Scaling of Magnetic Reconnection in Collisional and Kinetic Regimes

Size: px
Start display at page:

Download "Scaling of Magnetic Reconnection in Collisional and Kinetic Regimes"

Transcription

1 Scaling of Magnetic Reconnection in Collisional and Kinetic Regimes William Daughton Los Alamos National Laboratory Collaborators: Vadim Roytershteyn, Brian Albright H. Karimabadi, Lin Yin & Kevin Bowers LA-UR

2 Scaling Approach in Physics Physicists like to identify relevant dimensionless parameters and use these to develop scalings Very powerful - can collapse an infinite number of physical problems into a single dimensionless problem However, there are potential pitfalls: 1. Failure to identify all dimensionless parameters 2. Dangerous to extrapolate too far -- new physics?

3 Example - Flow drag on a sphere Stokes Flow - Re < 0.5 Laminar Wake Turbulent boundary layer Re > 10 5 Experimental Data log C D The Drag Force on a Sphere (UMAP Journal, Volume 12, no. 1, Spring 1991, pp ), log Re

4 Why is this relevant for reconnection? Scaling even a single parameter can be complicated as new dynamical regimes are encountered New regimes may profoundly alter scalings Reconnection has many dimensionless parameters Equations may actually change - fluid vs kinetic Scaling studies are quite limited and only 2D We are close for some applications; while others are quite hopeless for any foreseeable computer

5 Two Key Parameters in Scaling Studies Earth s magnetosphere Solar Corona & Stellar Flares accretion disks, magnetars Lundquist - S L/d i Computer Simulations Laboratory Experiments < 10 5 < 400 < Which parameter is most relevant? It depends on the regime - collisional vs kinetic

6 Length of diffusion region is central issue We don t have a rigorous theory of how this is set in either collisional or kinetic regimes Various Ideas: 1. Two-fluid physics (Hall, electron pressure, dispersive waves) 2. Secondary magnetic islands (plasmoids) 3. Form of non-ideal terms in Ohm s law P e 4. Kinetic instabilities in layer or outflow jet 5. MHD turbulence 6. Intrinsically 3D effects 7. Boundary conditions - macroscopic driver Unlikely there is only one right answer - perhaps all have some merit in certain regimes?

7 Is Nature Subtle or Malicious? Mass Ratio Plasma Regime Scale Separation Dispersive Waves Non-Ideal Term Rate m i m e B g B o P Yes Whistler ~0.1 m i m e B g B o Yes Kinetic Alfven P ~0.1 m i = m e T i = T e B g B o P No No ~0.1 m i = m e T i = T e B g B o P No No ~0.1 m i = m e T i T e P Yes No ~0.1 Is a Unified Theory of reconnection possible?

8 Focus of this Talk: What is scaling within resistive MHD? When does MHD model break down? New approach to bridge between regimes What role do plasmoids play? Emerging parameter space map of regimes Real world is 3D - many new uncertainties

9 Scaling of Resistive MHD

10 Resistive MHD is the usual starting point Sweet-Parker Model L sp 2δ sp U in V A = δ sp L sp = 1 S 1/2 S 4πV AL sp ηc 2 = τ R τ A Slow scaling has motivated research for 50+ years - Petschek, anomalous resistivity, turbulence, two-fluid & kinetic effects, 3D,...

11 Petschek Reconnection ~ 1964 U in U in V A δ V A U in B D B Slow-Shocks V A 1 log(s) Rates consistent with observations Widely accepted for 20+ years Not correct for uniform or Spitzer resistivity Requires localized anomalous dissipation Ugai and Tsuda, 1977 Biskamp, 1986 Yan, Lee, and Priest,1992 Uzdensky and Kulsrud, 2000

12 Sweet-Parker is Not Correct for S > 10 4 MHD Simulations - Mattheaus 1985, Biskamp 86, Yan 92, Malara, 92 Linear theory - Loureiro 07, Bhattacharjee 09, Samtaney 09 N p S 3/8 Increasingly violent for large S τ A γ S 1/4 Two important consequences: 1. Faster reconnection - Lapenta 08, Bhattacharjee 09, Cassak Push towards kinetic scales - Shibata 01, Daughton 09, Cassak 09

13 When does MHD break down? i.e. for basic physics studies

14 Two ways in which resistive MHD may break 1. Resistive layers approach ion kinetic scale 2. Electric fields approach Dreicer runaway limit E cr (m e T e ) 1/2 ν ee /e Using collisional SP scaling E y E cr ( ρi δ sp )( me m i ) 1/2 1 β 1/2 Runaway requires: 1. Electron scale layers or 2. Extremely large guide field β (m e /m i )

15 Clear evidence that MHD fails for ion scale layers Sweet-Parker thickness 2L sp 2δ sp δ sp L sp S 1/2 (L sp η) 1/2 δ sp > d i,ρ s δ sp d i,ρ s Collisional Regime Kinetic Regime Theory & Simulation Aydemir, 1992 Ma & Bhattacharjee, GRL, 1996 Cassak et al, PRL, 2005 Uzdensky, PRL, 2007 Simakov & Chacon, PRL, 2008 Malyshkin, PRL, 2008 Lab. Experiments Ren et al, PRL, 2005 Egedal et al, PRL, 2007 Critical Resistivity ˆη d i L sp 4d i L x ˆη c Cassak et al, 05, 06 Uzdensky, 07 Length & role of electron layers?

