation. CP violation: different scattering properties for baryons and antibaryons antibaryons accumulate to unbroken side sphalerons turn antibaryon excess to baryons. Expanding bubble devours baryon excess a net creation of baryons (sphalerons suppressed at broken side). Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

6 EW baryogenesis fails in the SM However, with observed m H = 125 GeV, EW phase transition in the SM is not of first order, but a smooth crossover instead. 2 J. M. Cline Also: CP violation in the SM is too weak at relevant temperatures. 2 Kajantie et.al. (1996) Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

7 EW baryogenesis in BSM models BSM models with modified scalar sector could offer viable setup for EW baryogenesis: Strong 1st order phase transitition? Sufficient amount of CP-violation? SM+real singlet (non-z 2 ): "Toy model", no extra CP-violation, no stable dark matter. Two-Higgs-doublet model (2HDM): More CP-violation, but also more strict collider constraints. SM+real triplet: 2-step phase transition, gives more freedom to avoid constraints and also rich features due to more complicated symmetry breaking pattern. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

8 Non-perturbative analysis For EW baryogenesis, the most relevant features of phase transition are: character (1st, 2nd order or crossover), T c, sphaleron transition rate and bubble nucleation rate. Non-perturbative lattice simulations are the most robust way to compute these quantities. Lattice simulations are most conveniently performed in effective 3d theory, which is obtained from the full 4d theory by using the method of dimensional reduction. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

9 Dimensional reduction At high T, system looks like 3d for long distance physics (with length scales x >> 1/T ): Decomposition of fields: φ(x, τ) = n= φ n(x)exp(iω n τ), where ω n = 2nπT contribute to 3d (tree-level) masses for 3d fields φ n 0. Integrate out n 0 modes (scale separation) effective 3d theory: Z = Dφ 0 Dφ n exp( S(φ 0 ) S(φ 0, φ n )) (1) = Dφ 0 exp( S(φ 0 ) S eff (φ 0 )) In practise: match static correlators; requires loop corrections to many n-point correlators in 4d theory. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

10 Dimensional reduction (#2) There is scale separation in 3d masses: non-zero bosonic Matsubara modes and all fermionic modes have masses of order πt (superheavy), but masses of zero-modes are proportional to perturbative coupling (heavy or light fields). Strategy: construct effective 3d theory of zero-modes only, by integrating out all fermionic modes and non-zero bosonic modes. Up to certain accuracy, 3d theory gives then same results as the full theory. In practise one matches static correlators in both theories; requires a calculation of loop corrections of many n-point correlators in 4d theory (superheavy or heavy internal lines). Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

11 SM+real singlet V (φ, σ) = µ h φ φ + λ h (φ φ) µ2 σσ 2 + µ 1 σ µ 3σ λ σσ µ mσφ φ λ mσ 2 φ φ Scaling of µ m : µ2 m µ 2 σ g2a g b g2 (2) If b = 2 and a = 2 vertex with µ m produces mostly higher than g 4 order effects. Yet if b = 0 and a = 1 then, σ is "superheavy" and will be integrated out completely. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

12 Critical line in pure SM Dimensionless 3-d lattice parameters x, y are given in terms of physical quantities of full 4-d theory (DR: matching relations; note that also for superheavy singlet effective 3-d theory is same as in the SM!) x = x = x = x = x = x = T (GeV) y = y = y = y = mh (GeV) x = y = y = x = y = Actual lattice simulation is needed to analyse strength of phase transition. Critical line with 1st order transition: y 0 and 0 < x < 0.1. Usual conclusion: cross-over with physical Higgs mass 125 GeV. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

13 Critical line in SM + superheavy singlet x = x = Example of 1st order region, with fixed m s = 300 GeV and λ m = 0.7, λ σ = 0.25, µ 3 = 0. Countours in x, y are not very sensitive to the singlet self-couplings y = T (GeV) y = y = x = x = y = µ m (GeV) Caution: in shaded region µ 2 m > µ 2 σ, and our scaling assumption for portal coupling µ m is not respected. Furthermore also close to this region one cannot trust our approximation completely. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

