Homework 3 Solutions CSE 101 Summer 2017

Size: px
Start display at page:

Download "Homework 3 Solutions CSE 101 Summer 2017"

Transcription

1 Hoework 3 Solutions CSE 0 Suer 207. Scheduling algoriths The following n = 2 jobs with given processing ties have to be scheduled on = 3 parallel and identical processors with the objective of iniizing the akespan. C j is the copletion tie of a job. A B C D E F G H I J K L (a) Draw the List-Scheduling-schedule as a Gantt-Chart. How uch is C ax and how uch is C j? (b) Draw the LPT-schedule as a Gantt-Chart. How uch is C ax and how uch is C j? (c) Draw the SPT-schedule as a Gantt-Chart. How uch is C ax and how uch is C j? (d) Find the optial and the worst list concerning the objective of iniizing the akespan. (e) Find the optial and the worst list concerning the objective of iniizing the su of the processing ties. (f) Draw McNaughton s schedule (preeptions allowed). Solution: (a) The Gantt-Chart for List-Scheduling is: C ax = ax{2,29} = 29 and C j = = 96 (b) The Gantt-Chart for LPT is: C ax = ax{2,29} = 29 and C j = = 252 (c) The Gantt-Chart for SPT is:

2 C ax = ax{2,3} = 3 and C j = = 68 (d) Lower Bound, LB = ax{2,84/3} = 28 The optial list concerning the objective of iniizing the akespan ust have a akespan of 28. One such exaple is {C,J,H,B,I,K,L,F,G,E,A,D}. The Gantt-Chart for this list using List-Scheduling is: To get the worst list concerning the objective of iniizing the akespan, reove the job with ax processing tie C(=2), then apply LS to reaining jobs such that akespan = (84-2)/3 = 24. Then add the job C to one of the achines to get the akespan to be 24+2 = 36. One such exaple is {J,H,I,K,B,G,L,F,E,A,D,C}. The Gantt-Chart for this list using List-Scheduling is: (e) SPT iniizes the su of copletion ties at 68 and LPT has the axiu at 252. (f) The Gantt-Chart for McNaughton s schedule is: 2. Upper and lower bounds for scheduling algoriths, NP-copleteness 2

3 (a) Explain why j= p j/ and p ax =ax(p k ) (for any k {,..., n}) are Lower Bounds for the akespan of any algorith solving P C ax. (b) Find Upper Bounds for the akespan of List Scheduling for P C ax. (c) Find a tight worst-case exaple for the akespan achieved by List Scheduling in coparison to the optiu akespan for = 5 processors. (d) Repeat in your own words the ost iportant ideas behind Ron Graha s proof for the worst-case behaviour of List Scheduling. (e) Prove that the decision version of P C ax is NP-coplete by reducing Partition. Solution: (a) j= p j is the total aount of processing that ust be done across all achines. Then for achines, j= pj would be the average processing that needs to be done. By properties of the average, at least one achine then ust process at least this average. Hence, C k j= pj. Also, a processor can process only one job at a tie. This eans, a job can be copleted no faster than it s given processing tie. If p ax = ax{p k }, then at least one achine ust have p ax processing load. Therefore, j= p j/ and p ax for the lower bounds for akespan of any algorith solving P C ax and clearly Cax ax { j= p j/, p ax }. (b) One upper bound is the su of all processing ties (e.g. if all jobs ran sequentially on a single achine). We can go further and lower this upper bound when we schedule the jobs according to the List Scheduling procedure: schedule the next job always on that processor that has done the least aount of work so far. Let J k denote the job that copletes last across all achines, say on achine P i. This job (by definition) was assigned when achine P i had the least load, so that: C LS ax = C k = s k + p k where s k is the aount of load on achine P i when J k was assigned to it. But this, by definition, ust have been the least load aong the achines when this happened. Therefore: So we coe to: s k j= pj,j k j= = pj p k j= = pj p k Cax LS j= = C k = s k + p k pj p k + p k and so ( ) Cax LS j= pj + p k By part (a) it follows that: ( ) ( Cax LS Cax + Cax = 2 ) C ax (c) To achieve a tight worst-case for the akespan, by List-Scheduling for = 5 processors, C ax = ( 2 5) C ax = C ax = 9 5 C ax. One exaple can be a list with 20 jobs having processing ties p j = and one job with tie p j = 5. The Gantt-Chart for this list using List-Scheduling in coparison to the optiu akespan is: 3

