Assignment 4: Solutions

Size: px
Start display at page:

Download "Assignment 4: Solutions"

Transcription

1 Math 340: Discrete Structures II Assignment 4: Solutions. Random Walks. Consider a random walk on an connected, non-bipartite, undirected graph G. Show that, in the long run, the walk will traverse each edge with equal probability. Solution. Recall from class that, for the stationary distribution of a random walk on an undirected graph, the probability that we are at a vertex v is P (v = deg(v. Assuming that we converge to the stationary distribution in the long run m then the probability that the random walk traverses an edge (i, j in either direction is P (i deg(i + P (j deg(j = deg(i m = m + m = m deg(i + deg(j m deg(j Observe this probability is independent of the choice of edge (i, j. Thus we traverse each edge with equal probability.

2 . Random Permutations. A random permutation π of the set [n] = {,,..., n} can be represented by a directed graph on n vertices with a directed arc (i, π i where π i is the ith entry in the permutation. Observe that the resulting graph is just a collection of disjoint cycles. (a What is the expected length of the cycle containing vertex? (b What is the expected number of cycles? Solution (a Since for every i, k, π i = k with probability /n, the probability that we have a cycle of length (i.e. π = is just /n. The probability we have a cycle of length is the probability that π = k and π k =, which is n = /n since we now have only n choices for π n n k. The same argument leads to P (vertex contained in cycle of length k = /n k. Which means E(Size of cycle containing vertex = k n = n(n + n = n + (b The trick to this question is to consider each vertex s contribution to the expected number of cycles. If v is in a cycle of length l, it contributes /l to the expectation. By linearity of expectation, E(Number of cycles = n n v= l= P (v is in a cycle of size l l = n = n l= E(Number of cycles = H n n l= v= l nl

3 3. Clustering: Coins and Runs. A run is a sequence of coin tosses with the same outcome (fo rexample, the sequence HHHHTTHTTTTHH has 5 runs. Now suppose we toss a fair coin n times. (a What is the expected number of runs? (b Show that with high probability there is no run of length at least Clogn for some constant C. (c Show that with high probability there is a run of length at least clogn for some constant c. Solution (a Solution I. Let X i be the event that coin i is the first coin in run. Clearly X = n i= X i is the total number of runs. Now coin must be the start of a run as it is the first coin. For coins 00, they start a run if and only if they differ from the previous coin toss. Thus E(X = E( X i = i= E(X i = + i= E(X i = + i= i= = (n + Solution II. We must first find out how many different ways there are of getting k runs with n flips. But to have k runs, we need k points at which we switch from a run of heads to a run of tails, or vice versa. And there are exactly n possible points to choose from (from after the st flip up to after the n-st flip. So the answer is ( n k. Since the coin flips are independent, any possible string of length n occurs with probability n. Now what we want is E(Number of runs = ( n k k (n This may seem ugly to compute, but since we know ( ( n k = n n k we have, for even n, n/ ( n n E(Number of runs = k + k and we can re-index the second sum to get 3 k=n/+ ( n k k

4 n/ ( n/ n ( n/ n ( n n E(# of runs = k + (n+ k = (n+. k k k But we know that ( ( n k = n in our expression is just /(n + n. So n k and that n E(Number of runs = (n + ( n k = n, so the sum For odd n, the proof is exactly the same. We combine each pair of terms as above, except the middle binomial coefficient, which has k = (n + /. But the sum is still equal to /(n + n, so we get the above result for all n. (b The base of the logarithm in the question doesn t matter (it only changes the value of C, so take it to be log (n. The probability that a sequence of k flips is a run is / k, since a run is either k heads or k tails in a row. Plugging in k = C log (n, we see P (Given sequence of C log n flips is a run = = C log n n C Now, the event {there is some run of length C log n} is just the union of events {there is a run of length C log n starting at k}, where k (n C log (n. To save space, denote the fixed sequence of length l starting at k as B k,l. Then P ( run of length of C log n = P ( n C log n {B k,c log n is a run} n C log n Where we have used the union bound and our results above. Since the sum doesn t depend on k, P ( run of length of C log n (n C log n n C n C which goes to zero as n goes to for C >. So with high probability we will not see a run of length ( + ɛ log n for any ɛ > 0. n C 4