14 Slice of parameter space with m s = 300 GeV In 1st order region (red) there exist critical line with y 0 and 0 < x < 0.1 with some 100 < T < 200 GeV µm (GeV) First order PT µ 2 m µ 2 s 50 x < 0 Action is complex λ m In blue region and near it our approximation is unreliable, and in black region potential of 3-d theory becomes unbounded. Furthermore gray region is excluded as 4-d parameters become complex. Obvious improvement to our approximation is to treat singlet as heavy or light field, and keep it in 3-d effective theory. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

15 Strong 1st order transitions and physical predictions I Region in (ms, λm, µm )-space which have point x = in critical line µ2m µ2σ 300 µm (GeV) ms (GeV) λm For this value x = we can use existing simulation results and calculate physical predictions for critical and nucleation temperature, latent heat of transition, bubble nucleation and sphaleron rates. One can also obtain prediction for gravitational wave signal (work in progress!). Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

16 Summary for SM + superheavy singlet We are (soon) able to demonstrate how to obtain physical predictions for SM extension, by using method of finite T dimensional reduction. Coming soon: actual predictions for quantities of interest, comparison to purely perturbative analysis and collider constraints. Further work (already underway): Perform DR to full g 4 -accuracy: mass parameter at 2-loop and relations to physical parameters at 1-loop level. Similar analysis for heavy or light singlet. When singlet remains in effective 3-d theory, actual new simulations are needed. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

17 2HDM and SM+real triplet models Performing DR is underway: In 2HDM at 3-d theory other doublet tends to be heavy (in contrast of being light) near transition in many regions in parameter space. Consequently other heavy doublet can be integrated out (together with adjoint scalar with heavy Debye mass) leaving yet again same effective 3-d theory as in the case of SM. In other regions of parameter space, new simulations are needed. In SM + real triplet new scalar fields remain in effective 3-d theory, and new lattice simulations are required. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

18 Summary EW baryogenesis might explain baryon asymmetry, if some BSM physics can cause enough C and CP violations and strong 1st order phase transition. Lattice simulations can be used to study EW phase transition in BSM models. Effective 3-d theory is derived by using finite T dimensional reduction. Coming soon: results for SM + superheavy singlet model. Coming later in the future: similar analysis in SM + real singlet with singlet being dynamical field in the 3-d theory. Furthermore: Similar analysis in 2HDM and SM + real triplet. Tuomas V.I. Tenkanen EW Baryogenesis and DR in BSM models / 18

Electroweak Baryogenesis in the LHC era

Electroweak Baryogenesis in the LHC era Electroweak Baryogenesis in the LHC era Sean Tulin (Caltech) In collaboration with: Michael Ramsey-Musolf Dan Chung Christopher Lee Vincenzo Cirigliano Bjorn Gabrecht Shin ichiro ichiro Ando Stefano Profumo

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

Electroweak baryogenesis from a dark sector

Electroweak baryogenesis from a dark sector Electroweak baryogenesis from a dark sector with K. Kainulainen and D. Tucker-Smith Jim Cline, McGill U. Moriond Electroweak, 24 Mar., 2017 J. Cline, McGill U. p. 1 Outline Has electroweak baryogenesis

More information

Dynamics of a two-step Electroweak Phase Transition

Dynamics of a two-step Electroweak Phase Transition Dynamics of a two-step Electroweak Phase Transition May 2, 2014 ACFI Higgs Portal Workshop in Collaboration with Pavel Fileviez Pérez Michael J. Ramsey-Musolf Kai Wang hiren.patel@mpi-hd.mpg.de Electroweak

More information

Status Report on Electroweak Baryogenesis

Status Report on Electroweak Baryogenesis Outline Status Report on Electroweak Baryogenesis Thomas Konstandin KTH Stockholm hep-ph/0410135, hep-ph/0505103, hep-ph/0606298 Outline Outline 1 Introduction Electroweak Baryogenesis Approaches to Transport

More information

Making baryons at the electroweak phase transition. Stephan Huber, University of Sussex

Making baryons at the electroweak phase transition. Stephan Huber, University of Sussex Making baryons at the electroweak phase transition Stephan Huber, University of Sussex UK BSM '07 Liverpool, March 2007 Why is it interesting? There are testable consequences: New particles (scalars?!)

