Constructive approach to relevant and affine term calculi

Size: px
Start display at page:

Download "Constructive approach to relevant and affine term calculi"

Transcription

1 Constructive approach to relevant and affine term calculi Jelena Ivetić, University of Novi Sad, Serbia Silvia Ghilezan,University of Novi Sad, Serbia Pierre Lescanne, University of Lyon, France Silvia Likavec, University of Torino, Italy CM:FP, Niš, June 2013.

2 Computational interpretations of logics The Curry-Howard correspondence captures the computational content of logic, by observing a multilevel connection between formal systems (logic) and some term calculi (computation). the λ-calculus intuitionistic natural deduction the λµ-calculus (Parigot, 1992) classical natural deduction the λµ µ-calculus (Herbelin, Curien, 2000) classical sequent calculus the λ Gtz -calculus (Espírito Santo, 2006) intuitionistic sequent calculus In all these formal systems, structural rules are implicit.

3 ND with explicit structural rules A A (Ax) Γ, A B Γ A B ( Γ A A B intro) ( elim ) Γ, B Γ B Γ, A B (Weak) Γ, A, A B Γ, A B (Cont) Implicit SR contexts are sets Axiom: Γ, A A additive (context-sharing) rules Explicit SR contexts are multisets Axiom: A A multiplicative (context-splitting) rules

4 goal? To propose term calculi (CH) corresponding to the formal systems with exp. str. rules. motivation? theoretical - to obtain an insight into a part of the computation process that is usually hidden; practical - controlling enables optimization. solution: λ R (resource control lambda calculus) ND with exp.str.rules λ Gtz R (resource control lambda Gentzen calculus) LJ with exp.str.rules (will not be presented here) why "resource control"? structural rules in logic duplication and erasure of variables in terms.

5 Syntax of the λ R -calculus pre-terms of the λ R -calculus: Pre-terms f ::= x λx.f ff x f x < x 1 f λx.f is an abstraction, ff is an application, x f is a weakening and x < x 1 f is a contraction. λ R -terms are only those pre-terms that satisfy the following two conditions: every free variable occurs exactly once in a term; every binder binds exactly one occurrence of a free variable. Example: pre-terms are not λ R -terms. λx.y, λx.xx, x < y z (xy)

6 λ R -terms - formally The set Λ R is defined by the following inference rules: x Λ R f Λ R x Fv(f ) λx.f Λ R f Λ R g Λ R Fv(f ) Fv(g) = fg Λ R f Λ R x / Fv(f ) f Λ R x 1, x 1, Fv(f ) x / Fv(f ) \ {x 1, } x f Λ R x < x 1 f Λ R

7 Although some λ-terms are not λ R -terms (like λx.y, xx,...) every λ-term has a corresponding λ R -term. Example λ term λ R term λx.y λx.x y λx.xx λx.x < x 1 (x 1 ) observe that contraction corresponds to variable duplication, while weakening corresponds to variable erasure.

8 Computing in the λ R -calculus Operational semantics: β-reduction - the key step: (β) (λx.m)n M[N/x] substitution - implicit i.e. meta-operator: x[n/x] N (λy.m)[n/x] λy.m[n/x], x y (MP)[N/x] M[N/x]P, x Fv(P) (MP)[N/x] MP[N/x], x Fv(M) (y M)[N/x] y M[N/x], x y (x M)[N/x] Fv(N) M (y < y 1 y 2 M)[N/x] y < y 1 y 2 M[N/x], x y (x < x 1 M)[N/x] Fv(N) < Fv(N 1) Fv(N 2 ) M[N 1/x 1, N 2 / ] Substitution satisfies interface preservation.

9 Computing in the λ R -calculus γ-reductions - contraction propagation: (γ 1 ) x < x 1 (λy.m) λy.x < x 1 (γ 2 ) x < x 1 (MN) (x < x 1 (γ 3 ) x < x 1 (MN) M(x < x 1 M M)N, if x 1, Fv(N) N), if x 1, Fv(M) ω-reductions - weakening extraction: (ω 1 ) λx.(y M) y (λx.m), x y (ω 2 ) (x M)N x (MN) (ω 3 ) M(x N) x (MN) γω-reductions - interaction of the structural operators: (γω 1 ) x < x 1 (y M) y (x < x 1 M), y x 1, (γω 2 ) x < x 1 (x 1 M) M[x/ ]

10 Computing in the λ R -calculus equivalencies: (ɛ 1 ) x (y M) y (x M) (ɛ 2 ) x < x 1 M x < x 1 M (ɛ 3 ) x < y z (y < u v M) x <y u (y < z v M) (ɛ 4 ) x < x 1 (y < y 1 y 2 M) y < y 1 y 2 (x < x 1 M), x y 1, y 2, y x 1, α-equivalence - for both binders: λx.m α λy.m[y/x] x < y z M α x < y 1 z 1 M[y 1 /y, z 1 /z]

11 The type system λ R x :α x :α (Ax) Γ, x :α M :β Γ λx.m :α β ( I) Γ M :α β N :α Γ, MN :β ( E ) Γ, x :α, y :α M :β Γ, z :α z < x y M :β (Cont) Γ M :α Γ, x :β x M :α (Weak) Theorem (Ghilezan et al. (2009)) If a λ R -term is typeable in the system λ R, then it is strongly normalizing (terminating).

12 The type system λ R x :α x :α (Ax) Γ, x :α M :β Γ λx.m :α β ( I) Γ M :α β N :α Γ, MN :β ( E ) Γ, x :α, y :α M :β Γ, z :α z < x y M :β (Cont) Γ M :α Γ, x :β x M :α (Weak) Theorem (Ghilezan et al. (2009)) If a λ R -term is typeable in the system λ R, then it is strongly normalizing (terminating).