4 Using List-Scheduling C ax = 9, while the optiu akespan is C ax = 5. C ax = 9 5 C ax. (d) We can observe that one job J k, the one that finishes last, deterines the akespan C ax. So we have, for the akespan of List-Schedule C LS ax = p k + s k where s k is the aount of load on achine P i when J k was assigned to it. We now use relations. (i) s k, the starting tie of this job cannot be larger than the su of the processing ties of all the other jobs divided by the nuber of achines,. s k j k pj (ii) Also, the optiu akespan cannot be saller than the average processing tie or processing tie of any single job. j= pj Cax and p k Cax (see solution to part b)). (e) We are going to prove that P 2 C ax is NP-hard. (Fro this it follows that also P C ax for an arbitrary 2 ust be NP-hard. First let us define the decision versions of both probles. j= PARTITION: Given a list of n positive integers s, s 2,..., s n and a value b = sj 2, does there exist a subset J I = {,..., n} such that s j = b = j J j I/ J Reark: Partition is NP-hard in the ordinary sense, i.e. the proble cannot be optially ( solved by an algorith with polynoial tie coplexity but with an algorith of tie coplexity O (n ax s j ) k). P 2 C ax : Given n jobs with processing ties p j where j {, 2,..., n} and a nuber k, the decision version of P 2 C ax is to check if you can schedule the on achines so as to coplete by tie k. Step : P 2 C ax is in NP If the schedule of the jobs for each of the 2 achines is given, it can be verified in polynoial tie that s j 4

5 the copletion ties C,..., C n of all jobs J,..., J n are less than or equal to T. Reark: Clearly, any C k has a binary encoding which is bounded by a polynoial in the input length of the proble.) Thus, P 2 C ax belongs to NP. Note: Every decision proble solvable in polynoial tie belongs to NP. If we have such a proble P and an algorith which calculates for each input x the answer h(x) {yes, no} in a polynoial nuber of steps, then this answer h(x) ay be used as a certificate. This certificate can be verified by the algorith. Thus P is also in NP which iplies P NP. Step 2: PARTITION reduces to P 2 C ax : PARTITION P 2 C ax Note: For two decision probles P and Q, we say that P reduces to Q (denoted P Q) if there exists a polynoial-tie coputable function g that transfors inputs for P into inputs for Q such that x is a yes-input for P if and only if g(x) is a yes-input for Q. A yes-answer for a decision proble can be verified in polynoial tie (this is not the case for the no-answer). The partitioning proble is reducable to P 2 C ax :. The input of the scheduling proble can be coputed in polynoial tie given the input of the PARTITION poble: We ust polynoial transfor the input for PARTITION into an instance of P 2 C ax such that there is a solution for PARTITION if and only if there is a schedule with C ax k for a suitable value k. This is easy: We just set k = b and define the scheduling proble as follows: Consider the jobs J j with p j = s j for j =,..., n. We choose k = b as the threshold for the corresponding decision proble. 2. a. If PARTITION has a solution, then the decision version of P 2 C ax has a solution: If PARTITION has a solution, then there exists an index set J {,..., n} such that i J s i = b. In this case the schedule p i J on P and p i / J on P 2 solves the decision version of proble P 2 C ax. 2. b. If the decision version of P 2 C ax has a solution, then PARTITION has a solution: If the decision version of P 2 C ax has a solution, then the jobs with processing ties p,..., p n are scheduled on P (all p i J and P 2 (all p i / J ) such that the akespan is less than or equal to k. In this case the PARTITION j J s j = b = k = j I/ J s j solves the PARTITION proble. Since P 2 C ax is in NP, and we can reduce an NP-coplete proble to it in polynoial tie, P 2 C ax ust also be NP-coplete. 3. Tie analysis of scheduling algoriths (a) Write the Pseudocode of the List Scheduling algorith to solve P C ax. Proof the correctness and perfor a tie analysis. Does LPT has the sae tie coplexity? (b) Write the Pseudocode of McNaughton s algorith to solve P ptn C ax. Proof the correctness and perfor a tie analysis. (c) Prove that McNaughton s algorith needs never ore than n preeptions to produce an optial solution. Solution: (a) Pseudocode: INPUT: Jobs[...N];// each eleent is (jobid,duration) OUTPUT: Processor[...M];// each eleent points to an ordered list of jobids. Cax; processorid_cax; 5