More information

Electroweak phase transition in theories beyond the Standard Model

Electroweak phase transition in theories beyond the Standard Model HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES HIP-2018-01 Electroweak phase transition in theories beyond the Standard Model Tuomas V. I. Tenkanen Helsinki Institute of Physics University of Helsinki

More information

Phase transitions in cosmology

Phase transitions in cosmology Phase transitions in cosmology Thomas Konstandin FujiYoshida, August 31, 2017 Electroweak phase transition gravitational waves baryogenesis Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov

More information

Electroweak baryogenesis in the two Higgs doublet model

Electroweak baryogenesis in the two Higgs doublet model Michael Seniuch Bielefeld University 1 Electroweak baryogenesis in the two Higgs doublet model M. Seniuch, Bielefeld University COSMO 05 Bonn August 2005 Work is done in collaboration with Lars Fromme

More information

Quantum transport and electroweak baryogenesis

Quantum transport and electroweak baryogenesis Quantum transport and electroweak baryogenesis Thomas Konstandin Mainz, August 7, 2014 review: arxiv:1302.6713 Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis aims at

More information

Electroweak baryogenesis in light of the Higgs discovery

Electroweak baryogenesis in light of the Higgs discovery Electroweak baryogenesis in light of the Higgs discovery Thomas Konstandin Grenoble, March 25, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis

More information

Electroweak Baryogenesis A Status Report

Electroweak Baryogenesis A Status Report Electroweak Baryogenesis A Status Report Thomas Konstandin Odense, August 19, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Standard Cosmology time temperature Standard Cosmology

More information

Explore DM Blind Spots with Gravitational Wave

Explore DM Blind Spots with Gravitational Wave Explore DM Blind Spots with Gravitational Wave University of Massachusetts Amherst F. P. Huang, JHY, 1704.0401 BLV 017 May 16, 017 Motivation Higgs & GW discoveries, evidence of Dark Matter, connection

More information

Higgs Physics and Cosmology

Higgs Physics and Cosmology Higgs Physics and Cosmology Koichi Funakubo Department of Physics, Saga University 1 This year will be the year of Higgs particle. The discovery of Higgs-like boson will be reported with higher statistics

More information

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition Leptogenesis from a First-Order Lepton- umber Breaking Phase Transition Andrew Long TeVPA 2017 at Ohio State University Aug 10, 2017 based on work with Andrea Tesi & Lian-Tao Wang (1703.04902 & JHEP) Bubbles!

More information

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ ) Hidden Sector Baryogenesis Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/0608188) and w/ B.D and Louis Leblond (hepth/0703278) Basic Issue low-energy interactions seem to preserve baryon

More information

An Introduction to Cosmology Lecture 2. (University of Wisconsin Madison)

An Introduction to Cosmology Lecture 2. (University of Wisconsin Madison) An Introduction to Cosmology Lecture 2 Daniel Chung (University of Wisconsin Madison) Outline of lecture 2 Quantitative elements of EW bgenesis number Explain transport eqs. for electroweak baryogenesis

More information

Electroweak phase transition with two Higgs doublets near the alignment limit

Electroweak phase transition with two Higgs doublets near the alignment limit Electroweak phase transition with two Higgs doublets near the alignment limit Jérémy Bernon The Hong Kong University of Science and Technology Based on 1712.08430 In collaboration with Ligong Bian (Chongqing

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Electroweak baryogenesis and flavor

Electroweak baryogenesis and flavor Electroweak baryogenesis and flavor Thomas Konstandin Utrecht, May 18, 2017 in collaboration with G. Servant, I. Baldes, S. Bruggisser The serendipity of electroweak baryogenesis Thomas Konstandin Geraldine

