CE 562 Structural Design I Midterm No. 2 Closed Book Portion (25 / 100 pts)

Size: px
Start display at page:

Download "CE 562 Structural Design I Midterm No. 2 Closed Book Portion (25 / 100 pts)"

Transcription

1 CE 56 Structural Design I Name: Midterm No. Closed Book Portion (5 / 100 pts) 1. ( pts) List all of the failure modes that should be checked for the followg bearg-tpe connection: P u ½ 7/8" dia bolts, tp. ½ Pu 3" 3" 3" 3" P u 6" P u 3" Bearg Bolt shear Net section fracture Block shear. ( pts) Circle one: Usg a squirter washer, a specific tpe of direct tension dicator, is one method for obtag a snug-tightened / full-tightened state for a bolted connection. 3. (3 pts) What are three parameters that affect the lateral-torsional bucklg capacit of a beam? Brace spacg Beam length Tpe of bracg Material properties Geometr of beam section Residual stresses Beam support conditions. ( pts) When might it be more appropriate to use a slip critical bolted connection as opposed to a bearg-tpe connection? One situation which slip-critical connections are advisable is when a structure is epected to undergo repeated load ccles (fatigue), as ou might fd a bridge. CE 56 Sprg 008 Midterm No. Page 1 of

2 5. (5 pts) What is the purpose of usg C b, the moment gradient coefficient, lateral-torsional bucklg? Must it alwas be used? The lateral torsional bucklg (LTB) equations AISC were determed based on a loadg producg constant moment across a beam combation with simple supports. This can be etremel conservative. Therefore, AISC allows the engeer to crease the bendg moment resistance for LTB b a factor C b, to account for different loadg and support conditions that might not have as severe of an effect. It does not, and should not, alwas be used. For eample, use of C b is prohibited for cantilevered beams and overhangs. 6. (5 pts) Do ou thk that shear strength of a W113 is more likel to be controlled b shear ieldg or shear bucklg? How about a plate girder with 16 1 flanges and a web? Epla our answer. I would epect the W113 to be more likel controlled b shear ieldg, as its web will probabl be prett stock. The plate girder will have a more slender web, and therefore more susceptible to shear bucklg. 7. ( pts) When should web ieldg and/or web cripplg be vestigated? Whenever ou have a beam loaded with large concentrated pot loads, or high forces beg transferred through the flange to the web. 8. ( pts) True or False: A nonsmmetric Z-shape is beg used as a compression member a steel framed buildg. In addition to fleural bucklg and local bucklg, torsional bucklg should be vestigated. False. CE 56 Sprg 008 Midterm No. Page of

3 CE 56 Structural Design I Midterm No. Open Book Portion (70 / 100 pts) Name: 1. (30 pts) A welded, built-up I-shape made out of A57-50 steel is beg used as a fleural member as shown. It is beg bent about its weak ais (-ais). Determe whether the beam is sufficient to support the given loads. You do not need to consider shear, web cripplg, or web ieldg for this problem. Flange PLs ea. 16" 0.75" Y X Web PL " 0.5" P u = 5 kips W u = 0.5 kips / ft 0 ft 0 ft Solution: Compute Section Properties: (7 pots) 1 1 IY = ( 0.75" )( 16" ) + ( " )( 0.50" ) = I 51.5 SY = = = c ( )( 16" ) A = 16" 0.75" + " 0.50" = 36 ( pts) c t ( 7.75" 0.75" ) + ( 5.5" 0.5" ) 7.75" 0.75".15" + 5.5" 0.5" 0.15" = = =.71" measured awa from the PNA CE 56 Sprg 008 Midterm No. Page 1 of 8