16 Transition well Verified in Two-Fluid Simulations Cassak et al, 2006 Sweet-Parker Kinetic

17 Can we study transition with kinetic approach? f s t + v f s x + q s m s ( E + v B ) c f s v = s C ss + Maxwell s Equations Fokker-Planck Collision Operator Advantages of this approach: 1. Rigorous treatment of transition & super Dreicer fields 2. Full treatment of ion and electron kinetic effects 3. Better understand laboratory experiments 4. Influence of plasmoids on transition to kinetic regimes 1. Phys. Plasmas 16, (2009) 2. Phys Rev. Lett. 103, (2009) 3. Daughton et al, 2010

18 Transition is Clearly Observed in Collisional PIC z d i L x = 100 ˆη o =0.1 tω ci =50 Sweet-Parker Regime J y tω ci = 120 x/d i d i J y Kinetic Regime x/d i

19 Strong confirmation that Hall physics is playing a central role in this transition However, there are still some outstanding discrepancies between two-fluid & kinetic

20 Electron layers are much shorter in two-fluid z d i m i /m e = 300 Rogers et al, 2001 L 0.3d i x/d i m i /m e =25 Cassak et al, 2001 L 0.2d i Sullivan al, 2009 m i /m e =25 L 0.8d i

21 Collisional PIC simulations have much longer layers Unstable to plasmoids z d i z d i tω io = 140 tω io =160 Dramatically different than two-fluid simulations z d i tω io =180.. but very similar to collisionless PIC results z d i tω io =190 Daughton et al, 2006 Karimabadi et al, 2007 Klimas et al, 2008 z d i tω io =200 x/d i

22 Cluster observations support notion of elongated electron layers 1. Li-Jen Chen et al, Secondary islands within reconnecting electron layer L 5d i 2. Phan et al, Highly extended electron jets > 60d i

23 Runaway Fields Require Collisionless Mechanisms Can balance non-ideal field with either 1. P e 2. Plasma instabilities 1 See Roytershteyn et al, PoP Rei/FNI ν E y /E crit

24 Runaway Fields Require Collisionless Mechanisms Can balance non-ideal field with either 1. P e 2. Plasma instabilities 1 See Roytershteyn et al, PoP Rei/FNI e NI ν E y /E crit

25 Influence of Plasmoids on the Transition to Kinetic Regimes n-1 n-1 Really insightful paper by Shibata & Tanuma, 2001 n n+1 n n+1

26 10 tω ci = 200 J y z Time Evolution for our largest Case d i tω ci io = = J y z L x = 800d i d i tω ci =425 J y z Daughton et al, Phys Rev. Lett., 2009 d i 10 New plasmoids 0 x/d i 800

27 Transitions much sooner than expected from simple estimate that neglects plasmoids ER L x = 200d i L x = 400d i L x = 800d i Repeated formation of new plasmoids ˆη ˆη c Transition Resistivity 4x larger than simple estimate δ sp d i tω io

28 Can we construct new transition estimates? Assume: 1. Plasmoid scaling N p ~ ( S /S crit ) 2. New layers obey SP scaling Cassak,09 Bhattacharjee,10 Rate in collisional regime is much faster Transition to kinetic regime occurs much sooner E R S (1)/ 2 ˆ c ei 1/(1+ ) ce /(1+ ) S crit d i L x 1 +1 Various simulations show 0.6 1

29 The limit ~1 is particularly interesting Transition resistivity for i ˆ c ei ce 1/2 1/2 S crit independent of system size Plasmoids will push evolution to kinetic scales if S > S crit ~10 4 ei ce < S crit 1/2 ~ 1/2 100

30 Emerging Map of Reconnection Regimes log(s) Collisionless c~ 1/L (stable SP SP Laye Layer) c 1/ Kinetic i c~ 1/Sc 1/2 -P Plasmoid induced c Runaway a fields R~0.1 Collisional MHD with Plasmoids e~e Collisional - Sweet-Parker Regime Assume Np~S log(l/d i )

31 Future Uncertainties: Scaling studies have all been limited to 2D!

32 Island formation is more complicated in 3D Drift Tearing - Coppi et al, 1979, Catto et al, 1974, Gladd, 1990, Daughton et al, 2005 Percolation - Galeev, Kuznetsova, Zeleny, 1986 Volume filling islands - Drake et al, Nature, 2006 Galeev et al, 1986 Drake et al, 2006

33 2D vs 3D Dynamics is Quite Different J m i = m e 2D 10 6 cells J 3D cut z 10 9 cells x 240d i 1024 cells

34 Primary & secondary islands form a spectrum interacting oblique flux ropes See movies m i m e =1

35 Electron layers that form along separatrices are also unstable to secondary islands 2D Simulation z d i m i m e = 100 in-plane current z d i x/d i

36 Under certain conditions, theory & simulations suggest a spectrum of oblique flux ropes m i /m e Flux ropes may interact differently than islands in 2D models

