Salt Dome Detection and Tracking Using Texture Analysis and Tensor-based Subspace Learning

Size: px
Start display at page:

Download "Salt Dome Detection and Tracking Using Texture Analysis and Tensor-based Subspace Learning"

Transcription

1 Salt Dome Detection and Tracking Using Texture Analysis and Tensor-based Subspace Learning Zhen Wang*, Dr. Tamir Hegazy*, Dr. Zhiling Long, and Prof. Ghassan AlRegib 02/18/ /42

2 Outline Introduction Salt-dome Detection Salt-dome Tracking Texture Tensor Classification Tracked Boundary Synthesis Experimental Results Conclusion and Future Work 2/42

3 Salt Domes Formed by the deposition of salt Closely related to reservoir regions

4 Motivation Manual interpretation is time consuming and labor intensive Drawbacks of salt-dome detection methods: Based on graph theory: large computational cost Based on the combinations of various seismic attributes (e.g., amplitude, dips, and frequency, ): tweak combinational weights 4/42

5 Dataset A subset of Netherlands offshore F3 block (OpendTect) Dimension: Time*Crossline*Inline = 137*301*351 Resolution: inline & crossline: 25m, time: 4ms 20m Inline # /42

6 Outline Introduction Salt-dome Detection Salt-dome Tracking Texture Tensor Classification Tracked Boundary Synthesis Experimental Results Conclusion and Future Work 6/42

7 Traditional Edge Detectors Caprock Boundaries Detected Side Boundaries Not Detected 7/42

8 Overview of Detection Method Seed Detection Seismic Sections Compute Gradient of Texture (GoT) Thresholding Region Growing Morphology Detected Boundaries 8/42

9 Gradient of Texture (GoT) Human interpretation involves sensitivity to texture change Texture Boundary Texture Region 1 Texture Region 2 GoT Is Being Computed at This Point Sliding Direction GoT captures change in texture GoT measures dissimilarity between neighborhood windows 1 st Neighborhood Window Gradient of Texture = Dissimilarity (W -, W + ) 2 nd Neighborhood Window x 9/42

10 Gradient of Texture (GoT) To detect texture boundaries of any orientation Compute x and y components of GoT: G x, G y Compute GoT as the magnitude of the (G x, G y ) vector Dissimilarity Measure Neighborhood Windows Texture Boundary Neighborhood windows used to compute x component W x-, W x+ Neighborhood windows used to compute y component W y-, W y+ 10/42

11 Dissimilarity Measure To capture human sensitivity to texture change, we use a dissimilarity metric of the variety of [HA14]. DFT magnitude spectrum of DFT magnitude spectrum was shown to be consistent with human perception of change Expectation Operator 2D DFT [HA14] T. Hegazy and G. AlRegib, COHERENSI: A new full-reference IQA using error spectrum chaos, Proc. of IEEE GlobalSIP, Atlanta, GA, Dec. 3-5, /42

12 Region Growing GoT attribute returns many boundaries Some are Salt boundaries Others are not related to salt Normalized GoT Attribute Detect a salt point (seed point) Grow seed until GoT threshold is hit Seed Point 12/42

13 Seed Selection Interactive Labor saving Single click vs. traversing long tortuous boundary Automated Smoothed multi-scale directionality attribute can be used to detect a salt point with high confidence Multi-scale directionality map Seed point selection lowest directionality after Gaussian smoothing Eigenvalues of moment of inertia tensor of gradient components scatter plot Gaussian filter 13

14 Detection Steps by Example 0. Seismic Section 1. Normalized GoT Attribute 2. Thresholded GoT 3. (3) After Region Growing 4. Dilated Region 5. Region Boundary 14/42

15 Outline Introduction Salt-dome Detection Salt-dome Tracking Texture Tensor Classification Tracked Boundary Synthesis Experimental Results Conclusion and Future Work 15/42

16 What is a tensor? Multidimensional arrays (N-th order) N 1, vectors N 2, matrices N 3, data volumes N-th-order tensor has N modes H. Lu, K. N. Plataniotis and A. N. Venetsanopoulos "A survey of multilinear subspace learning for tensor data", Pattern Recognit., vol. 44, no. 7, pp /42