More information

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS

A New Look at the Electroweak Baryogenesis in the post-lhc Era. Jing Shu ITP-CAS A New Look at the Electroweak Baryogenesis in the post-lhc Era. W. Huang, J. S,Y. Zhang, JHEP 1303 (2013) 164 J. S,Y. Zhang, Phys. Rev. Lett. 111 (2013) 091801 W. Huang, ZF. Kang, J. S, PW. Wu, JM. Yang,

More information

Higgs Couplings and Electroweak Phase Transition

Higgs Couplings and Electroweak Phase Transition Higgs Couplings and Electroweak Phase Transition Maxim Perelstein, Cornell! ACFI Workshop, Amherst MA, September 17, 2015 Based on:! Andrew Noble, MP, 071018, PRD! Andrey Katz, MP, 1401.1827, JHEP ElectroWeak

More information

Electroweak baryogenesis after LHC8

Electroweak baryogenesis after LHC8 Electroweak baryogenesis after LHC8 Stephan Huber, University of Sussex Mainz, Germany August 2014 Moduli-induced baryogenesis [arxiv:1407.1827] WIMPy baryogenesis [arxiv:1406.6105] Baryogenesis by black

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016 What Shall We Learn from h^3 Measurement Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016 The Shape of Things to Come LHC: spin-0, elementary-looking Higgs field This field is

More information

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Kalliopi Petraki University of Melbourne (in collaboration with: R. Volkas, N. Bell, I. Shoemaker) COSMO

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

Electroweak baryogenesis as a probe of new physics

Electroweak baryogenesis as a probe of new physics Electroweak baryogenesis as a probe of new physics Eibun Senaha (Nagoya U) HPNP25@Toyama U. February 3, 25 Outline Introduction Overview of electroweak baryogenesis (EWBG) Current status EWBG in SUSY models

More information

LHC Signals of (MSSM) Electroweak Baryogenesis

LHC Signals of (MSSM) Electroweak Baryogenesis LHC Signals of (MSSM) Electroweak Baryogenesis David Morrissey Department of Physics, University of Michigan Michigan Center for Theoretical Physics (MCTP) With: Csaba Balázs, Marcela Carena, Arjun Menon,

More information

Electroweak Baryogenesis and the triple Higgs boson coupling

Electroweak Baryogenesis and the triple Higgs boson coupling Electroweak Baryogenesis and te triple Higgs boson coupling Eibun Senaa (Grad. Univ. Advanced Studies, KEK) Mar. 18-22, 2005, LCWS 05 @Stanford U. in collaboration wit Sinya Kanemura (Osaka U) Yasuiro

More information

GWs from first-order phase transitions

GWs from first-order phase transitions GWs from first-order phase transitions David J. Weir, University of Helsinki NORDITA, 5 July 2017 tinyurl.com/nordita-weir arxiv:1705.01783 and references therein 1 What's next? LISA LISA: three arms (six

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University Baryon-Dark Matter Coincidence Bhaskar Dutta Texas A&M University Based on work in Collaboration with Rouzbeh Allahverdi and Kuver Sinha Phys.Rev. D83 (2011) 083502, Phys.Rev. D82 (2010) 035004 Miami 2011

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Electroweak Baryogenesis in Non-Standard Cosmology

Electroweak Baryogenesis in Non-Standard Cosmology Electroweak Baryogenesis in Non-Standard Cosmology Universität Bielefeld... KOSMOLOGIETAG 12... Related to works in colloboration with M. Carena, A. Delgado, A. De Simone, M. Quirós, A. Riotto, N. Sahu,

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

The inert doublet model in light of LHC and XENON

The inert doublet model in light of LHC and XENON The inert doublet model in light of LHC and XENON Sara Rydbeck 24 July 212 Identification of Dark Matter, IDM 212, Chicago 1 The CERN Large Hadron Collider Only discovery so far. If no new strongly interacting

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Electroweak phase transition in the early universe and Baryogenesis

Electroweak phase transition in the early universe and Baryogenesis Electroweak phase transition in the early universe and Baryogenesis Arka Banerjee December 14, 2011 Abstract In the Standard Model, it is generally accepted that elementary particles get their masses via