5 (c We can no longer use the union bound here, because we want to show that P ( run of length of c log n goes to as n goes to, so the inequality goes in the wrong direction. But we can use the fact that the events {B k,c log nis a run} and {B (k+c log n, c log n is a run} are independent. P ( run of length of c log n P n/(c log n j=0 {B j(c log n+,c log n is a run} But the probability of the union is just one minus the probability that none of the events happen. By independence, this is the product of the probabilities that each of the events don t happen. P ( run of length of c log n n/(c log n And plugging in our results from (b, and noting x x j=0 ( P (Bj(c log n+,c log n is a run P ( run of length of c log n ( n n/(c log n c To find the c for which this goes to, we find the c for which the logarithm of the latter term goes to. Since log ( /n c goes like /n c for large enough n, we need n ( c /(c log n + 4n c to go to. The second term in the numerator goes to 0 for all c > 0, and the first term goes to for all c <. So we get P ( run of length of c log n c < With high probability, we will see a run of length ( ɛ log n for all ɛ > 0. Combining (b and (c, we see that, with high probabilitiy, we will see only runs of length log n and at least one run of length (almost log n. 5

6 4. Chernoff Bounds I. Show that the following are corollaries of the Chernoff bound. (a If b 6µ then P (X b b. (b If 0 < δ < then P (X ( + δµ e 3 µδ. Solution. (a Let b = ( + δµ. Then δ 5. We have ( e δµ P (X b ( + δ (+δµ ( e (+δµ ( + δ Since e µ. Replacing δ by its lower bound in the base of the expontential, ( e ( (+δµ (+δµ P (X b = b 6 (b Write the Chernoff bound as P (X ( + δµ exp( µ[( + δ ln ( + δ δ] It is enough to show that (+δ ln ( + δ δ δ /3, since y x e y e x. From the Taylor expansion of ( + x ln( + x x about x = 0, we have that ( + x ln( + x x x / x 3 /6 0 x < (note the first derivative of this function is ln( + x, so the terms in the taylor series are ( x k /(k(k, k. Therefore P (X ( + δµ exp( µ[δ / δ 3 /6] exp( µδ /3 where the last inequality comes from δ / δ 3 /6 δ /3 = δ ( δ/6 which is always non-negative for 0 δ <. 6

7 5. Chernoff Bounds II. Prove the following Chernoff bound for deviations below the mean. If 0 < δ < then P (X ( δµ e δµ ( δ e µδ ( δµ Solution. We apply the same approach seen in class for the upper tail to obtain this lower tail bound. If 0 < δ < then for any t > 0 we have P (X ( δµ = P (e tx e t( δµ = P (e tx = P (e tx E(e tx E(e tx E(e tx where the last inequality follows from Markov s Inequality. So P P (X ( δµ E(e t i X i = E( i e tx i i = E(e tx i where the last inequality follows because the X i are independent. Thus i P (X ( δµ (( p ie 0 + p i e t i = ( + p i(e t i ep i(e t ep i p i(e t e(e t µ Now set t = ln( to give δ P (X ( δµ e δµ ( δ ( δµ e µδ 7

8 The last inequality follows as for 0 < δ < we have, using the McLaurin expansion for ln( δ, that ( δ δ > e δ+ δ 8

9 6. Balls and Bins. Suppose we randomly drop n log n balls into n bins. Give an upper bound on the expectation of the maximum number of balls in any bin. Solution. Let X be the number of balls in bin i. Then µ = E(X = log n. Set b = 6µ then by 4(a we have that (assuming our log is base. P (X b b = 6 log n = n 6 This is true for any bin i so by Boole s Inequality the probability that any bin has more that 6 log n balls in it is at most n 5. Using a similar argument to that in class we see that the expectation of the maximum number of balls in any bin is at most + 6 log n. Note. This expectation of the maximum is a constant factor 6 away from the expectation in each bin. This is in sharp contrast to the case of n balls into n bins where this factor is Θ( log n and for which we proved in class O(log n. log log n 9

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials).