17 Unfolding: Modes of Tensors The n-th mode of tensor (unfolding): 1-Mode: 2-Mode: 3-Mode: 8/42

18 Basic Operations of Tensors n-mode product of a tensor by matrix The scale product of two tensors Frobenius norm of : 18/42

19 Tensor Decomposition and Multi-linear PCA Singular value decomposition (SVD) A U Σ V T Similar to SVD, tensors can be decomposed as: V A U Σ Projection matrices along different modes 19/42

20 Tensor Decomposition and Multi-linear PCA Dimensional reduction MPCA: Projection matrices determine the mapping: : is composed of eigenvectors corresponding to the largest P n eigenvalues of 20/42

21 Textures along Salt-Dome Boundary Seismic Patches: GoT Contrast Patches: 21/42

22 Texture Tensor Classification Classification Criterion 22/42

23 Texture Tensor Classification Classification Criterion 23/42

24 Texture Tensor Classification Classification Criterion 24/42

25 Texture Tensor Classification Texture Tensor Classification 25/42

26 Classification Criterion Reconstruction Error: Current Pair of Texture Tensors Projection Matrices 26/42

27 Examples of Classified Tensors 27/42

28 Outline Introduction Salt-dome Detection Salt-dome Tracking Texture Tensor Classification Tracked Boundary Synthesis Experimental Results Conclusion and Future Work 28/42

29 Localization of Tracked Points Predicted Section Reference Section Candidate points correspond to texture patches:, e.g., Compare similarity to texture tensors built from the reference section 29/42

30 Reconstruction Error : weights for seismic sections and contrast maps Pair of Texture Tensors built from reference section Projection Matrices 30/42

31 Synthesis of Tracked Boundary Tracked points: Projected Boundary (Inline #399) Tracked Boundary (Inline #409) 31/42

32 Outline Introduction Salt-dome Detection Salt-dome Tracking Texture Tensor Classification Tracked Boundary Synthesis Experimental Results Conclusion and Future Work 32/42

33 Salt Dome Detection Inline #409 GLCM Contrast Map Inline #392 Gradient Map Ground Truth Detected Boundary 33/42

34 Local Regions of Detected Boundaries GoT map: GLCM Constrast Map: Gradient Map: Aqrawi, A. A., T. H. Boe, and S. Barros, 2011, Detecting salt domes using a dip guided 3D sobel seismic at-tribute: Presented at the 2011 SEG Annual Meeting,Society of Exploration Geophysicists

35 Fréchet Distance J K : 0,1 0,, : 0,1 0, A:[0, J] S, B :[0, K] S 35/42

36 SalSIM Index SalSIM Indices of Detected Boundaries Inline # Detection method with GoT maps Detection method with GLCM contrast maps Detection method with gradient maps AMD: averaged maximum distance 35/42

37 Salt Dome Tracking Inline #409 (a) Proposed tracking method (b) Tracking method based on vectorization (c) Tensor-based tracking method without GoT map (d) Tensor-based tracking method with GLCM contrast map Ground Truth Tracked Boundary 37/42

38 Local Regions of tracked Boundaries (a) Proposed tracking method (b) Tracking method based on vectorization (c) Tensor-based tracking method without GoT map (d) Tensor-based tracking method with GLCM contrast map 38/42

39 SalSIM Index SalSIM Indices of tracked Boundaries Inline # Proposed tracking method Tracking method based on vectorization Tensor-based tracking method without GoT maps Tensor-based tracking method only with GLCM contrast maps /42

40 SalSIM Index Tracked Boundaries based on Detected Results Inline # Proposed detection method Proposed tracking method based on detected boundary in Inline #400 40/42

41 Outline Introduction Salt-dome Detection Salt-dome Tracking Texture Tensor Classification Tracked Boundary Synthesis Experimental Results Conclusion and Future Work 41/42

42 Conclusion GoT maps can be used to detect salt-dome boundaries Tensor-based subspace learning can synthesize tracked boundaries Future work: 3D version of GoT attribute Build texture tensors through multiple seismic sections 42/42