13 The type system λ R x : σ x : σ (Ax) Γ, x : α M : σ Γ λx.m : α σ ( I) Γ M : n i=1 τ i σ 0 N : τ 0... n N : τ n Γ, n MN : σ ( E ) Γ, x : α, y : β M : σ Γ, z : α β z < x y M : σ (Cont) Γ M : σ Γ, x : x M : σ (Weak) Theorem (Ghilezan et al. (2011)) A λ R -term is strongly normalizing (terminating) if and only if it is typeable in the system λ R.

14 Towards substructural term calculi In order to obtain term calculi corresponding in the CH way to the intuitionistic implicative logic without (either explicit or implicit) weakening / contraction, we: start from the λ R -calculus; remove the weakening / contraction operator; remove all corresponding reduction and equivalence rules; but keep the related constraints in the definition of terms and in the type assignment rules. The obtained calculi are: the λ w -calculus, corresponding to a variant of the relevant logic, the λ c -calculus, corresponding to a variant of the affine logic.

15 The calculus without weakening - λ w Pre-terms: f ::= x λx.f ff x < x 1 f Terms: x Λ w f Λ w x Fv(f ) λx.f Λ w f Λ w g Λ w Fv(f ) Fv(g) = fg Λ w f Λ w x 1, x 1, Fv(f ) x / Fv(f ) \ {x 1, } x < x 1 f Λ w

16 Operational semantics: reductions: β, γ1, γ 2, γ 3 ; equivalencies: α, ɛ 2, ɛ 3, ɛ 4 ; reduced substitution definition. This is a strict sub-calculus of λ R, hence there are λ-terms and λ R -terms that cannot be represented in the λ w calculus, i.e. λx.y and z < x y x.

17 The type system λ w x :α x :α (Ax) Γ, x :α M :β Γ λx.m :α β ( I) Γ M :α β N :α Γ, MN :β ( E ) Γ, x :α, y :α M :β Γ, z :α z < x y M :β (Cont) Simply typed λ w -calculus corresponds in the Curry-Howard way to the intuitionistic natural deduction with explicit contraction and without weakening.

18 The type system λ w x :α x :α (Ax) Γ, x :α M :β Γ λx.m :α β ( I) Γ M :α β N :α Γ, MN :β ( E ) Γ, x :α, y :α M :β Γ, z :α z < x y M :β (Cont) Simply typed λ w -calculus corresponds in the Curry-Howard way to the intuitionistic natural deduction with explicit contraction and without weakening.

19 The type system λ w x : σ x : σ (Ax) Γ, x : α M : σ Γ λx.m : α σ ( I) Γ M : n i=1 τ i σ 1 N : τ 1... n N : τ n Γ, 1... n MN : σ ( E ) Γ, x : α, y : β M : σ Γ, z : α β z < x y M : σ (Cont) To be proved: A λ w -term is strongly normalizing if and only if it is typeable in the system λ w.

20 The calculus without contraction - λ c Pre-terms: f ::= x λx.f ff x f Terms: x Λ c f Λ c x Fv(f ) λx.f Λ c f Λ c g Λ c Fv(f ) Fv(g) = fg Λ c f Λ c x / Fv(f ) x f Λ c

21 Operational semantics: reductions: β, ω1, ω 2, ω 3 ; equivalencies: α (just for lambda abstraction), ɛ1 ; reduced substitution definition. This is a strict sub-calculus of λ R, hence there are λ-terms and λ R -terms that cannot be represented in the λ c calculus, i.e. λx.xx and x < x 1 (x 1 y).

22 The type system λ c x :α x :α (Ax) Γ, x :α M :β Γ λx.m :α β ( I) Γ M :α β N :α Γ, MN :β ( E ) Γ M :β Γ, x :α x M :β (Weak) Simply typed λ c -calculus corresponds in the Curry-Howard way to the intuitionistic natural deduction with explicit weakening and without contraction.

23 The type system λ c x :α x :α (Ax) Γ, x :α M :β Γ λx.m :α β ( I) Γ M :α β N :α Γ, MN :β ( E ) Γ M :β Γ, x :α x M :β (Weak) Simply typed λ c -calculus corresponds in the Curry-Howard way to the intuitionistic natural deduction with explicit weakening and without contraction.

24 The type system λ c x : σ x : σ (Ax) Γ, x : α M : σ Γ λx.m : α σ ( I) Γ M : n i=1 τ i σ 0 N : τ 0... n N : τ n Γ, n MN : σ ( E ) Γ M : σ Γ, x : x M : σ (Weak) To be proved: A λ c -term is strongly normalizing if and only if it is typeable in the system λ c.

25 References S. Ghilezan, J. Ivetić, P. Lescanne, D. Žunić: Intuitionistic sequent-style calculus with explicit structural rules. TbiLL th International Symposium on Language, Logic and Computation, Lecture Notes in Artificial Intelligence 6618: (2011). S. Ghilezan, J. Ivetić, P. Lescanne, S. Likavec: Intersection Types for the Resource Control Lambda Calculi. ICTAC th International Colloquium on Theoretical Aspects of Computing, Lecture Notes in Computer Science 6916: (2011). S. Ghilezan, J. Ivetić, P. Lescanne, S. Likavec: Intersection types for explicit substitution with resource control. ITRS Sixth Workshop on Intersection Types and Related Systems. S. Ghilezan, J. Ivetić, P. Lescanne, S. Likavec: Computational interpretations of some substructural logics. UNILOG The Fourth World Congress on Universal Logic.