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials). Tail Inequalities William Hunt Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV William.Hunt@mail.wvu.edu Introduction In this chapter, we are interested

More information

The first bound is the strongest, the other two bounds are often easier to state and compute. Proof: Applying Markov's inequality, for any >0 we have

The first bound is the strongest, the other two bounds are often easier to state and compute. Proof: Applying Markov's inequality, for any >0 we have The first bound is the strongest, the other two bounds are often easier to state and compute Proof: Applying Markov's inequality, for any >0 we have Pr (1 + ) = Pr For any >0, we can set = ln 1+ (4.4.1):

More information

Randomized algorithm

Randomized algorithm Tutorial 4 Joyce 2009-11-24 Outline Solution to Midterm Question 1 Question 2 Question 1 Question 2 Question 3 Question 4 Question 5 Solution to Midterm Solution to Midterm Solution to Midterm Question

More information

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation.

Chernoff Bounds. Theme: try to show that it is unlikely a random variable X is far away from its expectation. Chernoff Bounds Theme: try to show that it is unlikely a random variable X is far away from its expectation. The more you know about X, the better the bound you obtain. Markov s inequality: use E[X ] Chebyshev

More information

With high probability

With high probability With high probability So far we have been mainly concerned with expected behaviour: expected running times, expected competitive ratio s. But it would often be much more interesting if we would be able

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Tail Inequalities Randomized Algorithms. Sariel Har-Peled. December 20, 2002

Tail Inequalities Randomized Algorithms. Sariel Har-Peled. December 20, 2002 Tail Inequalities 497 - Randomized Algorithms Sariel Har-Peled December 0, 00 Wir mssen wissen, wir werden wissen (We must know, we shall know) David Hilbert 1 Tail Inequalities 1.1 The Chernoff Bound

More information

CS 246 Review of Proof Techniques and Probability 01/14/19

CS 246 Review of Proof Techniques and Probability 01/14/19 Note: This document has been adapted from a similar review session for CS224W (Autumn 2018). It was originally compiled by Jessica Su, with minor edits by Jayadev Bhaskaran. 1 Proof techniques Here we

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

11.1 Set Cover ILP formulation of set cover Deterministic rounding

11.1 Set Cover ILP formulation of set cover Deterministic rounding CS787: Advanced Algorithms Lecture 11: Randomized Rounding, Concentration Bounds In this lecture we will see some more examples of approximation algorithms based on LP relaxations. This time we will use

More information

CS5314 Randomized Algorithms. Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify)

CS5314 Randomized Algorithms. Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify) CS5314 Randomized Algorithms Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify) 1 Introduce two topics: De-randomize by conditional expectation provides a deterministic way to construct

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 CS 70 Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 20 Today we shall discuss a measure of how close a random variable tends to be to its expectation. But first we need to see how to compute

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Workshop Organized by: ACM Unit, ISI Tutorial-1 Date: 05.07.2017 (Q1) Given seven points in a triangle of unit area, prove that three of them form a triangle of area not exceeding

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

Solutions to Problem Set 4

Solutions to Problem Set 4 UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 010 Solutions to Problem Set 4 1. (MU 5.4 In a lecture hall containing 100 people, you consider whether or not there are three people in

More information

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a]

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a] U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 4 Professor Satish Rao September 7, 2010 Lecturer: Satish Rao Last revised September 13, 2010 Lecture 4 1 Deviation bounds. Deviation bounds

More information

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is Math 416 Lecture 3 Expected values The average or mean or expected value of x 1, x 2, x 3,..., x n is x 1 x 2... x n n x 1 1 n x 2 1 n... x n 1 n 1 n x i p x i where p x i 1 n is the probability of x i