6 initialise Cax = 0, processorid_cax=0; function List_scheduling(Jobs[...N],Processor[...M]) {. create MIN_HEAP for M eleents, all initialized to be (processorid,0); //two field of MIN_HEAP: processorid and aount_of_work_so_far, ordered by the latter 2. For I fro to N 3. assign (processorid, work) = the top of the MIN_HEAP); 4. reove the top of the MIN_HEAP; 5. add Jobs[I] s jobid to Processor[processorID] s list; 6. put (processorid, work+jobs[i] s duration) back to MIN_HEAP; 7. if (work+jobs[i] s duration > Cax) 8. Cax = work+jobs[i] s duration; 9. processorid_cax = processorid; 0. I++; } Correctness: () This algorith terinates, because after I iterates to N and reoving the top eleent of MIN HEAP until the last one, the function will return.(2) This algorith returns correct result. This is because the for loop processes every job. Within the scope of for loop, it puts a job to the processorid on the top of the MIN HEAP, which is guaranteed to have the sallest aount of work so far. This is exactly what List Scheduling does. Tie analysis: Line needs O(M); line 3,6 takes O(logM); other lines inside the for loop takes O(), so they are negligible. The total tie coplexity is O(M + NlogM). Using LPT will not have the sae coplexity: LPT: LPT needs to sort the Jobs array, which usually takes O(nlogn) depending on the sorting algorith. As a result, the tie coplexity becoes O(M + N(logN + logm)). (b) Pseudocode: INPUT: Jobs[...N];// each eleent is (jobid,duration) OUTPUT: Processor[...M];// each eleent points to an ordered list of (jobids, starting_tie) Cax; function McNaughton(Jobs[...N],Processor[...M]) { //copute Cax int p_ax = 0; int p_su = 0; FOR I fro to N IF Jobs[I] s duration > p_ax p_ax = Jobs[I] s duration p_su += Jobs[I] s duration 6

7 Cax = ax{ ceiling{p_su/n}, p_ax} //process each job initialize processor_pointer =, processor_size = 0; For I fro to N IF (Jobs[I] s duration < (Cax - processor_size)) add (Jobs[I] s jobid, processor_size) to Processor[processor_pointer]; processor_size += Jobs[I] s duration; I++; ELSE IF (Jobs[I] s duration == (Cax - processor_size)) add (Jobs[I] s jobid, processor_size) to Processor[processor_pointer]; processor_size = 0; processor_pointer++; I++; ELSE add (Jobs[I] s jobid, Cax - processor_size) to Processor[processor_pointer]; put (Jobs[I] s jobid, Jobs[I] s duration - (Cax - processor_size)) to I of Jobs list; processor_pointer++; processor_size = 0; } Correctness: () The algorith terinates. This is because the algorith will return after iterating all eleents in Jobs list. (2) The algoriths returns correct answer. It first coputes Cax according to the forula. Then for each job, it copares that job s duration with the vacant spaces in the processor. If there is enough space, then it just puts that job to the current processor and adds the duration to the current processor size. If there is no enough space, then it first feeds the processor as any as it can, then put the reaining as a new job back to the job list, so that it can be accessed again in the next iteration. In the next iteration, the reaining job will be put in the next processor. This is excatly what McNaughton algorith does. Tie analysis: Coputing the Cax needs O(N). Since all three cases inside the for loop only takes constant tie, we only need to find out how any iterations does the for loop have. Obviously it at least needs O(N) because there are N jobs. However, the last ELSE block ay add iterations on top of that. The nuber of execution for the last ELSE block is O(M). So the tie coplexity is O(N + M). (c): Each job interrupted at ost once. More interruptions would not yield to saller akespans. 7

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Algoriths for parallel processor scheduling with distinct due windows and unit-tie obs A. JANIAK 1, W.A. JANIAK 2, and