4 a = c = t =.71 () = 5. A 36 ZY = ( a) = ( 5." ) = Check Width-to-Thickness Ratios: (7 pots) Flanges (Unstiffened Elements): b b 16" f = = = = 3 t t f ( )( ") E 9,000 p = 0.38 = 0.38 = 9.15 F 50 ke c (3 pts -) rf = 0.95 FL kc = = = htw 8 Check that 0.35 kc OK rf Sce the shape is doubl smmetric, ( 0.577)( 9,000 ) ( 0.7)( 50 ) = 0.95 = 0.78 S 1.00 F 0.7F t L S = = c Sce pf < f < rf the flanges are non-compact. Web (Stiffened Element): (not entirel necessar to check if ou alread referenced Section F6) h " w = = = 8 tw 0.50" E 9,000 pw = 3.76 = 3.76 = 90.6 F 50 E 9,000 rw = 5.70 = 5.70 = F 50 Sce pw > w the web is compact. The section is non-compact. Referencg Table F1.1, Section F6 of the Specification applies. We will have to account for ieldg and compression flange local bucklg. CE 56 Sprg 008 Midterm No. Page of 8

5 Yieldg: (5 pots) Mn = Mp = FZ 1.6FS AISC (F6-1) 3 3 M = M = =, F S = = 5,1 k k n p k k ft Mn Mp,875 = = = 06.3 Compression Flange Local Bucklg: (7 pots) Compression flange local bucklg for sections with noncompact flanges is given b Section.3 the Specification. M = M M 0.7FS n p p rf pf pf ( ) 3 M,875, k =,530.8 Mn k k n = AISC (F6-) n k k k ft φ M = 0.90,531 =,078 = 30 Factored Moment Demand, M u : (7 pots) wl u PL u Mu = + 8 k/ft k ( 0.5 )( 0' ) ( 5 )( 0' ) Mu = + = k ft Conclusion: The compression flange local bucklg strength governs, and the beam has a design strength of 30 k-ft, which is greater than the factored moment demand of 100 k-ft. The beam section is adequate for the given loads. Recognizg that LTB is not a valid failure mode pots CE 56 Sprg 008 Midterm No. Page 3 of 8

6 . (35 pts) Two C130 channels are used as a built-up column as shown. Determe the capacit of the built-up column. The steel is A57-50, and the effective length is 17-ft with respect to all aes. Sce the lacg spacg dimension, a, has not et determed, please determe an appropriate value for this dimension. The lacg is connected to the channels with snug-tightened bolts X Solution: Check Local Bucklg: (5 pts) Y Flanges: Web: b 3.17" f = = = tf 0.501" < r,fl 6.33 E 9,000 r,fl = 0.56 = 0.56 = 13.9 F 50 Sce, local bucklg will not occur. d t 1" 0.501" f web = = = tw 0.510" 1.56 E 9,000 r,web = 1.9 = 1.9 = F 50 Sce web < r, local bucklg will not occur the web. a 10. Compute Section Properties: (5 pts) g A = 8.81 = 17.6 I = I = 16 = 3 I = " 3.17" " = 10.7 I 31 A 17.6 r = = =.7" I 10.7 r = = =.6" A 17.6 / KL 17' 1" ' = = 7.78 r.7" / KL 17' ( 1" ') = = r.6" CE 56 Sprg 008 Midterm No. Page of 8

7 Connector Spacg: (10pts) The maimum connector spacg is given b: a 3 KL ma = ri r ma where: / KL 17' ( 1" ') = = r ma.6" 3 a ma = ( 0.76" ) ( 77.86) =.50" The angle between the lacg and the ais of the member is limited to 60 degrees b the Specification, Section E. tan 30 a = d a = ( 8" ) tan( 30) = 9." Use a = 9 Modified Slenderness Ratio: (6 pts) Sce bucklg will be controlled b the -ais, the connectors ma be placed shear. Therefore, a modified slenderness ratio should be used to account for the additional demand. KL KL a = + r r r m 0 i (AISC Equation E6-1) KL 10" = ( 77.86) + = r 0.76" m Column Design Capacit: ( pts) F KL E Fe Sce = = Fcr = F r F Inelastic bucklg governs. F Fe Fcr = F where CE 56 Sprg 008 Midterm No. Page 5 of 8

8 m ( 9,000) ( 78.96) π E π Fe = = = 5.91 KL r F cr = ( 50 ) = φ P = = 50.6 n kips Conclusion: The design capacit of the column is 503 kips. CE 56 Sprg 008 Midterm No. Page 6 of 8