Resource control and strong normalisation

Resource control and strong normalisation esource control and strong normalisation Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, Silvia Likavec To cite this version: Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, Silvia Likavec. esource control

More information

Asterix calculus - classical computation in detail

Asterix calculus - classical computation in detail Asterix calculus - classical computation in detail (denoted X ) Dragiša Žunić 1 Pierre Lescanne 2 1 CMU Qatar 2 ENS Lyon Logic and Applications - LAP 2016 5th conference, September 19-23, Dubrovnik Croatia

More information

Računske interpretacije intuicionističke i klasične logike

Računske interpretacije intuicionističke i klasične logike Računske interpretacije intuicionističke i klasične logike Silvia Ghilezan Univerzitet u Novom Sadu Srbija Sustavi dokazivanja 2012 Dubrovnik, Hrvatska, 28.06.2012 S.Ghilezan () Računske interpretacije

More information

Silvia Ghilezan and Jelena Ivetić

Silvia Ghilezan and Jelena Ivetić PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 82(96) (2007), 85 91 DOI 102298/PIM0796085G INTERSECTION TYPES FOR λ Gtz -CALCULUS Silvia Ghilezan and Jelena Ivetić Abstract. We introduce

More information

TERMS FOR NATURAL DEDUCTION, SEQUENT CALCULUS AND CUT ELIMINATION IN CLASSICAL LOGIC

TERMS FOR NATURAL DEDUCTION, SEQUENT CALCULUS AND CUT ELIMINATION IN CLASSICAL LOGIC TERMS FOR NATURAL DEDUCTION, SEQUENT CALCULUS AND CUT ELIMINATION IN CLASSICAL LOGIC SILVIA GHILEZAN Faculty of Engineering, University of Novi Sad, Novi Sad, Serbia e-mail address: gsilvia@uns.ns.ac.yu

More information

Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky. Radboud University Nijmegen. March 5, 2012

Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky. Radboud University Nijmegen. March 5, 2012 1 λ Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky Radboud University Nijmegen March 5, 2012 2 reading Femke van Raamsdonk Logical Verification Course Notes Herman Geuvers Introduction to

More information

Simply Typed λ-calculus

Simply Typed λ-calculus Simply Typed λ-calculus Lecture 1 Jeremy Dawson The Australian National University Semester 2, 2017 Jeremy Dawson (ANU) COMP4630,Lecture 1 Semester 2, 2017 1 / 23 A Brief History of Type Theory First developed

More information

Proofs in classical logic as programs: a generalization of lambda calculus. A. Salibra. Università Ca Foscari Venezia

Proofs in classical logic as programs: a generalization of lambda calculus. A. Salibra. Università Ca Foscari Venezia Proofs in classical logic as programs: a generalization of lambda calculus A. Salibra Università Ca Foscari Venezia Curry Howard correspondence, in general Direct relationship between systems of logic

More information

Evaluation Driven Proof-Search in Natural Deduction Calculi for Intuitionistic Propositional Logic

Evaluation Driven Proof-Search in Natural Deduction Calculi for Intuitionistic Propositional Logic Evaluation Driven Proof-Search in Natural Deduction Calculi for Intuitionistic Propositional Logic Mauro Ferrari 1, Camillo Fiorentini 2 1 DiSTA, Univ. degli Studi dell Insubria, Varese, Italy 2 DI, Univ.

More information

AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC

AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC Bulletin of the Section of Logic Volume 45/1 (2016), pp 33 51 http://dxdoiorg/1018778/0138-068045103 Mirjana Ilić 1 AN ALTERNATIVE NATURAL DEDUCTION FOR THE INTUITIONISTIC PROPOSITIONAL LOGIC Abstract

More information

Completeness and Partial Soundness Results for Intersection & Union Typing for λµ µ

Completeness and Partial Soundness Results for Intersection & Union Typing for λµ µ Completeness and Partial Soundness Results for Intersection & Union Typing for λµ µ Steffen van Bakel Department of Computing, Imperial College London, 180 Queen s Gate, London SW7 2BZ, UK Abstract This

More information

A General Technique for Analyzing Termination in Symmetric Proof Calculi

A General Technique for Analyzing Termination in Symmetric Proof Calculi A General Technique for Analyzing Termination in Symmetric Proof Calculi Daniel J. Dougherty 1, Silvia Ghilezan 2 and Pierre Lescanne 3 1 Worcester Polytechnic Institute, USA, dd@cs.wpi.edu 2 Faculty of

More information

Simply Typed λ-calculus

Simply Typed λ-calculus Simply Typed λ-calculus Lecture 2 Jeremy Dawson The Australian National University Semester 2, 2017 Jeremy Dawson (ANU) COMP4630,Lecture 2 Semester 2, 2017 1 / 19 Outline Properties of Curry type system:

More information

On a computational interpretation of sequent calculus for modal logic S4

On a computational interpretation of sequent calculus for modal logic S4 On a computational interpretation of sequent calculus for modal logic S4 Yosuke Fukuda Graduate School of Informatics, Kyoto University Second Workshop on Mathematical Logic and Its Applications March

More information

The duality of computation

The duality of computation The duality of computation (notes for the 3rd International Workshop on Higher-Order Rewriting) Hugo Herbelin LIX - INRIA-Futurs - PCRI Abstract. The work presented here is an extension of a previous work

More information

The Lambda-Calculus Reduction System

The Lambda-Calculus Reduction System 2 The Lambda-Calculus Reduction System 2.1 Reduction Systems In this section we present basic notions on reduction systems. For a more detailed study see [Klop, 1992, Dershowitz and Jouannaud, 1990]. Definition