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

Randomized Algorithms Week 2: Tail Inequalities

Randomized Algorithms Week 2: Tail Inequalities Randomized Algorithms Week 2: Tail Inequalities Rao Kosaraju In this section, we study three ways to estimate the tail probabilities of random variables. Please note that the more information we know about

More information

Expectation, inequalities and laws of large numbers

Expectation, inequalities and laws of large numbers Chapter 3 Expectation, inequalities and laws of large numbers 3. Expectation and Variance Indicator random variable Let us suppose that the event A partitions the sample space S, i.e. A A S. The indicator

More information

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation

Probabilistic Systems Analysis Spring 2018 Lecture 6. Random Variables: Probability Mass Function and Expectation EE 178 Probabilistic Systems Analysis Spring 2018 Lecture 6 Random Variables: Probability Mass Function and Expectation Probability Mass Function When we introduce the basic probability model in Note 1,

More information

University of California, Berkeley, Statistics 134: Concepts of Probability. Michael Lugo, Spring Exam 1

University of California, Berkeley, Statistics 134: Concepts of Probability. Michael Lugo, Spring Exam 1 University of California, Berkeley, Statistics 134: Concepts of Probability Michael Lugo, Spring 2011 Exam 1 February 16, 2011, 11:10 am - 12:00 noon Name: Solutions Student ID: This exam consists of seven

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney

Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney 1. The key to this problem is recognizing cubes as factors in the radicands. 24 16 5 2. The key to this problem is recognizing

More information

UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 2008) Midterm 1. October 7, 2008

UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 2008) Midterm 1. October 7, 2008 UC Berkeley, CS 74: Combinatorics and Discrete Probability (Fall 2008) Midterm Instructor: Prof. Yun S. Song October 7, 2008 Your Name : Student ID# : Read these instructions carefully:. This is a closed-book

More information

Lecture 4: Sampling, Tail Inequalities

Lecture 4: Sampling, Tail Inequalities Lecture 4: Sampling, Tail Inequalities Variance and Covariance Moment and Deviation Concentration and Tail Inequalities Sampling and Estimation c Hung Q. Ngo (SUNY at Buffalo) CSE 694 A Fun Course 1 /

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

MATH 556: PROBABILITY PRIMER

MATH 556: PROBABILITY PRIMER MATH 6: PROBABILITY PRIMER 1 DEFINITIONS, TERMINOLOGY, NOTATION 1.1 EVENTS AND THE SAMPLE SPACE Definition 1.1 An experiment is a one-off or repeatable process or procedure for which (a there is a well-defined

More information

1 Proof techniques. CS 224W Linear Algebra, Probability, and Proof Techniques

1 Proof techniques. CS 224W Linear Algebra, Probability, and Proof Techniques 1 Proof techniques Here we will learn to prove universal mathematical statements, like the square of any odd number is odd. It s easy enough to show that this is true in specific cases for example, 3 2

More information

CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms

CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms CS261: A Second Course in Algorithms Lecture #18: Five Essential Tools for the Analysis of Randomized Algorithms Tim Roughgarden March 3, 2016 1 Preamble In CS109 and CS161, you learned some tricks of

More information

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1 Lecture I jacques@ucsd.edu Notation: Throughout, P denotes probability and E denotes expectation. Denote (X) (r) = X(X 1)... (X r + 1) and let G n,p denote the Erdős-Rényi model of random graphs. 10 Random

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 2

CPSC 536N: Randomized Algorithms Term 2. Lecture 2 CPSC 536N: Randomized Algorithms 2014-15 Term 2 Prof. Nick Harvey Lecture 2 University of British Columbia In this lecture we continue our introduction to randomized algorithms by discussing the Max Cut

More information

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( )

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( ) Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr Pr = Pr Pr Pr() Pr Pr. We are given three coins and are told that two of the coins are fair and the