Reconnection and the Formation of Magnetic Islands in MHD Models

Reconnection and the Formation of Magnetic Islands in MHD Models Reconnection and the Formation of Magnetic Islands in MHD Models N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, R. Samtaney and S. C. Cowley Yosemite 2010 Reconnection Workshop Introduction (I) In

More information

Magnetic Reconnection: Recent Developments and Future Challenges

Magnetic Reconnection: Recent Developments and Future Challenges Magnetic Reconnection: Recent Developments and Future Challenges A. Bhattacharjee Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART) Space Science Center, University

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

Magnetic reconnection in high-lundquist-number plasmas. N. F. Loureiro Instituto de Plasmas e Fusão Nuclear, IST, Lisbon, Portugal

Magnetic reconnection in high-lundquist-number plasmas. N. F. Loureiro Instituto de Plasmas e Fusão Nuclear, IST, Lisbon, Portugal Magnetic reconnection in high-lundquist-number plasmas N. F. Loureiro Instituto de Plasmas e Fusão Nuclear, IST, Lisbon, Portugal Collaborators: R. Samtaney, A. A. Schekochihin, D. A. Uzdensky 53 rd APS

More information

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Nick Murphy Harvard-Smithsonian Center for Astrophysics namurphy@cfa.harvard.edu http://www.cfa.harvard.edu/ namurphy/ November 18,

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

Magnetic Reconnection for Coronal Conditions: Reconnection Rates, Secondary Islands and Onset

Magnetic Reconnection for Coronal Conditions: Reconnection Rates, Secondary Islands and Onset Space Sci Rev (2012) 172:283 302 DOI 10.1007/s11214-011-9755-2 Magnetic Reconnection for Coronal Conditions: Reconnection Rates, Secondary Islands and Onset P.A. Cassak M.A. Shay Received: 8 August 2010

More information

Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland

Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland Magnetic Reconnection: dynamics and particle acceleration J. F. Drake University of Maryland M. Swisdak University of Maryland T. Phan UC Berkeley E. Quatert UC Berkeley R. Lin UC Berkeley S. Lepri U Michican

More information

The hall effect in magnetic reconnection: Hybrid versus Hall-less hybrid simulations

The hall effect in magnetic reconnection: Hybrid versus Hall-less hybrid simulations Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L07107, doi:10.1029/2009gl037538, 2009 The hall effect in magnetic reconnection: Hybrid versus Hall-less hybrid simulations K. Malakit,

More information

Dissipation Mechanism in 3D Magnetic Reconnection

Dissipation Mechanism in 3D Magnetic Reconnection Dissipation Mechanism in 3D Magnetic Reconnection Keizo Fujimoto Computational Astrophysics Laboratory, RIKEN Reconnection (in the Earth Magnetosphere) Coroniti [1985] 10 km 10 5 km 10 3 km Can induce

More information

arxiv: v3 [astro-ph.he] 15 Jun 2018

arxiv: v3 [astro-ph.he] 15 Jun 2018 Draft version June 18, 2018 Preprint typeset using L A TEX style AASTeX6 v. 1.0 INTRODUCTION TO MAGNETIC RECONNECTION Amir Jafari and Ethan Vishniac Department of Physics & Astronomy, Johns Hopkins University,

More information

Gyrokinetic Simulations of Tearing Instability

Gyrokinetic Simulations of Tearing Instability Gyrokinetic Simulations of Tearing Instability July 6, 2009 R. NUMATA A,, W. Dorland A, N. F. Loureiro B, B. N. Rogers C, A. A. Schekochihin D, T. Tatsuno A rnumata@umd.edu A) Center for Multiscale Plasma

More information

arxiv: v1 [physics.plasm-ph] 12 Oct 2016

arxiv: v1 [physics.plasm-ph] 12 Oct 2016 Activation of MHD reconnection on ideal timescales arxiv:1614481v1 [physics.plasm-ph] 12 Oct 2016 S. Landi 1,2, E. Papini 3, L. Del Zanna 1,2,4, A. Tenerani 5, F. Pucci 6 1 Dipartimento di Fisica e Astronomia,

More information

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications 3D Reconnection of Weakly Stochastic Magnetic Field and its Implications Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration:

More information

Magnetic Reconnection

Magnetic Reconnection Magnetic Reconnection J. Egedal In collaboration with Joe Olson, Cary Forest and the MPDX team UW-Madison, WI Les Houches, March, 2015 Madison Plasma Dynamo experiment 2 Key new hardware for TREX Cylindrical

More information

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

More information

Solar Flare. A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona)

Solar Flare. A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona) Solar Flares Solar Flare A solar flare is a sudden brightening of solar atmosphere (photosphere, chromosphere and corona) Flares release 1027-1032 ergs energy in tens of minutes. (Note: one H-bomb: 10

More information

THE IMPACT OF MICROSCOPIC MAGNETIC RECONNECTION ON PRE-FLARE ENERGY STORAGE

THE IMPACT OF MICROSCOPIC MAGNETIC RECONNECTION ON PRE-FLARE ENERGY STORAGE The Astrophsical Journal, 77:L158 L16, 9 December C 9. The American Astronomical Societ. All rights reserved. Printed in the U.S.A. doi:1.188/4-637x/77//l158 THE IMPACT OF MICROSCOPIC MAGNETIC RECONNECTION