9 3. Determe the design fleural-torsional capacit of a C130 made of A36 steel loaded uniform compression the light steel frame shown below. You ma assume that all connections are pned, cludg the column base. Please onl solve for the fleural-torsional bucklg capacit. 15' 30 15' KL for the ais of smmetr = (KL) = (KL) = 30 = 360 Fe F ez FeFez H + Fe = 1 1 H ( Fe + Fez ) where: π ( 9,000) ()( 1 360" ) π E Fe = = = 0.65 KL r.9" π w F GJ 11, ( KL z ) Ag + ( r0 ) ( 9,000)( 151 ) ( ) π EC 1 1 ez = + = + F = ez ( ) CE 56 Sprg 008 Midterm No. Page 7 of 8

10 ( + ) Fe = Fe = F = 0.1 e Sce n F 0.F F = F F Fe e cr F cr = ( 36 ) =.75 φ P = = 196. kips CE 56 Sprg 008 Midterm No. Page 8 of 8

Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at

Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at Unbraced Column Verification Example AISC Design Examples AISC 3 th Edition IP Steel is available for purchase onle at www.asdipsoft.com H-9 Example H.4 W-Shape Subject to Combed Axial Compression and

More information

CE 562 Structural Design I Midterm No. 1 Closed Book Portion (25 / 100 pts)

CE 562 Structural Design I Midterm No. 1 Closed Book Portion (25 / 100 pts) CE 56 Structural Desig I Name: Midterm No. 1 Closed Book Portio (5 / 100 pts) 1. [6 pts / 5 pts] Two differet tesio members are show below - oe is a pair of chaels coected back-to-back ad the other is

More information

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4).

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4). SUMMARY FOR COMPRESSION MEMBERS Columns with Pinned Supports Step 1: Step : Determine the factored design loads (AISC/LRFD Specification A4). From the column tables, determine the effective length KL using

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

1. Given the shown built-up tee-shape, determine the following for both strong- and weak-axis bending:

1. Given the shown built-up tee-shape, determine the following for both strong- and weak-axis bending: 1. Given the shown built-up tee-shape, determe the followg for both strong- and weak-ais bendg: a. Location of the neutral ais b. Moment of ertia c. Section Moduli d. Radius of gration Solution: (a) Location

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

Minimum-weight design of built-up wideflange

Minimum-weight design of built-up wideflange Mimum-weight design of built-up wideflange steel sections Yousef A. Al-Salloum Department of Civil Engeerg, Kg Said University, P. O. Box 800, Riyadh 11421, Saudi Arabia Email: ysalloum@ksu.edu.sa Abstract

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

Basic principles of steel structures. Dr. Xianzhong ZHAO

Basic principles of steel structures. Dr. Xianzhong ZHAO Basic principles of steel structures Dr. Xianzhong ZHAO.zhao@mail.tongji.edu.cn www.sals.org.cn 1 Introduction Resistance of cross-section Compression members Outlines Overall stabilit of uniform (solid

More information

Notes on Frame Buckling

Notes on Frame Buckling Notes on Frame Bucklg irk Marti University of Virgia Sprg 00 Introduction The followg notes clude several examples of simple frame bucklg problems which illustrate some of the assumptions and limitations

More information

A Simply supported beam with a concentrated load at mid-span: Loading Stages

A Simply supported beam with a concentrated load at mid-span: Loading Stages A Simply supported beam with a concentrated load at mid-span: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.4 Beams As stated previousl, the effect of local buckling should invariabl be taken into account in thin walled members, using methods described alread. Laterall stable beams are beams, which do not

More information

Chapter 4 Pure Bending

Chapter 4 Pure Bending Chapter Pure endg INTRODUCTION endg tress W W L endg of embers made of everal aterials 0 5 lumum 0.5 TYP rass teel rass 2.5 2 lumum 2.5 1.5 12 Cross-section, Cross-section, tress Concentrations r r D d

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com

***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com Spreadsheet Title: Last Revision 8/27/2005 ***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com www.designspreadsheets.com email: info@designspreadsheets.com Project I-Girder

More information

of I Section Members

of I Section Members IMPROVED DESIGN ASSESSMENT OF LTB OF I-SECTION MEMBERS VIA MODERN COMPUTATIONAL METHODS Improved Design Assessment of LTB of I Section Members Donald W. White (with credits to Dr. Woo Yong Jeong & Mr.