43 43 / 42

Title: Salt dome delineation using edge- and texture-based attributes

Title: Salt dome delineation using edge- and texture-based attributes Title: Salt dome delineation using edge- and texture-based attributes Author(s): Muhammad Amir Shafiq*, Yazeed Alaudah, and Ghassan AlRegib Center for Energy and Geo Processing (CeGP), School of Electrical

More information

Uncorrelated Multilinear Principal Component Analysis through Successive Variance Maximization

Uncorrelated Multilinear Principal Component Analysis through Successive Variance Maximization Uncorrelated Multilinear Principal Component Analysis through Successive Variance Maximization Haiping Lu 1 K. N. Plataniotis 1 A. N. Venetsanopoulos 1,2 1 Department of Electrical & Computer Engineering,

More information

PHASE CONGRUENCY FOR IMAGE UNDERSTANDING WITH APPLICATIONS IN COMPUTATIONAL SEISMIC INTERPRETATION

PHASE CONGRUENCY FOR IMAGE UNDERSTANDING WITH APPLICATIONS IN COMPUTATIONAL SEISMIC INTERPRETATION PHASE CONGRUENCY FOR IMAGE UNDERSTANDING WITH APPLICATIONS IN COMPUTATIONAL SEISMIC INTERPRETATION Muhammad Amir Shafiq, Yazeed Alaudah, Ghassan AlRegib, and Mohammad Deriche Center for Energy and Geo

More information

Title: A texture-based approach for automated detection of listric faults

Title: A texture-based approach for automated detection of listric faults Title: A texture-based approach for automated detection of listric faults Author(s): Muhammad Amir Shafiq *, Haibin Di, and Ghassan AlRegib Center for Energy and Geo Processing (CeGP), School of Electrical

More information

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to:

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to: System 2 : Modelling & Recognising Modelling and Recognising Classes of Classes of Shapes Shape : PDM & PCA All the same shape? System 1 (last lecture) : limited to rigidly structured shapes System 2 :

More information

Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System 2 Overview

Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System 2 Overview 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 4 4 4 6 Modeling Classes of Shapes Suppose you have a class of shapes with a range of variations: System processes System Overview Previous Systems:

More information

18 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

18 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008 18 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008 MPCA: Multilinear Principal Component Analysis of Tensor Objects Haiping Lu, Student Member, IEEE, Konstantinos N. (Kostas) Plataniotis,

More information

Multiple Similarities Based Kernel Subspace Learning for Image Classification

Multiple Similarities Based Kernel Subspace Learning for Image Classification Multiple Similarities Based Kernel Subspace Learning for Image Classification Wang Yan, Qingshan Liu, Hanqing Lu, and Songde Ma National Laboratory of Pattern Recognition, Institute of Automation, Chinese

More information

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang

CS 231A Section 1: Linear Algebra & Probability Review. Kevin Tang CS 231A Section 1: Linear Algebra & Probability Review Kevin Tang Kevin Tang Section 1-1 9/30/2011 Topics Support Vector Machines Boosting Viola Jones face detector Linear Algebra Review Notation Operations

More information

CS 231A Section 1: Linear Algebra & Probability Review

CS 231A Section 1: Linear Algebra & Probability Review CS 231A Section 1: Linear Algebra & Probability Review 1 Topics Support Vector Machines Boosting Viola-Jones face detector Linear Algebra Review Notation Operations & Properties Matrix Calculus Probability

More information

Some Interesting Problems in Pattern Recognition and Image Processing

Some Interesting Problems in Pattern Recognition and Image Processing Some Interesting Problems in Pattern Recognition and Image Processing JEN-MEI CHANG Department of Mathematics and Statistics California State University, Long Beach jchang9@csulb.edu University of Southern

More information

OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES

OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES THEORY AND PRACTICE Bogustaw Cyganek AGH University of Science and Technology, Poland WILEY A John Wiley &. Sons, Ltd., Publication Contents Preface Acknowledgements

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

A Constraint Generation Approach to Learning Stable Linear Dynamical Systems

A Constraint Generation Approach to Learning Stable Linear Dynamical Systems A Constraint Generation Approach to Learning Stable Linear Dynamical Systems Sajid M. Siddiqi Byron Boots Geoffrey J. Gordon Carnegie Mellon University NIPS 2007 poster W22 steam Application: Dynamic Textures