More information

Lectures 6: Degree Distributions and Concentration Inequalities

Lectures 6: Degree Distributions and Concentration Inequalities University of Washington Lecturer: Abraham Flaxman/Vahab S Mirrokni CSE599m: Algorithms and Economics of Networks April 13 th, 007 Scribe: Ben Birnbaum Lectures 6: Degree Distributions and Concentration

More information

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek

More information

1 The Basic Counting Principles

1 The Basic Counting Principles 1 The Basic Counting Principles The Multiplication Rule If an operation consists of k steps and the first step can be performed in n 1 ways, the second step can be performed in n ways [regardless of how

More information

Chapter 2 Class Notes

Chapter 2 Class Notes Chapter 2 Class Notes Probability can be thought of in many ways, for example as a relative frequency of a long series of trials (e.g. flips of a coin or die) Another approach is to let an expert (such

More information

CS Communication Complexity: Applications and New Directions

CS Communication Complexity: Applications and New Directions CS 2429 - Communication Complexity: Applications and New Directions Lecturer: Toniann Pitassi 1 Introduction In this course we will define the basic two-party model of communication, as introduced in the

More information

Ma/CS 6b Class 15: The Probabilistic Method 2

Ma/CS 6b Class 15: The Probabilistic Method 2 Ma/CS 6b Class 15: The Probabilistic Method 2 By Adam Sheffer Reminder: Random Variables A random variable is a function from the set of possible events to R. Example. Say that we flip five coins. We can

More information

Randomized Computation

Randomized Computation Randomized Computation Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee We do not assume anything about the distribution of the instances of the problem

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

MAT 135B Midterm 1 Solutions

MAT 135B Midterm 1 Solutions MAT 35B Midterm Solutions Last Name (PRINT): First Name (PRINT): Student ID #: Section: Instructions:. Do not open your test until you are told to begin. 2. Use a pen to print your name in the spaces above.

More information

Permutations and Combinations

Permutations and Combinations Permutations and Combinations Permutations Definition: Let S be a set with n elements A permutation of S is an ordered list (arrangement) of its elements For r = 1,..., n an r-permutation of S is an ordered

More information

Essentials on the Analysis of Randomized Algorithms

Essentials on the Analysis of Randomized Algorithms Essentials on the Analysis of Randomized Algorithms Dimitris Diochnos Feb 0, 2009 Abstract These notes were written with Monte Carlo algorithms primarily in mind. Topics covered are basic (discrete) random

More information

Final Examination. Adrian Georgi Josh Karen Lee Min Nikos Tina. There are 12 problems totaling 150 points. Total time is 170 minutes.

Final Examination. Adrian Georgi Josh Karen Lee Min Nikos Tina. There are 12 problems totaling 150 points. Total time is 170 minutes. Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Prof. Albert Meyer and Dr. Radhika Nagpal Final Examination Your name: Circle the name of your Tutorial Instructor:

More information

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM YOUR NAME: KEY: Answers in blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they are

More information

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman.

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman. Math 224 Fall 2017 Homework 1 Drew Armstrong Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman. Section 1.1, Exercises 4,5,6,7,9,12. Solutions to Book Problems.

More information

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov.

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov. Introduction to Probability Ariel Yadin Lecture 1 1. Example: Bertrand s Paradox We begin with an example [this is known as Bertrand s paradox]. *** Nov. 1 *** Question 1.1. Consider a circle of radius

More information

Random Graphs. 7.1 Introduction

Random Graphs. 7.1 Introduction 7 Random Graphs 7.1 Introduction The theory of random graphs began in the late 1950s with the seminal paper by Erdös and Rényi [?]. In contrast to percolation theory, which emerged from efforts to model

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

Chapter 1: Introduction to Probability Theory

Chapter 1: Introduction to Probability Theory ECE5: Stochastic Signals and Systems Fall 8 Lecture - September 6, 8 Prof. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter : Introduction to Probability Theory Axioms of Probability