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please review the followg statement: I certify that I have not given unauthorized aid nor have I received aid the completion of this eam. Signature: INSTRUCTIONS Beg each problem the space provided on

More information

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E le B1, second floor. t = thickness of connected part Pu = factored load to be resisted d = diameter of the bolt eb = one-half the depth of the beam, ec = one-half the depth of the column, Hub = factored

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member Local Buckling MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE V Dr. Jason E. Charalamides Local Buckling in Columns Buckling is not to e viewed only as failure of the entire memer

More information

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Guide Specifications (1993-2002) 2.3 LOADS 2.4 LOAD COMBINATIONS

More information

CONNECTION DESIGN. Connections must be designed at the strength limit state

CONNECTION DESIGN. Connections must be designed at the strength limit state CONNECTION DESIGN Connections must be designed at the strength limit state Average of the factored force effect at the connection and the force effect in the member at the same point At least 75% of the

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

BEAMS. By.Ir.Sugeng P Budio,MSc 1

BEAMS. By.Ir.Sugeng P Budio,MSc 1 BEAMS B.Ir.Sugeng P Budio,MSc 1 INTRODUCTION Beams are structural members that support transverse loads and are therefore subjected primaril to flexure, or bending. If a substantial amount of axial load

More information

1C8 Advanced design of steel structures. prepared by Josef Machacek

1C8 Advanced design of steel structures. prepared by Josef Machacek 1C8 Advanced design of steel structures prepared b Josef achacek List of lessons 1) Lateral-torsional instabilit of beams. ) Buckling of plates. 3) Thin-walled steel members. 4) Torsion of members. 5)

More information

CE 562 Structural Design I Midterm No. 1 Closed Book Portion (30 / 100 pts)

CE 562 Structural Design I Midterm No. 1 Closed Book Portion (30 / 100 pts) CE 56 Structural Desig I Name: Midterm No. 1 Closed Book Portio (30 / 100 pts) 1. [ pts / 30] A very sleder colum with perfectly ped eds is subjected to a ever-creasg compressive axial force. The colum

More information

MECHANICS OF MATERIALS REVIEW

MECHANICS OF MATERIALS REVIEW MCHANICS OF MATRIALS RVIW Notation: - normal stress (psi or Pa) - shear stress (psi or Pa) - normal strain (in/in or m/m) - shearing strain (in/in or m/m) I - area moment of inertia (in 4 or m 4 ) J -

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday) FALL 2013 lecture

More information

DESIGN OF BEAM-COLUMNS - II

DESIGN OF BEAM-COLUMNS - II DESIGN OF BEA-COLUNS-II 14 DESIGN OF BEA-COLUNS - II 1.0 INTRODUCTION Beam-columns are members subjected to combined bending and axial compression. Their behaviour under uniaxial bending, biaxial bending

More information

C6 Advanced design of steel structures

C6 Advanced design of steel structures C6 Advanced design of steel structures prepared b Josef achacek List of lessons 1) Lateral-torsional instabilit of beams. ) Buckling of plates. 3) Thin-walled steel members. 4) Torsion of members. 5) Fatigue

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Structural Design and Material Properties of Steel Presented by: Civil Engineering Academy Advantages 1. High strength per unit length resulting in smaller dead

More information

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column: APRIL 2015 DR. Z s CORNER Conquering the FE & PE exams Formulas, Examples & Applications Topics covered in this month s column: PE Exam Specifications (Geotechnical) Transportation (Horizontal Curves)

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.)