More information

Kronecker Decomposition for Image Classification

Kronecker Decomposition for Image Classification university of innsbruck institute of computer science intelligent and interactive systems Kronecker Decomposition for Image Classification Sabrina Fontanella 1,2, Antonio Rodríguez-Sánchez 1, Justus Piater

More information

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis .. December 20, 2013 Todays lecture. (PCA) (PLS-R) (LDA) . (PCA) is a method often used to reduce the dimension of a large dataset to one of a more manageble size. The new dataset can then be used to make

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Face detection and recognition. Detection Recognition Sally

Face detection and recognition. Detection Recognition Sally Face detection and recognition Detection Recognition Sally Face detection & recognition Viola & Jones detector Available in open CV Face recognition Eigenfaces for face recognition Metric learning identification

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

CSE 554 Lecture 7: Alignment

CSE 554 Lecture 7: Alignment CSE 554 Lecture 7: Alignment Fall 2012 CSE554 Alignment Slide 1 Review Fairing (smoothing) Relocating vertices to achieve a smoother appearance Method: centroid averaging Simplification Reducing vertex

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

Estimators for Orientation and Anisotropy in Digitized Images

Estimators for Orientation and Anisotropy in Digitized Images Estimators for Orientation and Anisotropy in Digitized Images Lucas J. van Vliet and Piet W. Verbeek Pattern Recognition Group of the Faculty of Applied Physics Delft University of Technolo Lorentzweg,

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Preprocessing & dimensionality reduction

Preprocessing & dimensionality reduction Introduction to Data Mining Preprocessing & dimensionality reduction CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Dimensionality reduction Yale - Fall 2016

More information

Deriving Principal Component Analysis (PCA)

Deriving Principal Component Analysis (PCA) -0 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deriving Principal Component Analysis (PCA) Matt Gormley Lecture 11 Oct.

More information

N-mode Analysis (Tensor Framework) Behrouz Saghafi

N-mode Analysis (Tensor Framework) Behrouz Saghafi N-mode Analysis (Tensor Framework) Behrouz Saghafi N-mode Analysis (Tensor Framework) Drawback of 1-mode analysis (e.g. PCA): Captures the variance among just a single factor Our training set contains

More information

A METHOD OF FINDING IMAGE SIMILAR PATCHES BASED ON GRADIENT-COVARIANCE SIMILARITY

A METHOD OF FINDING IMAGE SIMILAR PATCHES BASED ON GRADIENT-COVARIANCE SIMILARITY IJAMML 3:1 (015) 69-78 September 015 ISSN: 394-58 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.1864/ijamml_710011547 A METHOD OF FINDING IMAGE SIMILAR PATCHES BASED ON GRADIENT-COVARIANCE

More information

Lecture 02 Linear Algebra Basics

Lecture 02 Linear Algebra Basics Introduction to Computational Data Analysis CX4240, 2019 Spring Lecture 02 Linear Algebra Basics Chao Zhang College of Computing Georgia Tech These slides are based on slides from Le Song and Andres Mendez-Vazquez.

More information

Linear Subspace Models

Linear Subspace Models Linear Subspace Models Goal: Explore linear models of a data set. Motivation: A central question in vision concerns how we represent a collection of data vectors. The data vectors may be rasterized images,

More information

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Corners, Blobs & Descriptors With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros Motivation: Build a Panorama M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 How do we build panorama?

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Dimension Reduction and Low-dimensional Embedding

Dimension Reduction and Low-dimensional Embedding Dimension Reduction and Low-dimensional Embedding Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/26 Dimension

More information

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis Previous Lecture Multimedia Databases Texture-Based Image Retrieval Low Level Features Tamura Measure, Random Field Model High-Level Features Fourier-Transform, Wavelets Wolf-Tilo Balke Silviu Homoceanu

More information

We Improved Salt Body Delineation Using a new Structure Extraction Workflow

We Improved Salt Body Delineation Using a new Structure Extraction Workflow We-08-08 Improved Salt Body Delineation Using a new Structure Extraction Workflow A. Laake* (WesternGeco) SUMMARY Current salt imaging workflows require thorough geological understanding in the selection