More information

Categories, Proofs and Programs

Categories, Proofs and Programs Categories, Proofs and Programs Samson Abramsky and Nikos Tzevelekos Lecture 4: Curry-Howard Correspondence and Cartesian Closed Categories In A Nutshell Logic Computation 555555555555555555 5 Categories

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 17 Tuesday, April 2, 2013 1 There is a strong connection between types in programming languages and propositions

More information

Realisability methods of proof and semantics with application to expansion

Realisability methods of proof and semantics with application to expansion Realisability methods of proof and semantics with application to expansion First Year Examination Supervisors : Professor Fairouz Kamareddine and Doctor Joe B. Wells Student : Vincent Rahli ULTRA group,

More information

Completeness and Partial Soundness Results for Intersection & Union Typing for λµ µ

Completeness and Partial Soundness Results for Intersection & Union Typing for λµ µ Completeness and Partial Soundness Results for Intersection & Union Typing for λµ µ (Annals of Pure and Applied Logic 161, pp 1400-1430, 2010) Steffen van Bakel Department of Computing, Imperial College

More information

Intersection Synchronous Logic

Intersection Synchronous Logic UnB 2007 p. 1/2 Intersection Synchronous Logic Elaine Gouvêa Pimentel Simona Ronchi della Rocca Luca Roversi UFMG/UNITO, 2007 UnB 2007 p. 2/2 Outline Motivation UnB 2007 p. 2/2 Outline Motivation Intuitionistic

More information

Command = Value Context. Hans-Dieter Hiep. 15th of June, /17

Command = Value Context. Hans-Dieter Hiep. 15th of June, /17 1/17 Command = Value Context Hans-Dieter Hiep 15th of June, 2018 2/17 Example Consider a total functional programming language. swap :: A B B A swap (a, b) = (b, a) paws :: A B B A paws a = a paws b =

More information

Reducibility proofs in λ-calculi with intersection types

Reducibility proofs in λ-calculi with intersection types Reducibility proofs in λ-calculi with intersection types Fairouz Kamareddine, Vincent Rahli, and J. B. Wells ULTRA group, Heriot-Watt University, http://www.macs.hw.ac.uk/ultra/ March 14, 2008 Abstract

More information

Alonzo Church ( ) Lambda Calculus. λ-calculus : syntax. Grammar for terms : Inductive denition for λ-terms

Alonzo Church ( ) Lambda Calculus. λ-calculus : syntax. Grammar for terms : Inductive denition for λ-terms Alonzo Church (1903-1995) Lambda Calculus 2 λ-calculus : syntax Grammar for terms : t, u ::= x (variable) t u (application) λx.t (abstraction) Notation : Application is left-associative so that t 1 t 2...

More information

Non-Idempotent Typing Operators, beyond the λ-calculus

Non-Idempotent Typing Operators, beyond the λ-calculus Non-Idempotent Typing Operators, beyond the λ-calculus Soutenance de thèse Pierre VIAL IRIF (Univ. Paris Diderot and CNRS) December 7, 2017 Non-idempotent typing operators P. Vial 0 1 /46 Certification

More information

Lambda-Calculus (I) 2nd Asian-Pacific Summer School on Formal Methods Tsinghua University, August 23, 2010

Lambda-Calculus (I) 2nd Asian-Pacific Summer School on Formal Methods Tsinghua University, August 23, 2010 Lambda-Calculus (I) jean-jacques.levy@inria.fr 2nd Asian-Pacific Summer School on Formal Methods Tsinghua University, August 23, 2010 Plan computation models lambda-notation bound variables conversion

More information

Classical Combinatory Logic

Classical Combinatory Logic Computational Logic and Applications, CLA 05 DMTCS proc. AF, 2006, 87 96 Classical Combinatory Logic Karim Nour 1 1 LAMA - Equipe de logique, Université de Savoie, F-73376 Le Bourget du Lac, France Combinatory

More information

Logical Preliminaries

Logical Preliminaries Logical Preliminaries Johannes C. Flieger Scheme UK March 2003 Abstract Survey of intuitionistic and classical propositional logic; introduction to the computational interpretation of intuitionistic logic

More information

Intersection and Union Types for X

Intersection and Union Types for X ITRS 2004 Preliminary Version Intersection and Union Types for X Steffen van Bakel epartment of Computing, Imperial College London, 180 Queen s Gate, London SW7 2BZ, UK, svb@doc.ic.ac.uk Abstract This

More information

If-then-else and other constructive and classical connectives (Or: How to derive natural deduction rules from truth tables)

If-then-else and other constructive and classical connectives (Or: How to derive natural deduction rules from truth tables) If-then-else and other constructive and classical connectives (Or: How to derive natural deduction rules from truth tables) Herman Geuvers Nijmegen, NL (Joint work with Tonny Hurkens) Types for Proofs

More information

Intersection and Union Types for X

Intersection and Union Types for X ITRS 2004 Preliminary Version Intersection and Union Types for X Steffen van Bakel Department of Computing, Imperial College London, 180 Queen s Gate, London SW7 2BZ, UK, svb@doc.ic.ac.uk Abstract This

More information

Strong normalization of the dual classical sequent calculus

Strong normalization of the dual classical sequent calculus Strong normalization of the dual classical sequent calculus Daniel Dougherty, 1 Silvia Ghilezan, 2 Pierre Lescanne 3 and Silvia Likavec 2,4 1 Worcester Polytechnic Institute, USA, dd@wpiedu 2 Faculty of

More information

Functional Programming with Coq. Yuxin Deng East China Normal University

Functional Programming with Coq. Yuxin Deng East China Normal University Functional Programming with Coq Yuxin Deng East China Normal University http://basics.sjtu.edu.cn/ yuxin/ September 10, 2017 Functional Programming Y. Deng@ECNU 1 Reading materials 1. The Coq proof assistant.