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 30, 2016 4TH INTERNATIONAL WORKSHOP ON DARK MATTER,

More information

First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model Syddansk Universitet First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model Sannino, Francesco; Virkajärvi, Jussi Tuomas Published in: Physical Review D (Particles,

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

Implications of an extra U(1) gauge symmetry

Implications of an extra U(1) gauge symmetry Implications of an extra U(1) gauge symmetry Motivations 400 LEP2 (209 GeV) Higgsstrahlung Cross Section A (string-motivated) model σ(e + e - -> ZH) (fb) 350 300 250 200 150 100 50 H 1 H 2 Standard Model

More information

arxiv: v1 [hep-ph] 14 Feb 2018

arxiv: v1 [hep-ph] 14 Feb 2018 Prepared for submission to JHEP HIP-08-6/TH Electroweak phase transition and dimensional reduction of the Two-Higgs-Doublet Model arxiv:80.05056v [hep-ph] 4 Feb 08 Tyler Gorda, a Andreas Helset, b Lauri

More information

Electroweak baryogenesis in the MSSM and nmssm

Electroweak baryogenesis in the MSSM and nmssm Electroweak baryogenesis in the MSSM and nmssm Thomas Konstandin, IFAE Barcelona in collaboration with S. Huber, T. Prokopec, M.G. Schmidt and M. Seco Outline 1 Introduction The Basic Picture 2 Semiclassical

More information

Signals from a scalar singlet electroweak baryogenesis

Signals from a scalar singlet electroweak baryogenesis Signals from a scalar singlet electroweak baryogenesis Ankit Beniwal Based on: CoEPP and CSSM, Department of Physics, University of Adelaide, Australia A. Beniwal, M. Lewicki, J. D. Wells, M. White and

More information

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15 Electroweak baryogenesis in the MSSM C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, 2005 1/15 Electroweak baryogenesis in the MSSM The basics of EWBG in the MSSM Where do

More information

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis David McKeen and AEN, arxiv:1512.05359 Akshay Ghalsasi, David McKeen, AEN., arxiv:1508.05392 (Thursday: Kyle Aitken, David

More information

The physical spectrum of theories with a Brout-Englert-Higgs effect

The physical spectrum of theories with a Brout-Englert-Higgs effect The physical spectrum of theories with a Brout-Englert-Higgs effect Pascal Törek with Axel Maas and René Sondenheimer University of Graz Alps 2018, Obergurgl, 18 th of April, 2018 [1709.07477 and 1804.04453]

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Leptogenesis via the Relaxation of Higgs and other Scalar Fields Leptogenesis via the Relaxation of Higgs and other Scalar Fields Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2016 September 13th, 2016 Collaborators: Alex

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes Stefano Profumo California Institute of Technology TAPIR Theoretical AstroPhysics Including Relativity Kellogg Rad Lab Probing Supersymmetric Baryogenesis: from Electric Dipole Moments to Neutrino Telescopes

More information

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies Peter Winslow Based on: PRD 91, 035018 (2015) (arxiv:1407.5342) S. Profumo, M. Ramsey-Musolf, C. Wainwright, P. Winslow arxiv:1510.xxxx

More information

Electroweak Baryogenesis

Electroweak Baryogenesis Electroweak Baryogenesis Eibun Senaha (KIAS) Feb. 13, 2013 HPNP2013 @U. of Toyama Outline Motivation Electroweak baryogenesis (EWBG) sphaleron decoupling condition strong 1 st order EW phase transition

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Leptogenesis via varying Weinberg operator

Leptogenesis via varying Weinberg operator Silvia Pascoli IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom E-mail: silvia.pascoli@durham.ac.uk Jessica Turner Theoretical Physics Department, Fermi National Accelerator

More information

Phenomenology of low-energy flavour models: rare processes and dark matter

Phenomenology of low-energy flavour models: rare processes and dark matter IPMU February 2 nd 2016 Phenomenology of low-energy flavour models: rare processes and dark matter Lorenzo Calibbi ITP CAS, Beijing Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