More information

Asymmetric Magnetic Reconnection in the Solar Atmosphere

Asymmetric Magnetic Reconnection in the Solar Atmosphere Asymmetric Magnetic Reconnection in the Solar Atmosphere Nick Murphy Harvard-Smithsonian Center for Astrophysics October 23, 2013 NASA Goddard Space Flight Center Collaborators and Co-Conspirators: John

More information

The secrets of the ion diffusion region in collisionless magnetic reconnection

The secrets of the ion diffusion region in collisionless magnetic reconnection EGU2014-3245 The secrets of the ion diffusion region in collisionless magnetic reconnection Seiji ENITANI National Astronomical Observatory of Japan I. Shinohara (JAXA/ISAS) T. Nagai (Titech) T. Wada (NAOJ)

More information

Asymmetric Magnetic Reconnection and the Motion of Magnetic Null Points

Asymmetric Magnetic Reconnection and the Motion of Magnetic Null Points Asymmetric Magnetic Reconnection and the Motion of Magnetic Null Points Nick Murphy Harvard-Smithsonian Center for Astrophysics 10th Cambridge Workshop on Magnetic Reconnection Santa Fe, New Mexico September

More information

MAGNETIC RECONNECTION: SWEET-PARKER VERSUS PETSCHEK

MAGNETIC RECONNECTION: SWEET-PARKER VERSUS PETSCHEK MAGNETIC RECONNECTION: SWEET-PARKER VERSUS PETSCHEK RUSSELL M. KULSRUD Princeton Plasma Physics Laboratory rmk@pppl.gov arxiv:astro-ph/775v1 6 Jul 2 February 1, 28 Abstract The two theories for magnetic

More information

arxiv: v2 [astro-ph.sr] 19 Sep 2016

arxiv: v2 [astro-ph.sr] 19 Sep 2016 Draft version September 27, 218 Preprint typeset using L A TEX style emulateapj v. 5/2/11 IDEALLY UNSTABLE CURRENT SHEETS AND THE TRIGGERING OF FAST MAGNETIC RECONNECTION Anna Tenerani EPSS, UCLA, Los

More information

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2

Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 Special topic JPFR article Prospects of Research on Innovative Concepts in ITER Era contribution by M. Brown Section 5.2.2 5.2.2 Dynamo and Reconnection Research: Overview: Spheromaks undergo a relaxation

More information

Fast Secondary Reconnection and the Sawtooth Crash

Fast Secondary Reconnection and the Sawtooth Crash Fast Secondary Reconnection and the Sawtooth Crash Maurizio Ottaviani 1, Daniele Del Sarto 2 1 CEA-IRFM, Saint-Paul-lez-Durance (France) 2 Université de Lorraine, Institut Jean Lamour UMR-CNRS 7198, Nancy

More information

Magnetic Reconnection in Space Plasmas

Magnetic Reconnection in Space Plasmas Magnetic Reconnection in Space Plasmas Lin-Ni Hau et al. Institute of Space Science Department of Physics National Central University, Taiwan R.O.C. EANAM, 2012.10.31 Contents Introduction Some highlights

More information

Hybrid Simulations of Magnetic Reconnection with Kinetic Ions and Fluid Electron Pressure Anisotropy. Abstract

Hybrid Simulations of Magnetic Reconnection with Kinetic Ions and Fluid Electron Pressure Anisotropy. Abstract Hybrid Simulations of Magnetic Reconnection with Kinetic Ions and Fluid Electron Pressure Anisotropy A. Le, 1 W. Daughton, 1 H. Karimabadi, 2 and J. Egedal 3 1 Los Alamos National Laboratory, Los Alamos,

More information

Fractal Structure (Turbulence) and SOC of a Current Sheet in a Solar Flare via Dynamic Magnetic Reconnection

Fractal Structure (Turbulence) and SOC of a Current Sheet in a Solar Flare via Dynamic Magnetic Reconnection 16-20 Sep 2013 ISSI team meating@bern ``Turbulence and Self-Organized Criticality 17 Sep 2013 (Tue), 09:30h-10:30h Fractal Structure (Turbulence) and SOC of a Current Sheet in a Solar Flare via Dynamic

More information

Asymmetric Magnetic Reconnection in the Solar Atmosphere

Asymmetric Magnetic Reconnection in the Solar Atmosphere Asymmetric Magnetic Reconnection in the Solar Atmosphere Nick Murphy Harvard-Smithsonian Center for Astrophysics November 1, 2013 MIT PSFC Seminar Collaborators and Co-Conspirators: John Raymond, Mari

More information

arxiv: v1 [astro-ph.sr] 30 Jun 2016

arxiv: v1 [astro-ph.sr] 30 Jun 2016 Fractal Reconnection in Solar and Stellar Environments Kazunari Shibata and Shinsuke Takasao arxiv:1606.09401v1 [astro-ph.sr] 30 Jun 2016 Abstract Recent space based observations of the Sun revealed that

More information

Fast magnetic reconnection via jets and current micro-sheets

Fast magnetic reconnection via jets and current micro-sheets Fast magnetic reconnection via jets and current micro-sheets P. G. Watson Center for Magnetic Reconnection Studies, Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin,