More information

Lazy Strong Normalization

Lazy Strong Normalization Lazy Strong Normalization Luca Paolini 1,2 Dipartimento di Informatica Università di Torino (ITALIA) Elaine Pimentel 1,2 Departamento de Matemática Universidade Federal de Minas Gerais (BRASIL) Dipartimento

More information

Approaches to Polymorphism in Classical Sequent Calculus

Approaches to Polymorphism in Classical Sequent Calculus Approaches to Polymorphism in Classical Sequent Calculus (ESOP 06, LNCS 3924, pages 84-99, 2006) Alex Summers and Steffen van Bakel Department of Computing, Imperial College London 180 Queen s Gate, London

More information

Lambda calculus L9 103

Lambda calculus L9 103 Lambda calculus L9 103 Notions of computability L9 104 Church (1936): λ-calculus Turing (1936): Turing machines. Turing showed that the two very different approaches determine the same class of computable

More information

An overview of Structural Proof Theory and Computing

An overview of Structural Proof Theory and Computing An overview of Structural Proof Theory and Computing Dale Miller INRIA-Saclay & LIX, École Polytechnique Palaiseau, France Madison, Wisconsin, 2 April 2012 Part of the Special Session in Structural Proof

More information

Consequence Relations and Natural Deduction

Consequence Relations and Natural Deduction Consequence Relations and Natural Deduction Joshua D. Guttman Worcester Polytechnic Institute September 9, 2010 Contents 1 Consequence Relations 1 2 A Derivation System for Natural Deduction 3 3 Derivations

More information

Sequent Combinators: A Hilbert System for the Lambda Calculus

Sequent Combinators: A Hilbert System for the Lambda Calculus Sequent Combinators: A Hilbert System for the Lambda Calculus Healfdene Goguen Department of Computer Science, University of Edinburgh The King s Buildings, Edinburgh, EH9 3JZ, United Kingdom Fax: (+44)

More information

Preuves de logique linéaire sur machine, ENS-Lyon, Dec. 18, 2018

Preuves de logique linéaire sur machine, ENS-Lyon, Dec. 18, 2018 Université de Lorraine, LORIA, CNRS, Nancy, France Preuves de logique linéaire sur machine, ENS-Lyon, Dec. 18, 2018 Introduction Linear logic introduced by Girard both classical and intuitionistic separate

More information

Atomic Cut Elimination for Classical Logic

Atomic Cut Elimination for Classical Logic Atomic Cut Elimination for Classical Logic Kai Brünnler kaibruennler@inftu-dresdende echnische Universität Dresden, Fakultät Informatik, D - 01062 Dresden, Germany Abstract System SKS is a set of rules

More information

Delayed substitutions

Delayed substitutions Delayed substitutions José Espírito Santo Departamento de Matemática Universidade do Minho Portugal jes@math.uminho.pt Abstract. This paper investigates an approach to substitution alternative to the implicit

More information

Implicit Computational Complexity

Implicit Computational Complexity Implicit Computational Complexity Simone Martini Dipartimento di Scienze dell Informazione Università di Bologna Italy Bertinoro International Spring School for Graduate Studies in Computer Science, 6

More information

Structuring Logic with Sequent Calculus

Structuring Logic with Sequent Calculus Structuring Logic with Sequent Calculus Alexis Saurin ENS Paris & École Polytechnique & CMI Seminar at IIT Delhi 17th September 2004 Outline of the talk Proofs via Natural Deduction LK Sequent Calculus

More information

Completeness Theorems and λ-calculus

Completeness Theorems and λ-calculus Thierry Coquand Apr. 23, 2005 Content of the talk We explain how to discover some variants of Hindley s completeness theorem (1983) via analysing proof theory of impredicative systems We present some remarks

More information

Call-by-value non-determinism in a linear logic type discipline

Call-by-value non-determinism in a linear logic type discipline Call-by-value non-determinism in a linear logic type discipline Alejandro Díaz-Caro? Giulio Manzonetto Université Paris-Ouest & INRIA LIPN, Université Paris 13 Michele Pagani LIPN, Université Paris 13

More information

Sequent Calculi and Abstract Machines

Sequent Calculi and Abstract Machines Sequent Calculi and Abstract Machines ZENA M. ARIOLA University of Oregon AARON BOHANNON University of Pennsylvania and AMR SABRY Indiana University We propose a sequent calculus derived from the λµ µ-calculus

More information

Curry-Howard Correspondence for Classical Logic

Curry-Howard Correspondence for Classical Logic Curry-Howard Correspondence for Classical Logic Stéphane Graham-Lengrand CNRS, Laboratoire d Informatique de l X Stephane.Lengrand@Polytechnique.edu 2 Practicalities E-mail address: Stephane.Lengrand@Polytechnique.edu

More information

summer school Logic and Computation Goettingen, July 24-30, 2016

summer school Logic and Computation Goettingen, July 24-30, 2016 Università degli Studi di Torino summer school Logic and Computation Goettingen, July 24-30, 2016 A bit of history Alonzo Church (1936) The as formal account of computation. Proof of the undecidability

More information

Semantics for Propositional Logic

Semantics for Propositional Logic Semantics for Propositional Logic An interpretation (also truth-assignment, valuation) of a set of propositional formulas S is a function that assigns elements of {f,t} to the propositional variables in

More information

Extended Abstract: Reconsidering Intuitionistic Duality

Extended Abstract: Reconsidering Intuitionistic Duality Extended Abstract: Reconsidering Intuitionistic Duality Aaron Stump, Harley Eades III, Ryan McCleeary Computer Science The University of Iowa 1 Introduction This paper proposes a new syntax and proof system

More information

Non-classical Logics: Theory, Applications and Tools

Non-classical Logics: Theory, Applications and Tools Non-classical Logics: Theory, Applications and Tools Agata Ciabattoni Vienna University of Technology (TUV) Joint work with (TUV): M. Baaz, P. Baldi, B. Lellmann, R. Ramanayake,... N. Galatos (US), G.