Tension Members. ENCE 455 Design of Steel Structures. II. Tension Members. Introduction. Introduction (cont.) ENCE 455 Design of Steel Structures II. Tension Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Tension Members Following subjects are covered: Introduction

More information

Chapter 8: Bending and Shear Stresses in Beams

Chapter 8: Bending and Shear Stresses in Beams Chapter 8: Bending and Shear Stresses in Beams Introduction One of the earliest studies concerned with the strength and deflection of beams was conducted by Galileo Galilei. Galileo was the first to discuss

More information

CHAPTER 4. Stresses in Beams

CHAPTER 4. Stresses in Beams CHAPTER 4 Stresses in Beams Problem 1. A rolled steel joint (RSJ) of -section has top and bottom flanges 150 mm 5 mm and web of size 00 mm 1 mm. t is used as a simply supported beam over a span of 4 m

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

More information

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface 4. Structural Equilibrium 4.1 ntroduction n statics, it becomes convenient to ignore the small deformation and displacement. We pretend that the materials used are rigid, having the propert or infinite

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS Koung-Heog LEE 1, Subhash C GOEL 2 And Bozidar STOJADINOVIC 3 SUMMARY Full restrained beam-to-column connections in steel moment resisting frames have been

More information

CivilBay Crane Load and Crane Runway Beam Design v1.0.0 User Manual

CivilBay Crane Load and Crane Runway Beam Design v1.0.0 User Manual CivilBay Crane Load and Crane Runway Beam Design v1.0.0 User Manual (Alberta, Canada) Web: Tel: 1-403-510568 01-01-01 Rev 1.0.0 Page 1 of 11 TABLE OF CONTENTS 1.0 END USER LICENSE AGREEMENT... 3.0 QUICK

More information

MODULE F: SIMPLE CONNECTIONS

MODULE F: SIMPLE CONNECTIONS MODULE F: SIMPLE CONNECTIONS This module of CIE 428 covers the following subjects Connector characterization Failure modes of bolted shear connections Detailing of bolted connections Bolts: common and

More information

UNIVERSITY OF AKRON Department of Civil Engineering

UNIVERSITY OF AKRON Department of Civil Engineering UNIVERSITY OF AKRON Department of Civil Engineering 4300:401-301 July 9, 2013 Steel Design Sample Quiz 2 1. The W10 x 54 column shown has both ends pinned and consists of A992 steel (F y = 50 ksi, F u

More information

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1. NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

CHAPTER II EXPERIMENTAL INVESTIGATION

CHAPTER II EXPERIMENTAL INVESTIGATION CHAPTER II EXPERIMENTAL INVESTIGATION 2.1 SCOPE OF TESTING The objective of this research is to determine the force distribution between the column web and stiffener when the column flanges are subjected

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

3) Aft bolted connection analysis: (See Figure 1.0)

3) Aft bolted connection analysis: (See Figure 1.0) Given: Both static and dynamic (fatigue) failure criteria will be used. A mimum factor of safety =2 will be adhered to. For fatigue analysis the ASME elliptic model with Von Mises equivalent stress will

More information

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 6 May 2017 ISSN: 2455-5703 An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

More information

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION CALCULATION FOR SHEAR CONNECTION 8.xmcd 1 of 30 I. DESIGN DATA AND LOAD ( LRFD - AISC 14th Edition ) COLUMN

More information

Improved Flexural Design Provisions for I-Shaped Members and Channels

Improved Flexural Design Provisions for I-Shaped Members and Channels Improved Flexural Design Provisions for I-Shaped Members and Channels DONALD W. WHITE Donald W. White is Associate Professor, Structural Engineering, Mechanics and Materials, Georgia Institute of Technology,

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002 REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

More information

LATERAL BUCKLING ANALYSIS OF ANGLED FRAMES WITH THIN-WALLED I-BEAMS

LATERAL BUCKLING ANALYSIS OF ANGLED FRAMES WITH THIN-WALLED I-BEAMS Journal of arine Science and J.-D. Technolog, Yau: ateral Vol. Buckling 17, No. Analsis 1, pp. 9-33 of Angled (009) Frames with Thin-Walled I-Beams 9 ATERA BUCKING ANAYSIS OF ANGED FRAES WITH THIN-WAED

More information

Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 7 Gantry Girders and Plate Girders Lecture - 4 Introduction to Plate Girders

More information

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

7.3 Design of members subjected to combined forces

7.3 Design of members subjected to combined forces 7.3 Design of members subjected to combined forces 7.3.1 General In the previous chapters of Draft IS: 800 LSM version, we have stipulated the codal provisions for determining the stress distribution in