More information

Scaling of asymmetric magnetic reconnection: General theory and collisional simulations

Scaling of asymmetric magnetic reconnection: General theory and collisional simulations PHYSICS OF PLASMAS 14, 10114 007 Scaling of asymmetric magnetic reconnection: General theory and collisional simulations P A Cassak and M A Shay Department of Physics and Astronomy, University of Delaware,

More information

Fast Magnetic Reconnection in Fluid Models of (Pair) Plasma

Fast Magnetic Reconnection in Fluid Models of (Pair) Plasma Fast Magnetic Reconnection in Fluid Models of (Pair) Plasma E. Alec Johnson Department of Mathematics, UW-Madison Presented on September 10, 2009, Postdoctoral Research Symposium, Argonne National Laboratories.

More information

Physical mechanism of spontaneous fast reconnection evolution

Physical mechanism of spontaneous fast reconnection evolution Earth Planets Space, 53, 431 437, 2001 Physical mechanism of spontaneous fast reconnection evolution M. Ugai Department of Computer Science, Faculty of Engineering, Ehime University, Matsuyama 790-8577,

More information

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment KB Chai Korea Atomic Energy Research Institute/Caltech Paul M.

More information

Magnetic Fields in Stellar Astrophysics

Magnetic Fields in Stellar Astrophysics Magnetic Fields in Stellar Astrophysics A White Paper Submitted to the Astro-2010 Decadal Survey Dmitri A. Uzdensky, Princeton University; uzdensky@astro.princeton.edu Cary Forest, University of Wisconsin,

More information

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 B. Srinivasan 2, U. Shumlak Aerospace and Energetics Research Program University of Washington,

More information

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability V.V.Mirnov, C.C.Hegna, S.C.Prager APS DPP Meeting, October 27-31, 2003, Albuquerque NM Abstract In the most general case,

More information

Cosmic Ray Acceleration by Magnetic Reconnection

Cosmic Ray Acceleration by Magnetic Reconnection Cosmic Ray Acceleration by Magnetic Reconnection Black Hole sources are Cosmic Ray (CR) accelerators and Very High Energy (VHE) emitters AGNs (blazars, radio-galaxies, seyferts) Black Hole Binaries (Microquasars)

More information

SM12A-04 Magnetic diffusion and ion nonlinear dynamics in magnetic reconnection

SM12A-04 Magnetic diffusion and ion nonlinear dynamics in magnetic reconnection SM12A-04 Magnetic diffusion and ion nonlinear dynamics in magnetic reconnection Seiji ZENITANI National Astronomical Observatory of Japan Collaborators: I. Shinohara (JAXA/ISAS), T. Nagai (Titech), T.

More information

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch 1 Two Fluid Dynamo and Edge-Resonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of Wisconsin-Madison, Madison,

More information

Random Walk on the Surface of the Sun

Random Walk on the Surface of the Sun Random Walk on the Surface of the Sun Chung-Sang Ng Geophysical Institute, University of Alaska Fairbanks UAF Physics Journal Club September 10, 2010 Collaborators/Acknowledgements Amitava Bhattacharjee,

More information

Magne&c Reconnec&on. Its role in CMEs & flares part II Lecture 4 Jan. 30, 2017

Magne&c Reconnec&on. Its role in CMEs & flares part II Lecture 4 Jan. 30, 2017 Magne&c Reconnec&on Its role in CMEs & flares part II Lecture 4 Jan. 30, 2017 Last Time: Reconnec&on paradox Ideal region E = - u B 0 External E set by inner solu&on diffusion region E + u B 0 How reconnec&on

More information

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016

Beyond Ideal MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 8, 2016 Beyond Ideal MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 8, 2016 These lecture notes are largely based on Plasma Physics for Astrophysics by

More information

arxiv: v1 [physics.plasm-ph] 4 May 2015

arxiv: v1 [physics.plasm-ph] 4 May 2015 Under consideration for publication in J. Plasma Phys. 1 arxiv:1505.00726v1 [physics.plasm-ph] 4 May 2015 Phase Diagrams of Forced Magnetic Reconnection in Taylor s Model L. C O M I S S O 1, D. G R A S

More information

Magnetic Reconnection in Plasmas: a Celestial Phenomenon in the Laboratory

Magnetic Reconnection in Plasmas: a Celestial Phenomenon in the Laboratory Magnetic Reconnection in Plasmas: a Celestial Phenomenon in the Laboratory Jan Egedal MIT Physics Department, Plasma Science & Fusion Center Cambridge, USA Key Collaborators MIT Graduate Students: MIT

More information

MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field

MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field MHD Simulation of Solar Chromospheric Evaporation Jets in the Oblique Coronal Magnetic Field Y. Matsui, T. Yokoyama, H. Hotta and T. Saito Department of Earth and Planetary Science, University of Tokyo,

More information

A saddle-node bifurcation model of magnetic reconnection onset

A saddle-node bifurcation model of magnetic reconnection onset PHYSICS OF PLASMAS 17, 062105 2010 A saddle-node bifurcati model of magnetic recnecti set P. A. Cassak, 1 M. A. Shay, 2 and J. F. Drake 3 1 Department of Physics, West Virginia University, Morgantown,