More information

Semantics with Intersection Types

Semantics with Intersection Types Semantics with Intersection Types Steffen van Bakel Department of Computing, Imperial College of Science, Technology and Medicine, 180 Queen s Gate, London SW7 2BZ, U.K., E-mail: svb@doc.ic.ac.uk (Sections

More information

Teaching Natural Deduction as a Subversive Activity

Teaching Natural Deduction as a Subversive Activity Teaching Natural Deduction as a Subversive Activity James Caldwell Department of Computer Science University of Wyoming Laramie, WY Third International Congress on Tools for Teaching Logic 3 June 2011

More information

LF P A Logical Framework with External Predicates

LF P A Logical Framework with External Predicates LF P A Logical Framework with External Predicates Petar Maksimović in collaboration with Furio Honsell, Marina Lenisa, Luigi Liquori, and Ivan Scagnetto Mathematical Institute of the Serbian Academy of

More information

An Implicit Characterization of PSPACE

An Implicit Characterization of PSPACE An Implicit Characterization of PSPACE Marco Gaboardi Dipartimento di Scienze dell Informazione, Università degli Studi di Bologna - Mura Anteo Zamboni 7, 40127 Bologna, Italy, gaboardi@cs.unibo.it and

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Kleene realizability and negative translations

Kleene realizability and negative translations Q E I U G I C Kleene realizability and negative translations Alexandre Miquel O P. D E. L Ō A U D E L A R April 21th, IMERL Plan 1 Kleene realizability 2 Gödel-Gentzen negative translation 3 Lafont-Reus-Streicher

More information

Intersection and Singleton Type Assignment Characterizing Finite Böhm-Trees

Intersection and Singleton Type Assignment Characterizing Finite Böhm-Trees Information and Computation 178, 1 11 (2002) doi:101006/inco20022907 Intersection and Singleton Type Assignment Characterizing Finite Böhm-Trees Toshihiko Kurata 1 Department of Mathematics, Tokyo Metropolitan

More information

Optimizing Optimal Reduction: A Type Inference Algorithm for Elementary Affine Logic

Optimizing Optimal Reduction: A Type Inference Algorithm for Elementary Affine Logic Optimizing Optimal Reduction: A Type Inference Algorithm for Elementary Affine Logic Paolo Coppola Università di Udine Dip. di Matematica e Informatica Simone Martini Università di Bologna Dip. di Scienze

More information

Adjoint Logic and Its Concurrent Semantics

Adjoint Logic and Its Concurrent Semantics Adjoint Logic and Its Concurrent Semantics Frank Pfenning ABCD Meeting, Edinburgh, December 18-19, 2017 Joint work with Klaas Pruiksma and William Chargin Outline Proofs as programs Linear sequent proofs

More information

3.2 Reduction 29. Truth. The constructor just forms the unit element,. Since there is no destructor, there is no reduction rule.

3.2 Reduction 29. Truth. The constructor just forms the unit element,. Since there is no destructor, there is no reduction rule. 32 Reduction 29 32 Reduction In the preceding section, we have introduced the assignment of proof terms to natural deductions If proofs are programs then we need to explain how proofs are to be executed,

More information

Uniform Schemata for Proof Rules

Uniform Schemata for Proof Rules Uniform Schemata for Proof Rules Ulrich Berger and Tie Hou Department of omputer Science, Swansea University, UK {u.berger,cshou}@swansea.ac.uk Abstract. Motivated by the desire to facilitate the implementation

More information

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s Summary Summary Last Lecture Computational Logic Π 1 Γ, x : σ M : τ Γ λxm : σ τ Γ (λxm)n : τ Π 2 Γ N : τ = Π 1 [x\π 2 ] Γ M[x := N] Georg Moser Institute of Computer Science @ UIBK Winter 2012 the proof

More information

The category of open simply-typed lambda terms

The category of open simply-typed lambda terms The category of open simply-typed lambda terms Daniel Murfet based on joint work with William Troiani o Reminder on category theory Every adjunction gives rise to a monad C F / G D C(Fx,y) = D(x, Gy) C(FGx,x)

More information

Lambda Calculus. Andrés Sicard-Ramírez. Semester Universidad EAFIT

Lambda Calculus. Andrés Sicard-Ramírez. Semester Universidad EAFIT Lambda Calculus Andrés Sicard-Ramírez Universidad EAFIT Semester 2010-2 Bibliography Textbook: Hindley, J. R. and Seldin, J. (2008). Lambda-Calculus and Combinators. An Introduction. Cambridge University

More information

On Urquhart s C Logic

On Urquhart s C Logic On Urquhart s C Logic Agata Ciabattoni Dipartimento di Informatica Via Comelico, 39 20135 Milano, Italy ciabatto@dsiunimiit Abstract In this paper we investigate the basic many-valued logics introduced

More information

Consequence Relations and Natural Deduction

Consequence Relations and Natural Deduction Consequence Relations and Natural Deduction Joshua D Guttman Worcester Polytechnic Institute September 16, 2010 Contents 1 Consequence Relations 1 2 A Derivation System for Natural Deduction 3 3 Derivations

More information

NICTA Advanced Course. Theorem Proving Principles, Techniques, Applications

NICTA Advanced Course. Theorem Proving Principles, Techniques, Applications NICTA Advanced Course Theorem Proving Principles, Techniques, Applications λ 1 CONTENT Intro & motivation, getting started with Isabelle Foundations & Principles Lambda Calculus Higher Order Logic, natural

More information

Grammatical resources: logic, structure and control

Grammatical resources: logic, structure and control Grammatical resources: logic, structure and control Michael Moortgat & Dick Oehrle 1 Grammatical composition.................................. 5 1.1 Grammar logic: the vocabulary.......................