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Reconnaissance d objetsd et vision artificielle

Reconnaissance d objetsd et vision artificielle Reconnaissance d objetsd et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6 Face recognition Face detection Neural nets Attention! Troisième exercice de programmation du le

More information

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data. Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

More information

LEC 3: Fisher Discriminant Analysis (FDA)

LEC 3: Fisher Discriminant Analysis (FDA) LEC 3: Fisher Discriminant Analysis (FDA) A Supervised Dimensionality Reduction Approach Dr. Guangliang Chen February 18, 2016 Outline Motivation: PCA is unsupervised which does not use training labels

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Tensor Decompositions for Machine Learning. G. Roeder 1. UBC Machine Learning Reading Group, June University of British Columbia

Tensor Decompositions for Machine Learning. G. Roeder 1. UBC Machine Learning Reading Group, June University of British Columbia Network Feature s Decompositions for Machine Learning 1 1 Department of Computer Science University of British Columbia UBC Machine Learning Group, June 15 2016 1/30 Contact information Network Feature

More information

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig Multimedia Databases Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 4 Previous Lecture Texture-Based Image Retrieval Low

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Principal Component Analysis Barnabás Póczos Contents Motivation PCA algorithms Applications Some of these slides are taken from Karl Booksh Research

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Feature extraction: Corners and blobs Review: Linear filtering and edge detection Name two different kinds of image noise Name a non-linear smoothing filter What advantages does median filtering have over

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Computation. For QDA we need to calculate: Lets first consider the case that

Computation. For QDA we need to calculate: Lets first consider the case that Computation For QDA we need to calculate: δ (x) = 1 2 log( Σ ) 1 2 (x µ ) Σ 1 (x µ ) + log(π ) Lets first consider the case that Σ = I,. This is the case where each distribution is spherical, around the

More information

Covariance-Based PCA for Multi-Size Data

Covariance-Based PCA for Multi-Size Data Covariance-Based PCA for Multi-Size Data Menghua Zhai, Feiyu Shi, Drew Duncan, and Nathan Jacobs Department of Computer Science, University of Kentucky, USA {mzh234, fsh224, drew, jacobs}@cs.uky.edu Abstract

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014

Principal Component Analysis and Singular Value Decomposition. Volker Tresp, Clemens Otte Summer 2014 Principal Component Analysis and Singular Value Decomposition Volker Tresp, Clemens Otte Summer 2014 1 Motivation So far we always argued for a high-dimensional feature space Still, in some cases it makes

More information

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014

Dimensionality Reduction Using PCA/LDA. Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction Using PCA/LDA Hongyu Li School of Software Engineering TongJi University Fall, 2014 Dimensionality Reduction One approach to deal with high dimensional data is by reducing their

More information

Real Time Face Detection and Recognition using Haar - Based Cascade Classifier and Principal Component Analysis

Real Time Face Detection and Recognition using Haar - Based Cascade Classifier and Principal Component Analysis Real Time Face Detection and Recognition using Haar - Based Cascade Classifier and Principal Component Analysis Sarala A. Dabhade PG student M. Tech (Computer Egg) BVDU s COE Pune Prof. Mrunal S. Bewoor

More information

LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach

LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach LEC 2: Principal Component Analysis (PCA) A First Dimensionality Reduction Approach Dr. Guangliang Chen February 9, 2016 Outline Introduction Review of linear algebra Matrix SVD PCA Motivation The digits

More information

Clustering based tensor decomposition

Clustering based tensor decomposition Clustering based tensor decomposition Huan He huan.he@emory.edu Shihua Wang shihua.wang@emory.edu Emory University November 29, 2017 (Huan)(Shihua) (Emory University) Clustering based tensor decomposition

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Blobs & Scale Invariance

Blobs & Scale Invariance Blobs & Scale Invariance Prof. Didier Stricker Doz. Gabriele Bleser Computer Vision: Object and People Tracking With slides from Bebis, S. Lazebnik & S. Seitz, D. Lowe, A. Efros 1 Apertizer: some videos

More information

Multiple horizons mapping: A better approach for maximizing the value of seismic data

Multiple horizons mapping: A better approach for maximizing the value of seismic data Multiple horizons mapping: A better approach for maximizing the value of seismic data Das Ujjal Kumar *, SG(S) ONGC Ltd., New Delhi, Deputed in Ministry of Petroleum and Natural Gas, Govt. of India Email:

More information

Multimedia Databases. 4 Shape-based Features. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis

Multimedia Databases. 4 Shape-based Features. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis 4 Shape-based Features Multimedia Databases Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 4 Multiresolution Analysis

More information

The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge.