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Salvatore Pace September 2, 208 Introduction In a frequentist interpretation of probability, a probability measure P (A) says that if I do something N times, I should see event

More information

Probability, For the Enthusiastic Beginner (Exercises, Version 1, September 2016) David Morin,

Probability, For the Enthusiastic Beginner (Exercises, Version 1, September 2016) David Morin, Chapter 8 Exercises Probability, For the Enthusiastic Beginner (Exercises, Version 1, September 2016) David Morin, morin@physics.harvard.edu 8.1 Chapter 1 Section 1.2: Permutations 1. Assigning seats *

More information

Discrete Mathematics and Probability Theory Summer 2017 Hongling Lu, Vrettos Moulos, and Allen Tang HW 6

Discrete Mathematics and Probability Theory Summer 2017 Hongling Lu, Vrettos Moulos, and Allen Tang HW 6 CS 70 Discrete Mathematics and Probability Theory Summer 017 Hongling Lu, Vrettos Moulos, and Allen Tang HW 6 Sundry Before you start your homework, write down your team. Who else did you work with on

More information

Notice how similar the answers are in i,ii,iii, and iv. Go back and modify your answers so that all the parts look almost identical.

Notice how similar the answers are in i,ii,iii, and iv. Go back and modify your answers so that all the parts look almost identical. RANDOM VARIABLES MATH CIRCLE (ADVANCED) 3/3/2013 0) a) Suppose you flip a fair coin 3 times. i) What is the probability you get 0 heads? ii) 1 head? iii) 2 heads? iv) 3 heads? b) Suppose you are dealt

More information

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016 Lecture 1: Introduction and Review We begin with a short introduction to the course, and logistics. We then survey some basics about approximation algorithms and probability. We also introduce some of

More information

RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME

RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME RANDOM WALKS AND THE PROBABILITY OF RETURNING HOME ELIZABETH G. OMBRELLARO Abstract. This paper is expository in nature. It intuitively explains, using a geometrical and measure theory perspective, why

More information

COS597D: Information Theory in Computer Science September 21, Lecture 2

COS597D: Information Theory in Computer Science September 21, Lecture 2 COS597D: Information Theory in Computer Science September 1, 011 Lecture Lecturer: Mark Braverman Scribe: Mark Braverman In the last lecture, we introduced entropy H(X), and conditional entry H(X Y ),

More information

CS 124 Math Review Section January 29, 2018

CS 124 Math Review Section January 29, 2018 CS 124 Math Review Section CS 124 is more math intensive than most of the introductory courses in the department. You re going to need to be able to do two things: 1. Perform some clever calculations to

More information

Problem Points S C O R E Total: 120

Problem Points S C O R E Total: 120 PSTAT 160 A Final Exam Solution December 10, 2015 Name Student ID # Problem Points S C O R E 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 Total: 120 1. (10 points) Take a Markov chain

More information

12 1 = = 1

12 1 = = 1 Basic Probability: Problem Set One Summer 07.3. We have A B B P (A B) P (B) 3. We also have from the inclusion-exclusion principle that since P (A B). P (A B) P (A) + P (B) P (A B) 3 P (A B) 3 For examples

More information

6.1 Occupancy Problem

6.1 Occupancy Problem 15-859(M): Randomized Algorithms Lecturer: Anupam Gupta Topic: Occupancy Problems and Hashing Date: Sep 9 Scribe: Runting Shi 6.1 Occupancy Problem Bins and Balls Throw n balls into n bins at random. 1.