More information

How Anomalous Resistivity Accelerates Magnetic Reconnection

How Anomalous Resistivity Accelerates Magnetic Reconnection APS/123-QED How Anomalous Resistivity Accelerates Magnetic Reconnection H. Che University of Maryland, College Park, MD, 20742, USA and NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA (Dated:

More information

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma: Phys780: Plasma Physics Lecture 20. Alfven Waves. 1 20. Alfven waves ([3], p.233-239; [1], p.202-237; Chen, Sec.4.18, p.136-144) We have considered two types of waves in plasma: 1. electrostatic Langmuir

More information

Self-organization of Reconnecting Plasmas to a Marginally Collisionless State. Shinsuke Imada (Nagoya Univ., STEL)

Self-organization of Reconnecting Plasmas to a Marginally Collisionless State. Shinsuke Imada (Nagoya Univ., STEL) Self-organization of Reconnecting Plasmas to a Marginally Collisionless State Shinsuke Imada (Nagoya Univ., STEL) Introduction The role of Magnetic reconnection Solar Flare Coronal heating, micro/nano-flare

More information

Scaling of asymmetric Hall magnetic reconnection

Scaling of asymmetric Hall magnetic reconnection Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L1910, doi:10.109/008gl03568, 008 Scaling of asymmetric Hall magnetic reconnection P. A. Cassak 1 and M. A. Shay 1 Received 7 July 008;

More information

Magnetic Reconnection with Sweet-Parker Characteristics in. Two-dimensional Laboratory Plasmas. Abstract

Magnetic Reconnection with Sweet-Parker Characteristics in. Two-dimensional Laboratory Plasmas. Abstract Magnetic Reconnection with Sweet-Parker Characteristics in Two-dimensional Laboratory Plasmas Hantao Ji, Masaaki Yamada, Scott Hsu, Russell Kulsrud, Troy Carter, and Sorin Zaharia Plasma Physics Laboratory,

More information

Magnetic field reconnection is said to involve an ion diffusion region surrounding an

Magnetic field reconnection is said to involve an ion diffusion region surrounding an The magnetic field reconnection site and dissipation region by P.L. Pritchett 1 and F.S. Mozer 2 1. Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 2. Space Sciences Laboratory, University

More information

Onset of magnetic reconnection in the presence of a normal magnetic field: Realistic ion to electron mass ratio

Onset of magnetic reconnection in the presence of a normal magnetic field: Realistic ion to electron mass ratio JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015371, 2010 Onset of magnetic reconnection in the presence of a normal magnetic field: Realistic ion to electron mass ratio P. L. Pritchett

More information

11. SIMILARITY SCALING

11. SIMILARITY SCALING 11. SIMILARITY SCALING In Section 10 we introduced a non-dimensional parameter called the Lundquist number, denoted by S. This is just one of many non-dimensional parameters that can appear in the formulations

More information

arxiv: v1 [astro-ph.sr] 13 Aug 2014

arxiv: v1 [astro-ph.sr] 13 Aug 2014 **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific Reconnection in turbulent astrophysical fluids arxiv:1408.3134v1 [astro-ph.sr]

More information

arxiv: v2 [astro-ph] 5 Feb 2008

arxiv: v2 [astro-ph] 5 Feb 2008 Submitted to Ap. J. Lett., October 16, 2007. Re-submitted January 15, 2008, Available at arxiv:0710.3399 arxiv:0710.3399v2 [astro-ph] 5 Feb 2008 From Solar and Stellar Flares to Coronal Heating: Theory

More information

Hybrid Simulations: Numerical Details and Current Applications

Hybrid Simulations: Numerical Details and Current Applications Hybrid Simulations: Numerical Details and Current Applications Dietmar Krauss-Varban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space

More information

Two-fluid theory of collisionless magnetic reconnection

Two-fluid theory of collisionless magnetic reconnection Two-fluid theory of collisionless magnetic reconnection D. Biskamp and E. Schwarz Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany J. F. Drake Institute for Plasma Research, University of

More information

Kinetic theory and simulation of collisionless tearing in bifurcated current sheets

Kinetic theory and simulation of collisionless tearing in bifurcated current sheets University of Iowa Iowa Research Online Theses and Dissertations 2008 Kinetic theory and simulation of collisionless tearing in bifurcated current sheets Tatsuki Matsui University of Iowa Copyright 2008

More information

Forced hybrid-kinetic turbulence in 2D3V

Forced hybrid-kinetic turbulence in 2D3V Forced hybrid-kinetic turbulence in 2D3V Silvio Sergio Cerri1,2 1 In collaboration with: 3 F. Califano, F. Rincon, F. Jenko4, D. Told4 1 Physics Department E. Fermi, University of Pisa, Italy fu r Plasmaphysik,

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information

IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE

IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE Z. Vörös 1,2,3 E. Yordanova 4 A. Varsani 2, K. Genestreti 2 1 Institute of Physics, University of Graz, Austria 2 Space Research Institute,