The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge. The weighted spectral distribution; A graph metric with applications. Dr. Damien Fay. SRG group, Computer Lab, University of Cambridge. A graph metric: motivation. Graph theory statistical modelling Data

More information

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Dimension reduction, PCA & eigenanalysis Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Combinations of features Given a data matrix X n p with p fairly large, it can

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

ISSN: (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at:

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015

Recognition Using Class Specific Linear Projection. Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Recognition Using Class Specific Linear Projection Magali Segal Stolrasky Nadav Ben Jakov April, 2015 Articles Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection, Peter N. Belhumeur,

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:

More information

GAIT RECOGNITION THROUGH MPCA PLUS LDA. Haiping Lu, K.N. Plataniotis and A.N. Venetsanopoulos

GAIT RECOGNITION THROUGH MPCA PLUS LDA. Haiping Lu, K.N. Plataniotis and A.N. Venetsanopoulos GAIT RECOGNITION THROUGH MPCA PLUS LDA Haiping Lu, K.N. Plataniotis and A.N. Venetsanopoulos The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto, M5S 3G4, Canada

More information

Fundamentals of Multilinear Subspace Learning

Fundamentals of Multilinear Subspace Learning Chapter 3 Fundamentals of Multilinear Subspace Learning The previous chapter covered background materials on linear subspace learning. From this chapter on, we shall proceed to multiple dimensions with

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

Principal Component Analysis (PCA) CSC411/2515 Tutorial

Principal Component Analysis (PCA) CSC411/2515 Tutorial Principal Component Analysis (PCA) CSC411/2515 Tutorial Harris Chan Based on previous tutorial slides by Wenjie Luo, Ladislav Rampasek University of Toronto hchan@cs.toronto.edu October 19th, 2017 (UofT)

More information

Merging chronostratigraphic modeling and global interpretation Emmanuel Labrunye, Stanislas Jayr, Paradigm

Merging chronostratigraphic modeling and global interpretation Emmanuel Labrunye, Stanislas Jayr, Paradigm Emmanuel Labrunye, Stanislas Jayr, Paradigm SUMMRY This paper proposes to combine the automatic interpretation of horizons in a seismic cube and the power of a space/time framework to quickly build an

More information

ECE 661: Homework 10 Fall 2014

ECE 661: Homework 10 Fall 2014 ECE 661: Homework 10 Fall 2014 This homework consists of the following two parts: (1) Face recognition with PCA and LDA for dimensionality reduction and the nearest-neighborhood rule for classification;

More information

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB

(Mathematical Operations with Arrays) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Mathematical Operations with Arrays) Contents Getting Started Matrices Creating Arrays Linear equations Mathematical Operations with Arrays Using Script

More information

Convergence of Eigenspaces in Kernel Principal Component Analysis

Convergence of Eigenspaces in Kernel Principal Component Analysis Convergence of Eigenspaces in Kernel Principal Component Analysis Shixin Wang Advanced machine learning April 19, 2016 Shixin Wang Convergence of Eigenspaces April 19, 2016 1 / 18 Outline 1 Motivation

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

LEC 5: Two Dimensional Linear Discriminant Analysis

LEC 5: Two Dimensional Linear Discriminant Analysis LEC 5: Two Dimensional Linear Discriminant Analysis Dr. Guangliang Chen March 8, 2016 Outline Last time: LDA/QDA (classification) Today: 2DLDA (dimensionality reduction) HW3b and Midterm Project 3 What

More information

Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling

Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling Ronan LeBras Theodoros Damoulas Ashish Sabharwal Carla P. Gomes John M. Gregoire Bruce van Dover Computer Science Computer