More information

Forcing-based cut-elimination for Gentzen-style intuitionistic sequent calculus

Forcing-based cut-elimination for Gentzen-style intuitionistic sequent calculus Forcing-based cut-elimination for Gentzen-style intuitionistic sequent calculus Hugo Herbelin 1 and Gyesik Lee 2 1 INRIA & PPS, Paris Université 7 Paris, France Hugo.Herbelin@inria.fr 2 ROSAEC center,

More information

185.A09 Advanced Mathematical Logic

185.A09 Advanced Mathematical Logic 185.A09 Advanced Mathematical Logic www.volny.cz/behounek/logic/teaching/mathlog13 Libor Běhounek, behounek@cs.cas.cz Lecture #1, October 15, 2013 Organizational matters Study materials will be posted

More information

Lecture 2. Lambda calculus. Iztok Savnik, FAMNIT. March, 2018.

Lecture 2. Lambda calculus. Iztok Savnik, FAMNIT. March, 2018. Lecture 2 Lambda calculus Iztok Savnik, FAMNIT March, 2018. 1 Literature Henk Barendregt, Erik Barendsen, Introduction to Lambda Calculus, March 2000. Lambda calculus Leibniz had as ideal the following

More information

Scuola Estiva di Logica Gargnano, August

Scuola Estiva di Logica Gargnano, August Linear Logic, Linear Logic, Università degli Studi di Torino Scuola Estiva di Logica 2015 Gargnano, August 28 2015 Complexity theory Linear Logic, study of complexity classes and their relations define

More information

3 Propositional Logic

3 Propositional Logic 3 Propositional Logic 3.1 Syntax 3.2 Semantics 3.3 Equivalence and Normal Forms 3.4 Proof Procedures 3.5 Properties Propositional Logic (25th October 2007) 1 3.1 Syntax Definition 3.0 An alphabet Σ consists

More information

Advanced Lambda Calculus Lecture 5

Advanced Lambda Calculus Lecture 5 Advanced Lambda Calculus Lecture 5 The fathers Alonzo Church (1903-1995) as mathematics student at Princeton University (1922 or 1924) Haskell B. Curry (1900-1982) as BA in mathematics at Harvard (1920)

More information

Tutorial on Semantics Part I

Tutorial on Semantics Part I Tutorial on Semantics Part I Basic Concepts Prakash Panangaden 1 1 School of Computer Science McGill University on sabbatical leave at Department of Computer Science Oxford University Fields Institute,

More information

Lecture 3. Lambda calculus. Iztok Savnik, FAMNIT. October, 2015.

Lecture 3. Lambda calculus. Iztok Savnik, FAMNIT. October, 2015. Lecture 3 Lambda calculus Iztok Savnik, FAMNIT October, 2015. 1 Literature Henk Barendregt, Erik Barendsen, Introduction to Lambda Calculus, March 2000. Lambda calculus Leibniz had as ideal the following

More information

A Lambda Calculus for Gödel Dummett Logic Capturing Waitfreedom

A Lambda Calculus for Gödel Dummett Logic Capturing Waitfreedom A Lambda Calculus for Gödel Dummett Logic Capturing Waitfreedom Yoichi Hirai Univ. of Tokyo, JSPS research fellow 2012-05-23, FLOPS 2012, Kobe 1 2 Curry Howard Correspondence Logic Intuitionistic propositional

More information

Program verification. Hoare triples. Assertional semantics (cont) Example: Semantics of assignment. Assertional semantics of a program

Program verification. Hoare triples. Assertional semantics (cont) Example: Semantics of assignment. Assertional semantics of a program Program verification Assertional semantics of a program Meaning of a program: relation between its inputs and outputs; specified by input assertions (pre-conditions) and output assertions (post-conditions)

More information

Origin in Mathematical Logic

Origin in Mathematical Logic Lambda Calculus Origin in Mathematical Logic Foundation of mathematics was very much an issue in the early decades of 20th century. Cantor, Frege, Russel s Paradox, Principia Mathematica, NBG/ZF The Combinatory

More information

Predicate Logic. Xinyu Feng 11/20/2013. University of Science and Technology of China (USTC)

Predicate Logic. Xinyu Feng 11/20/2013. University of Science and Technology of China (USTC) University of Science and Technology of China (USTC) 11/20/2013 Overview Predicate logic over integer expressions: a language of logical assertions, for example x. x + 0 = x Why discuss predicate logic?