More information

CIVL473 Fundamentals of Steel Design

CIVL473 Fundamentals of Steel Design CIVL473 Fundamentals of Steel Design CHAPTER 4 Design of Columns- embers with Aial Loads and oments Prepared B Asst.Prof.Dr. urude Celikag 4.1 Braced ultistore Buildings - Combined tension and oments Interaction

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E

db = 23.7 in B C D 96 k bf = 8.97 in tf = in k = 1.09 in 13 Fy = 50 ksi Fu = 65 ksi Member A-B, Interior column: A E line B1, second floor. t = thickness of connected part Pu = factored load to be resisted d = diameter of the bolt eb = one-half the depth of the beam, in. ec = one-half the depth of the column, in. Hub

More information

1C8 Advanced design of steel structures. prepared by Josef Machacek

1C8 Advanced design of steel structures. prepared by Josef Machacek 1C8 Advanced design of steel structures prepared b Josef Machacek List of lessons 1) Lateral-torsional instabilit of beams. ) Buckling of plates. 3) Thin-alled steel members. ) Torsion of members. 5) Fatigue

More information

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section Application nr. 3 (Ultimate Limit State) Resistance of member cross-section 1)Resistance of member crosssection in tension Examples of members in tension: - Diagonal of a truss-girder - Bottom chord of

More information

The plastic moment capacity of a composite cross-section is calculated in the program on the following basis (BS 4.4.2):

The plastic moment capacity of a composite cross-section is calculated in the program on the following basis (BS 4.4.2): COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA SEPTEMBER 2002 COMPOSITE BEAM DESIGN BS 5950-90 Technical Note Composite Plastic Moment Capacity for Positive Bending This Technical Note describes

More information

APPENDIX D COMPARISON OF CURVED STEEL I-GIRDER BRIDGE DESIGN SPECIFICATIONS

APPENDIX D COMPARISON OF CURVED STEEL I-GIRDER BRIDGE DESIGN SPECIFICATIONS APPENIX COMPARISON O CURVE STEEL I-GIRER BRIGE ESIGN SPECIICATIONS (This page is intentionally left blank.) TABLE O CONTENTS LIST O IGURES... -iv LIST O TABLES... -vi 1 OBJECTIVE... -1 METHOOLOGY... -1

More information

Example Stayed beam with two pylons

Example Stayed beam with two pylons Example Stayed beam with two pylons A roof structure is a stayed beam. The roof span is 300 ft. Stay vertical run is 20 ft. The deck is weighs 12 PSF. Beams have a transverse spacing equal to 40 feet.

More information

Conceptual question Conceptual question 12.2

Conceptual question Conceptual question 12.2 Conceptual question 12.1 rigid cap of weight W t g r A thin-walled tank (having an inner radius of r and wall thickness t) constructed of a ductile material contains a gas with a pressure of p. A rigid

More information

Schöck Isokorb Type S22 and S16

Schöck Isokorb Type S22 and S16 Schöck Isokorb Type S22 and S16 Figure 1. Schöck Isokorb Type S22 The Schöck Isokorb Type S22 and S16 is used to transmit axial and shear forces in a steel connection. The combination of multiple modules

More information

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA)

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA) LETURE Third Edition BEMS: SHER ND MOMENT DGRMS (FORMUL). J. lark School of Engineering Department of ivil and Environmental Engineering 1 hapter 5.1 5. b Dr. brahim. ssakkaf SPRNG 00 ENES 0 Mechanics

More information

LATERAL STABILITY OF PLATE GIRDERS WITH CORRUGATED STEEL WEBS

LATERAL STABILITY OF PLATE GIRDERS WITH CORRUGATED STEEL WEBS Congrès annuel de la Société canadienne de génie civil Annual Conference of the Canadian Societ for Civil Engineering oncton, Nouveau-Brunswick, Canada 4-7 juin 2003 / June 4-7, 2003 LATERAL STABILITY

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Hilti North America Installation Technical Manual Technical Data MI System Version

Hilti North America Installation Technical Manual Technical Data MI System Version MIC-SA-MAH 174671 Hilti North America Installation Technical Manual Technical Data MI System Version 1. 08.017 Terms of common cooperation / Legal disclaimer The product technical data published in these