More information

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi Signal Modeling Techniques in Speech Recognition Hassan A. Kingravi Outline Introduction Spectral Shaping Spectral Analysis Parameter Transforms Statistical Modeling Discussion Conclusions 1: Introduction

More information

Wafer Pattern Recognition Using Tucker Decomposition

Wafer Pattern Recognition Using Tucker Decomposition Wafer Pattern Recognition Using Tucker Decomposition Ahmed Wahba, Li-C. Wang, Zheng Zhang UC Santa Barbara Nik Sumikawa NXP Semiconductors Abstract In production test data analytics, it is often that an

More information

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course Spectral Algorithms I Slides based on Spectral Mesh Processing Siggraph 2010 course Why Spectral? A different way to look at functions on a domain Why Spectral? Better representations lead to simpler solutions

More information

MPCA: Multilinear Principal Component. Analysis of Tensor Objects

MPCA: Multilinear Principal Component. Analysis of Tensor Objects MPCA: Multilinear Principal Component 1 Analysis of Tensor Objects Haiping Lu, K.N. Plataniotis and A.N. Venetsanopoulos The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering

Matrix Factorization Techniques For Recommender Systems. Collaborative Filtering Matrix Factorization Techniques For Recommender Systems Collaborative Filtering Markus Freitag, Jan-Felix Schwarz 28 April 2011 Agenda 2 1. Paper Backgrounds 2. Latent Factor Models 3. Overfitting & Regularization

More information

CS Finding Corner Points

CS Finding Corner Points CS 682 1 Finding Corner Points CS 682 2 Normalized Cross-correlation Let w 1 = I 1 (x 1 + i, y 1 + j) andw 2 = I 2 (x 2 + i, y 2 + j), i = W,...,W, j = W,...,W be two square image windows centered at locations

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil nfrastructure Eng. & Mgmt. Session 9- mage Detectors, Part Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering Lab e-mail:

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Fantope Regularization in Metric Learning

Fantope Regularization in Metric Learning Fantope Regularization in Metric Learning CVPR 2014 Marc T. Law (LIP6, UPMC), Nicolas Thome (LIP6 - UPMC Sorbonne Universités), Matthieu Cord (LIP6 - UPMC Sorbonne Universités), Paris, France Introduction

More information

EECS490: Digital Image Processing. Lecture #26

EECS490: Digital Image Processing. Lecture #26 Lecture #26 Moments; invariant moments Eigenvector, principal component analysis Boundary coding Image primitives Image representation: trees, graphs Object recognition and classes Minimum distance classifiers

More information

An Accurate Incremental Principal Component Analysis method with capacity of update and downdate

An Accurate Incremental Principal Component Analysis method with capacity of update and downdate 0 International Conference on Computer Science and Information echnolog (ICCSI 0) IPCSI vol. 5 (0) (0) IACSI Press, Singapore DOI: 0.7763/IPCSI.0.V5. An Accurate Incremental Principal Component Analsis

More information

LECTURE NOTE #10 PROF. ALAN YUILLE

LECTURE NOTE #10 PROF. ALAN YUILLE LECTURE NOTE #10 PROF. ALAN YUILLE 1. Principle Component Analysis (PCA) One way to deal with the curse of dimensionality is to project data down onto a space of low dimensions, see figure (1). Figure

More information

Anomaly Detection for the CERN Large Hadron Collider injection magnets

Anomaly Detection for the CERN Large Hadron Collider injection magnets Anomaly Detection for the CERN Large Hadron Collider injection magnets Armin Halilovic KU Leuven - Department of Computer Science In cooperation with CERN 2018-07-27 0 Outline 1 Context 2 Data 3 Preprocessing

More information

Problems. Looks for literal term matches. Problems:

Problems. Looks for literal term matches. Problems: Problems Looks for literal term matches erms in queries (esp short ones) don t always capture user s information need well Problems: Synonymy: other words with the same meaning Car and automobile 电脑 vs.

More information

Linear Algebra for Machine Learning. Sargur N. Srihari

Linear Algebra for Machine Learning. Sargur N. Srihari Linear Algebra for Machine Learning Sargur N. srihari@cedar.buffalo.edu 1 Overview Linear Algebra is based on continuous math rather than discrete math Computer scientists have little experience with it

More information