More information

Deriving natural deduction rules from truth tables (Extended version)

Deriving natural deduction rules from truth tables (Extended version) Deriving natural deduction rules from truth tables (Extended version) Herman Geuvers 1 and Tonny Hurkens 2 1 Radboud University & Technical University Eindhoven, The Netherlands herman@cs.ru.nl Abstract

More information

Origin in Mathematical Logic

Origin in Mathematical Logic Lambda Calculus Origin in Mathematical Logic Foundation of mathematics was very much an issue in the early decades of 20th century. Cantor, Frege, Russel s Paradox, Principia Mathematica, NBG/ZF Origin

More information

The Curry-Howard Isomorphism

The Curry-Howard Isomorphism The Curry-Howard Isomorphism Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) The Curry-Howard Isomorphism MFES 2008/09

More information

CS Lecture 19: Logic To Truth through Proof. Prof. Clarkson Fall Today s music: Theme from Sherlock

CS Lecture 19: Logic To Truth through Proof. Prof. Clarkson Fall Today s music: Theme from Sherlock CS 3110 Lecture 19: Logic To Truth through Proof Prof. Clarkson Fall 2014 Today s music: Theme from Sherlock Review Current topic: How to reason about correctness of code Last week: informal arguments

More information

From pre-models to models

From pre-models to models From pre-models to models normalization by Heyting algebras Olivier HERMANT 18 Mars 2008 Deduction System : natural deduction (NJ) first-order logic: function and predicate symbols, logical connectors:,,,,

More information

Five Basic Concepts of. Axiomatic Rewriting Theory

Five Basic Concepts of. Axiomatic Rewriting Theory Five Basic Concepts of Axiomatic Rewriting Theory Paul-André Melliès Institut de Recherche en Informatique Fondamentale (IRIF) CNRS & Université Paris Denis Diderot 5th International Workshop on Confluence

More information

Mathematical Synthesis of Equational Deduction Systems. Marcelo Fiore. Computer Laboratory University of Cambridge

Mathematical Synthesis of Equational Deduction Systems. Marcelo Fiore. Computer Laboratory University of Cambridge Mathematical Synthesis of Equational Deduction Systems Marcelo Fiore Computer Laboratory University of Cambridge TLCA 2009 3.VII.2009 Context concrete theories meta-theories Context concrete theories meta-theories

More information

Predicate Logic. Xinyu Feng 09/26/2011. University of Science and Technology of China (USTC)

Predicate Logic. Xinyu Feng 09/26/2011. University of Science and Technology of China (USTC) University of Science and Technology of China (USTC) 09/26/2011 Overview Predicate logic over integer expressions: a language of logical assertions, for example x. x + 0 = x Why discuss predicate logic?

More information

hal , version 1-21 Oct 2009

hal , version 1-21 Oct 2009 ON SKOLEMISING ZERMELO S SET THEORY ALEXANDRE MIQUEL Abstract. We give a Skolemised presentation of Zermelo s set theory (with notations for comprehension, powerset, etc.) and show that this presentation

More information

Characterization of strong normalizability for a sequent lambda calculus with co-control

Characterization of strong normalizability for a sequent lambda calculus with co-control Characterization of strong normalizability for a sequent lambda calculus with co-control ABSTRACT José Espírito Santo Centro de Matemática, Universidade do Minho Portugal jes@math.uminho.pt We study strong

More information

On the Standardization Theorem for λβη-calculus

On the Standardization Theorem for λβη-calculus On the Standardization Theorem for λβη-calculus Ryo Kashima Department of Mathematical and Computing Sciences Tokyo Institute of Technology Ookayama, Meguro, Tokyo 152-8552, Japan. e-mail: kashima@is.titech.ac.jp

More information

Lecture Notes on Combinatory Modal Logic

Lecture Notes on Combinatory Modal Logic Lecture Notes on Combinatory Modal Logic 15-816: Modal Logic Frank Pfenning Lecture 9 February 16, 2010 1 Introduction The connection between proofs and program so far has been through a proof term assignment

More information

Embedding formalisms: hypersequents and two-level systems of rules

Embedding formalisms: hypersequents and two-level systems of rules Embedding formalisms: hypersequents and two-level systems of rules Agata Ciabattoni 1 TU Wien (Vienna University of Technology) agata@logicat Francesco A Genco 1 TU Wien (Vienna University of Technology)

More information

Focusing on Binding and Computation

Focusing on Binding and Computation Focusing on Binding and Computation Dan Licata Joint work with Noam Zeilberger and Robert Harper Carnegie Mellon University 1 Programming with Proofs Represent syntax, judgements, and proofs Reason about

More information

Propositional Logic Sequent Calculus

Propositional Logic Sequent Calculus 1 / 16 Propositional Logic Sequent Calculus Mario Alviano University of Calabria, Italy A.Y. 2017/2018 Outline 2 / 16 1 Intuition 2 The LK system 3 Derivation 4 Summary 5 Exercises Outline 3 / 16 1 Intuition

More information

How and when axioms can be transformed into good structural rules

How and when axioms can be transformed into good structural rules How and when axioms can be transformed into good structural rules Kazushige Terui National Institute of Informatics, Tokyo Laboratoire d Informatique de Paris Nord (Joint work with Agata Ciabattoni and

More information

Light Types for Polynomial Time Computation in Lambda Calculus

Light Types for Polynomial Time Computation in Lambda Calculus Light Types for Polynomial Time Computation in Lambda Calculus Patrick Baillot 1 LIPN - UMR 7030 CNRS - Université Paris 13, F-93430 Villetaneuse, France Kazushige Terui 2 Research Institute for Mathematical

More information

Surface Reasoning Lecture 2: Logic and Grammar

Surface Reasoning Lecture 2: Logic and Grammar Surface Reasoning Lecture 2: Logic and Grammar Thomas Icard June 18-22, 2012 Thomas Icard: Surface Reasoning, Lecture 2: Logic and Grammar 1 Categorial Grammar Combinatory Categorial Grammar Lambek Calculus

More information