More information

Lecture 2: Review of Basic Probability Theory

Lecture 2: Review of Basic Probability Theory ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak, scribe: R. Nowak Lecture 2: Review of Basic Probability Theory Probabilistic models will be used throughout the course to represent

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

Introduction to Markov Chains and Riffle Shuffling

Introduction to Markov Chains and Riffle Shuffling Introduction to Markov Chains and Riffle Shuffling Nina Kuklisova Math REU 202 University of Chicago September 27, 202 Abstract In this paper, we introduce Markov Chains and their basic properties, and

More information

Lectures on Elementary Probability. William G. Faris

Lectures on Elementary Probability. William G. Faris Lectures on Elementary Probability William G. Faris February 22, 2002 2 Contents 1 Combinatorics 5 1.1 Factorials and binomial coefficients................. 5 1.2 Sampling with replacement.....................

More information

Probabilistic Combinatorics. Jeong Han Kim

Probabilistic Combinatorics. Jeong Han Kim Probabilistic Combinatorics Jeong Han Kim 1 Tentative Plans 1. Basics for Probability theory Coin Tossing, Expectation, Linearity of Expectation, Probability vs. Expectation, Bool s Inequality 2. First

More information

Chapter 4 - Tail inequalities

Chapter 4 - Tail inequalities Chapter 4 - Tail inequalities Igor Gonopolskiy & Nimrod Milo BGU November 10, 2009 Igor Gonopolskiy & Nimrod Milo (BGU) Chapter 4 November 10, 2009 1 / 28 Outline 1 Definitions 2 Chernoff Bound Upper deviation

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

Concentration of Measures by Bounded Size Bias Couplings

Concentration of Measures by Bounded Size Bias Couplings Concentration of Measures by Bounded Size Bias Couplings Subhankar Ghosh, Larry Goldstein University of Southern California [arxiv:0906.3886] January 10 th, 2013 Concentration of Measure Distributional

More information

Notes on MapReduce Algorithms

Notes on MapReduce Algorithms Notes on MapReduce Algorithms Barna Saha 1 Finding Minimum Spanning Tree of a Dense Graph in MapReduce We are given a graph G = (V, E) on V = N vertices and E = m N 1+c edges for some constant c > 0. Our

More information

Supervised Machine Learning (Spring 2014) Homework 2, sample solutions

Supervised Machine Learning (Spring 2014) Homework 2, sample solutions 58669 Supervised Machine Learning (Spring 014) Homework, sample solutions Credit for the solutions goes to mainly to Panu Luosto and Joonas Paalasmaa, with some additional contributions by Jyrki Kivinen

More information

1 Review of The Learning Setting

1 Review of The Learning Setting COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #8 Scribe: Changyan Wang February 28, 208 Review of The Learning Setting Last class, we moved beyond the PAC model: in the PAC model we

More information

HW Solution 2 Due: July 10:39AM

HW Solution 2 Due: July 10:39AM ECS 35: Probability and Random Processes 200/ HW Solution 2 Due: July 9 @ 0:39AM Lecturer: Prapun Suksompong, Ph.D. Instructions (a) A part of ONE question will be graded. Of course, you do not know which

More information

Statistics 100A Homework 1 Solutions

Statistics 100A Homework 1 Solutions Problem Statistics 00A Homework Solutions Ryan Rosario Suppose we flip a fair coin 4 times independently. () What is the sample space? By definition, the sample space, denoted as Ω, is the set of all possible

More information

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15) Problem 1: Chernoff Bounds via Negative Dependence - from MU Ex 5.15) While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown in n bins, we saw the use of negative dependence.

More information

STAT 201 Chapter 5. Probability

STAT 201 Chapter 5. Probability STAT 201 Chapter 5 Probability 1 2 Introduction to Probability Probability The way we quantify uncertainty. Subjective Probability A probability derived from an individual's personal judgment about whether

More information

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 8. For any two events E and F, P (E) = P (E F ) + P (E F c ). Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 Sample space. A sample space consists of a underlying

More information

Hoeffding, Chernoff, Bennet, and Bernstein Bounds

Hoeffding, Chernoff, Bennet, and Bernstein Bounds Stat 928: Statistical Learning Theory Lecture: 6 Hoeffding, Chernoff, Bennet, Bernstein Bounds Instructor: Sham Kakade 1 Hoeffding s Bound We say X is a sub-gaussian rom variable if it has quadratically