More information

27th IAEA Fusion Energy Conference Ahmedabad, India. October 22 27, 2018

27th IAEA Fusion Energy Conference Ahmedabad, India. October 22 27, 2018 Advances in Runaway Electron Control and Model Validation for ITER by C. Paz-Soldan1 with contributions from: N. Eidietis,1 E. Hollmann,2 A. Lvovskiy,3 C. Cooper,3 J. Herfindal,4 R. Moyer,2 D. Shiraki,4

More information

Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts

Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts Masaaki Yamada, Jongsoo Yoo, and Clayton E. Myers Princeton Plasma

More information

An Explosive Scaling Law for Nonlinear Magnetic Reconnection and Its Insensitivity to Microscopic Scales )

An Explosive Scaling Law for Nonlinear Magnetic Reconnection and Its Insensitivity to Microscopic Scales ) An Explosive Scaling Law for Nonlinear Magnetic Reconnection and Its Insensitivity to Microscopic Scales ) Makoto IROTA Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577, Japan (Received

More information

Review of electron-scale current-layer dissipation in kinetic plasma turbulence

Review of electron-scale current-layer dissipation in kinetic plasma turbulence Meeting on Solar Wind Turbulence Kennebunkport, ME, June 4-7, 2013 Review of electron-scale current-layer dissipation in kinetic plasma turbulence Minping Wan University of Delaware W. H. Matthaeus, P.

More information

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets Deciphering the Violent Universe, Playa del Carmen, December 11-15, 2017 Accretion disk coronae Star Formation

More information

arxiv: v1 [physics.space-ph] 23 Jan 2014

arxiv: v1 [physics.space-ph] 23 Jan 2014 Manuscript prepared for with version 3.1 of the L A TEX class copernicus2.cls. Date: 24 January 2014 Collisionless Magnetic Reconnection in Space Plasmas arxiv:1401.5995v1 [physics.space-ph] 23 Jan 2014

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center

Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center Why is the Solar Corona So Hot? James A. Klimchuk Heliophysics Divison NASA Goddard Space Flight Center Total Solar Eclipse Aug. 1, 2008 M. Druckmuller Coronal Soft X-rays Yohkoh / SXT Surface Magnetic

More information

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学,

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学, RKK ( ) BHmag2012,, 2012.2.29 Outline Motivation and basis: Magnetic reconnection around astrophysical black holes Standard equations of resistive GRMHD Test calculations of resistive GRMHD A simulation

More information

Magnetic Reconnection Controlled by Multi-Hierarchy Physics in an Open System

Magnetic Reconnection Controlled by Multi-Hierarchy Physics in an Open System Magnetic Reconnection Controlled by Multi-Hierarchy Physics in an Open System Ritoku HORIUCHI 1,2), Shunsuke USAMI 1), Hiroaki OHTANI 1,2) and Toseo MORITAKA 3) 1) National Institute for Fusion Science,

More information

The process of electron acceleration during collisionless magnetic reconnection

The process of electron acceleration during collisionless magnetic reconnection PHYSICS OF PLASMAS 13, 01309 006 The process of electron acceleration during collisionless magnetic reconnection X. R. Fu, Q. M. Lu, and S. Wang CAS Key Laboratory of Basic Plasma Physics, School of Earth

More information

Radia%ve Magne%c Reconnec%on. in Astrophysical Plasmas. Dmitri Uzdensky. (University of Colorado, Boulder) collaborators:

Radia%ve Magne%c Reconnec%on. in Astrophysical Plasmas. Dmitri Uzdensky. (University of Colorado, Boulder) collaborators: Radia%ve Magne%c Reconnec%on collaborators: in Astrophysical Plasmas Dmitri Uzdensky (University of Colorado, Boulder) - B. CeruF *, G. Werner, K. Nalewajko, M. Begelman (Univ. Colorado) - A. Spitkovsky

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

November 2, Monday. 17. Magnetic Energy Release

November 2, Monday. 17. Magnetic Energy Release November, Monday 17. Magnetic Energy Release Magnetic Energy Release 1. Solar Energetic Phenomena. Energy Equation 3. Two Types of Magnetic Energy Release 4. Rapid Dissipation: Sweet s Mechanism 5. Petschek

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Magnetic reconnection with Sweet-Parker characteristics in two-dimensional laboratory plasmas*

Magnetic reconnection with Sweet-Parker characteristics in two-dimensional laboratory plasmas* PHYSICS OF PLASMAS VOLUME 6, NUMBER 5 MAY 1999 Magnetic reconnection with Sweet-Parker characteristics in two-dimensional laboratory plasmas* Hantao Ji,,a) Masaaki Yamada, Scott Hsu, Russell Kulsrud, Troy

More information

Possible two-step solar energy release mechanism due to turbulent magnetic reconnection

Possible two-step solar energy release mechanism due to turbulent magnetic reconnection PHYSICS OF PLASMAS 12, 052901 2005 Possible two-step solar energy release mechanism due to turbulent magnetic reconnection Quan-Lin Fan, a Xue-Shang Feng, and Chang-Qing Xiang SIGMA Weather Group, Laboratory