More information

Steel Design. Notation:

Steel Design. Notation: Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Design of Steel Structures Prof. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Module 7 Gantry Girders and Plate Girders Lecture - 3 Introduction to Plate girders

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

IMPROVED CHARACTERIZATION OF THE FLEXURAL AND AXIAL COMPRESSIVE RESISTANCE OF WELDED STEEL BOX- SECTION MEMBERS

IMPROVED CHARACTERIZATION OF THE FLEXURAL AND AXIAL COMPRESSIVE RESISTANCE OF WELDED STEEL BOX- SECTION MEMBERS IMPROVED CHARACTERIZATION OF THE FLEXURAL AND AXIAL COMPRESSIVE RESISTANCE OF WELDED STEEL BOX- SECTION MEMBERS A Dissertation Presented to The Academic Faculty by Ajinkya Mahadeo Lokhande In Partial Fulfillment

More information

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson Singly Symmetric Combination Section Crane Girder Design Aids by Patrick C. Johnson PCJohnson@psu.edu The Pennsylvania State University Department of Civil and Environmental Engineering University Park,

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8) Application nr. 7 (Connections) Strength of bolted connections to EN 1993-1-8 (Eurocode 3, Part 1.8) PART 1: Bolted shear connection (Category A bearing type, to EN1993-1-8) Structural element Tension

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS

SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS By Fathy Abdelmoniem Abdelfattah Faculty of Engineering at Shoubra, Zagazig University, Banha Branch Mohamed Salah A. Soliman

More information

Example 4: Design of a Rigid Column Bracket (Bolted)

Example 4: Design of a Rigid Column Bracket (Bolted) Worked Example 4: Design of a Rigid Column Bracket (Bolted) Example 4: Design of a Rigid Column Bracket (Bolted) Page : 1 Example 4: Design of a Rigid Column Bracket (Bolted) Determine the size of the

More information

torsion equations for lateral BucKling ns trahair research report r964 July 2016 issn school of civil engineering

torsion equations for lateral BucKling ns trahair research report r964 July 2016 issn school of civil engineering TORSION EQUATIONS FOR ATERA BUCKING NS TRAHAIR RESEARCH REPORT R96 Jul 6 ISSN 8-78 SCHOO OF CIVI ENGINEERING SCHOO OF CIVI ENGINEERING TORSION EQUATIONS FOR ATERA BUCKING RESEARCH REPORT R96 NS TRAHAIR

More information

Chapter Objectives. Design a beam to resist both bendingand shear loads

Chapter Objectives. Design a beam to resist both bendingand shear loads Chapter Objectives Design a beam to resist both bendingand shear loads A Bridge Deck under Bending Action Castellated Beams Post-tensioned Concrete Beam Lateral Distortion of a Beam Due to Lateral Load

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator STEEL BUILDINGS IN EUROPE Multi-Store Steel Buildings Part 8: Description of member resistance calculator Multi-Store Steel Buildings Part : Description of member resistance calculator 8 - ii FOREWORD

More information

FLOW CHART FOR DESIGN OF BEAMS

FLOW CHART FOR DESIGN OF BEAMS FLOW CHART FOR DESIGN OF BEAMS Write Known Data Estimate self-weight of the member. a. The self-weight may be taken as 10 percent of the applied dead UDL or dead point load distributed over all the length.

More information

Moment redistribution of continuous composite I-girders with high strength steel

Moment redistribution of continuous composite I-girders with high strength steel Moment redistribution of continuous composite I-girders with high strength steel * Hyun Sung Joo, 1) Jiho Moon, 2) Ik-Hyun sung, 3) Hak-Eun Lee 4) 1), 2), 4) School of Civil, Environmental and Architectural

More information

Chapter 7: Internal Forces

Chapter 7: Internal Forces Chapter 7: Internal Forces Chapter Objectives To show how to use the method of sections for determining the internal loadings in a member. To generalize this procedure by formulating equations that can

More information

Basis of Design, a case study building

Basis of Design, a case study building Basis of Design, a case study building Luís Simões da Silva Department of Civil Engineering University of Coimbra Contents Definitions and basis of design Global analysis Structural modeling Structural

More information