More information

Problem Points S C O R E Total: 120

Problem Points S C O R E Total: 120 PSTAT 160 A Final Exam December 10, 2015 Name Student ID # Problem Points S C O R E 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 Total: 120 1. (10 points) Take a Markov chain with the

More information

Math/Stat 394 Homework 5

Math/Stat 394 Homework 5 Math/Stat 394 Homework 5 1. If we select two black balls then X 4. This happens with probability ( 4 2). If we select two white balls then X 2. This happens with ( 14 probability (8 2). If we select two

More information

2.6 Tools for Counting sample points

2.6 Tools for Counting sample points 2.6 Tools for Counting sample points When the number of simple events in S is too large, manual enumeration of every sample point in S is tedious or even impossible. (Example) If S contains N equiprobable

More information

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality

Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Lecture 13 (Part 2): Deviation from mean: Markov s inequality, variance and its properties, Chebyshev s inequality Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek Bhrushundi

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Lecture 2 31 Jan Logistics: see piazza site for bootcamps, ps0, bashprob

Lecture 2 31 Jan Logistics: see piazza site for bootcamps, ps0, bashprob Lecture 2 31 Jan 2017 Logistics: see piazza site for bootcamps, ps0, bashprob Discrete Probability and Counting A finite probability space is a set S and a real function p(s) ons such that: p(s) 0, s S,

More information

Lecture 6: The Pigeonhole Principle and Probability Spaces

Lecture 6: The Pigeonhole Principle and Probability Spaces Lecture 6: The Pigeonhole Principle and Probability Spaces Anup Rao January 17, 2018 We discuss the pigeonhole principle and probability spaces. Pigeonhole Principle The pigeonhole principle is an extremely

More information

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13 Discrete Mathematics & Mathematical Reasoning Chapter 7 (continued): Markov and Chebyshev s Inequalities; and Examples in probability: the birthday problem Kousha Etessami U. of Edinburgh, UK Kousha Etessami

More information

Introduction to Probability, Fall 2009

Introduction to Probability, Fall 2009 Introduction to Probability, Fall 2009 Math 30530 Review questions for exam 1 solutions 1. Let A, B and C be events. Some of the following statements are always true, and some are not. For those that are

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 7E Probability and Statistics Spring 6 Instructor : Class Meets : Office Hours : Textbook : İlker Bayram EEB 3 ibayram@itu.edu.tr 3.3 6.3, Wednesday EEB 6.., Monday D. B. Bertsekas, J. N. Tsitsiklis,

More information

Randomized Complexity Classes; RP

Randomized Complexity Classes; RP Randomized Complexity Classes; RP Let N be a polynomial-time precise NTM that runs in time p(n) and has 2 nondeterministic choices at each step. N is a polynomial Monte Carlo Turing machine for a language

More information

Hidden Markov Models. Hosein Mohimani GHC7717

Hidden Markov Models. Hosein Mohimani GHC7717 Hidden Markov Models Hosein Mohimani GHC7717 hoseinm@andrew.cmu.edu Fair et Casino Problem Dealer flips a coin and player bets on outcome Dealer use either a fair coin (head and tail equally likely) or

More information

Lecture 6 - Random Variables and Parameterized Sample Spaces

Lecture 6 - Random Variables and Parameterized Sample Spaces Lecture 6 - Random Variables and Parameterized Sample Spaces 6.042 - February 25, 2003 We ve used probablity to model a variety of experiments, games, and tests. Throughout, we have tried to compute probabilities

More information

variance of independent variables: sum of variances So chebyshev predicts won t stray beyond stdev.

variance of independent variables: sum of variances So chebyshev predicts won t stray beyond stdev. Announcements No class monday. Metric embedding seminar. Review expectation notion of high probability. Markov. Today: Book 4.1, 3.3, 4.2 Chebyshev. Remind variance, standard deviation. σ 2 = E[(X µ X

More information