The Flavour Portal to Dark Matter

The Flavour Portal to Dark Matter Dark Side of the Universe 2015 Kyoto University The Flavour Portal to Dark Matter Lorenzo Calibbi ITP CAS, Beijing December 18th 2015 Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Singlet Extension of the SM Higgs Sector

Singlet Extension of the SM Higgs Sector Singlet Extension of the SM Higgs Sector David Sommer KIT December 3, 2015 Overview Motivation for an extension of the Higgs sector Addition of a real singlet scalar (xsm Addition of a complex singlet

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Recent progress in leptogenesis

Recent progress in leptogenesis XLIII rd Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Italy, March 1-8, 2008 Recent progress in leptogenesis Steve Blanchet Max-Planck-Institut for Physics, Munich March

More information

arxiv: v1 [hep-ph] 1 Dec 2016

arxiv: v1 [hep-ph] 1 Dec 2016 PREPARED FOR SUBMISSION TO JHEP YITP-2016-48 Thermal Resummation and Phase Transitions arxiv:1612.00466v1 [hep-ph] 1 Dec 2016 David Curtin a Patrick Meade b Harikrishnan Ramani b a Maryland Center for

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Invisible Sterile Neutrinos

Invisible Sterile Neutrinos Invisible Sterile Neutrinos March 25, 2010 Outline Overview of Sterile Neutrino Dark Matter The Inert Doublet Model with 3 Singlet Fermions Non-thermal Dark Matter Conclusion Work done in collaboration

More information

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations Sky Bauman Work in collaboration with Keith Dienes Phys. Rev. D 77, 125005 (2008) [arxiv:0712.3532 [hep-th]] Phys. Rev.

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Golden SUSY, Boiling Plasma, and Big Colliders M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Outline Part I: Supersymmetric Golden Region and its Collider Signature (with Christian

More information

Explosive phase transitions in the Early Universe?

Explosive phase transitions in the Early Universe? Explosive phase transitions in the Early Universe? Guy D. Moore, with Dietrich Bödeker Scalar fields in particle physics Scalar fields in symmetry-breaking phase transitions Electroweak phase transitions

More information

Leptogenesis via Higgs Condensate Relaxation

Leptogenesis via Higgs Condensate Relaxation The Motivation Quantum Fluctuations Higgs Relaxation Leptogenesis Summary Leptogenesis via Higgs Condensate Relaxation Louis Yang Department of Physics and Astronomy University of California, Los Angeles

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

Electroweak Baryogenesis and Higgs Signatures

Electroweak Baryogenesis and Higgs Signatures Timothy Cohen (SLAC) 1/27 Electroweak Baryogenesis and Higgs Signatures Timothy Cohen (SLAC) with Aaron Pierce arxiv:1110.0482 with David Morrissey and Aaron Pierce arxiv:1203.2924 Second MCTP Spring Symposium

More information

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv: arxiv:1407.4192 Unified Dark Matter SUSY2014 Stephen J. Lonsdale The University of Melbourne In collaboration with R.R. Volkas Unified Dark Matter Motivation: Asymmetric dark matter models Asymmetric symmetry

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Strongly coupled gauge theories: What can lattice calculations teach us?

Strongly coupled gauge theories: What can lattice calculations teach us? Strongly coupled gauge theories: What can lattice calculations teach us? Anna Hasenfratz University of Colorado Boulder Rencontres de Moriond, March 21 216 Higgs era of particle physics The 212 discovery

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London 17 th Lomonosov Conference Moscow 20-26/08/2015 Two possibilities to define fermion mass ν R ν L ν L = ν L ν R ν R = ν R ν L Dirac mass analogous

More information

LHC searches for momentum dependent DM interactions

LHC searches for momentum dependent DM interactions LHC searches for momentum dependent interactions Daniele Barducci w/ A. Bharucha, Desai, Frigerio, Fuks, Goudelis, Kulkarni, Polesello and Sengupta arxiv:1609.07490 Daniele Barducci LHC searches for momentum

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information