More information

Progress in Vlasov-Fokker- Planck simulations of laserplasma

Progress in Vlasov-Fokker- Planck simulations of laserplasma Progress in Vlasov-Fokker- Planck simulations of laserplasma interactions C. P. Ridgers, M. W. Sherlock, R. J. Kingham, A.Thomas, R. Evans Imperial College London Outline Part 1 simulations of long-pulse

More information

PUBLICATIONS. Geophysical Research Letters. Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection

PUBLICATIONS. Geophysical Research Letters. Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection PUBLICATIONS RESEARCH LETTER Special Section: First results from NASA's Magnetospheric Multiscale (MMS) Mission Key Points: Where the sunward normal electric field overlaps the magnetic field reversal

More information

Kinetic Plasma Simulations in Astrophysics. Lorenzo Sironi

Kinetic Plasma Simulations in Astrophysics. Lorenzo Sironi Kinetic Plasma Simulations in Astrophysics Lorenzo Sironi Outline Plasma physics in astrophysics. The Vlasov-Maxwell system. Fully-kinetic particle-in-cell codes. 1. Electrostatic codes. 2. Electromagnetic

More information

Asymmetric Magnetic Reconnection in the Solar Atmosphere

Asymmetric Magnetic Reconnection in the Solar Atmosphere Asymmetric Magnetic Reconnection in the Solar Atmosphere Nick Murphy Harvard-Smithsonian Center for Astrophysics Pre-Hurricane NIMROD Team Meeting Providence, Rhode Island October 27, 2012 Collaborators:

More information

Magneto-Fluid Coupling in Dynamic Finely Structured Solar Atmosphere Theory and Simulation

Magneto-Fluid Coupling in Dynamic Finely Structured Solar Atmosphere Theory and Simulation Magneto-Fluid Coupling in Dynamic Finely Structured Solar Atmosphere Theory and Simulation Nana L. Shatashvili 1,2, In collaboration with S. M. Mahajan 2, Z. Yoshida 3 R. Miklaszewski 4 & K.I. Nikol skaya

More information

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows TH/P3-3 High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows A. Bierwage 1), S. Benkadda 2), M. Wakatani 1), S. Hamaguchi 3), Q. Yu

More information

Jet Stability: A computational survey

Jet Stability: A computational survey Jet Stability Galway 2008-1 Jet Stability: A computational survey Rony Keppens Centre for Plasma-Astrophysics, K.U.Leuven (Belgium) & FOM-Institute for Plasma Physics Rijnhuizen & Astronomical Institute,

More information

MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest. St Andrews

MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest. St Andrews MAGNETOHYDRODYNAMICS - 2 (Sheffield, Sept 2003) Eric Priest St Andrews CONTENTS - Lecture 2 1. Introduction 2. Flux Tubes *Examples 3. Fundamental Equations 4. Induction Equation *Examples 5. Equation

More information

Experimental studies of fluctuations in a reconnecting current sheet

Experimental studies of fluctuations in a reconnecting current sheet Experimental studies of fluctuations in a reconnecting current sheet Troy Alan Carter A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

More information

Experimental studies of magnetic reconnection*

Experimental studies of magnetic reconnection* PHYSICS OF PLASMAS VOLUME 6, NUMBER 5 MAY 1999 Experimental studies of magnetic reconnection* M. R. Brown Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081-1397 Received

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

The importance of including XMHD physics in HED codes

The importance of including XMHD physics in HED codes The importance of including XMHD physics in HED codes Charles E. Seyler, Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University Collaborators: Nat Hamlin (Cornell)

More information

Anisotropic viscous dissipation in compressible magnetic X-points

Anisotropic viscous dissipation in compressible magnetic X-points Astronomy & Astrophysics manuscript no. icvis8 c ESO 28 June 8, 28 Anisotropic viscous dissipation in compressible magnetic X-points I. J. D. Craig Department of Mathematics, University of Waikato, P.

More information

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS

INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS INTERACTION OF DRIFT WAVE TURBULENCE AND MAGNETIC ISLANDS A. Ishizawa and N. Nakajima National Institute for Fusion Science F. L. Waelbroeck, R. Fitzpatrick, W. Horton Institute for Fusion Studies, University

More information

Fast compression of a current sheet during externally driven magnetic reconnection

Fast compression of a current sheet during externally driven magnetic reconnection Earth Planets Space, 53, 521 526, 2001 Fast compression of a current sheet during externally driven magnetic reconnection Y. Ono, M. Inomoto, Y. Ueda, T. Matsuyama, and Y. Murata High Temperature Plasma

More information

Basic Plasma Concepts and Models

Basic Plasma Concepts and Models Basic Plasma Concepts and Models Amitava Bha5acharjee University of New Hampshire 2011 Heliophysics Summer School Goal of this lecture Review a few basic plasma concepts and models that underlie the lectures

More information

Role of Z-pinches in magnetic reconnection in space plasmas arxiv: v1 [physics.space-ph] 26 Sep 2015

Role of Z-pinches in magnetic reconnection in space plasmas arxiv: v1 [physics.space-ph] 26 Sep 2015 Under consideration for publication in J. Plasma Phys. 1 Role of Z-pinches in magnetic reconnection in space plasmas arxiv:1509.07962v1 [physics.space-ph] 26 Sep 2015 V Y A C H E S L A V O L S H E V S

More information