More information

Worst-case performance of critical path type algorithms

Worst-case performance of critical path type algorithms Intl. Trans. in Op. Res. 7 (2000) 383±399 www.elsevier.co/locate/ors Worst-case perforance of critical path type algoriths G. Singh, Y. Zinder* University of Technology, P.O. Box 123, Broadway, NSW 2007,

More information

time time δ jobs jobs

time time δ jobs jobs Approxiating Total Flow Tie on Parallel Machines Stefano Leonardi Danny Raz y Abstract We consider the proble of optiizing the total ow tie of a strea of jobs that are released over tie in a ultiprocessor

More information

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies Approxiation in Stochastic Scheduling: The Power of -Based Priority Policies Rolf Möhring, Andreas Schulz, Marc Uetz Setting (A P p stoch, r E( w and (B P p stoch E( w We will assue that the processing

More information

1 Identical Parallel Machines

1 Identical Parallel Machines FB3: Matheatik/Inforatik Dr. Syaantak Das Winter 2017/18 Optiizing under Uncertainty Lecture Notes 3: Scheduling to Miniize Makespan In any standard scheduling proble, we are given a set of jobs J = {j

More information

A Note on Online Scheduling for Jobs with Arbitrary Release Times

A Note on Online Scheduling for Jobs with Arbitrary Release Times A Note on Online Scheduling for Jobs with Arbitrary Release Ties Jihuan Ding, and Guochuan Zhang College of Operations Research and Manageent Science, Qufu Noral University, Rizhao 7686, China dingjihuan@hotail.co

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science A Better Algorith For an Ancient Scheduling Proble David R. Karger Steven J. Phillips Eric Torng Departent of Coputer Science Stanford University Stanford, CA 9435-4 Abstract One of the oldest and siplest

More information

Introduction to Discrete Optimization

Introduction to Discrete Optimization Prof. Friedrich Eisenbrand Martin Nieeier Due Date: March 9 9 Discussions: March 9 Introduction to Discrete Optiization Spring 9 s Exercise Consider a school district with I neighborhoods J schools and

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition

Pattern Recognition and Machine Learning. Learning and Evaluation for Pattern Recognition Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lesson 1 4 October 2017 Outline Learning and Evaluation for Pattern Recognition Notation...2 1. The Pattern Recognition

More information

Convex Programming for Scheduling Unrelated Parallel Machines

Convex Programming for Scheduling Unrelated Parallel Machines Convex Prograing for Scheduling Unrelated Parallel Machines Yossi Azar Air Epstein Abstract We consider the classical proble of scheduling parallel unrelated achines. Each job is to be processed by exactly

More information

On Poset Merging. 1 Introduction. Peter Chen Guoli Ding Steve Seiden. Keywords: Merging, Partial Order, Lower Bounds. AMS Classification: 68W40

On Poset Merging. 1 Introduction. Peter Chen Guoli Ding Steve Seiden. Keywords: Merging, Partial Order, Lower Bounds. AMS Classification: 68W40 On Poset Merging Peter Chen Guoli Ding Steve Seiden Abstract We consider the follow poset erging proble: Let X and Y be two subsets of a partially ordered set S. Given coplete inforation about the ordering

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate

The Simplex Method is Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate The Siplex Method is Strongly Polynoial for the Markov Decision Proble with a Fixed Discount Rate Yinyu Ye April 20, 2010 Abstract In this note we prove that the classic siplex ethod with the ost-negativereduced-cost

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Midterm 1 Sample Solution

Midterm 1 Sample Solution Midter 1 Saple Solution NOTE: Throughout the exa a siple graph is an undirected, unweighted graph with no ultiple edges (i.e., no exact repeats of the sae edge) and no self-loops (i.e., no edges fro a

More information

New Slack-Monotonic Schedulability Analysis of Real-Time Tasks on Multiprocessors

New Slack-Monotonic Schedulability Analysis of Real-Time Tasks on Multiprocessors New Slack-Monotonic Schedulability Analysis of Real-Tie Tasks on Multiprocessors Risat Mahud Pathan and Jan Jonsson Chalers University of Technology SE-41 96, Göteborg, Sweden {risat, janjo}@chalers.se

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words)

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words) 1 A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine (1900 words) Contact: Jerry Farlow Dept of Matheatics Univeristy of Maine Orono, ME 04469 Tel (07) 866-3540 Eail: farlow@ath.uaine.edu

More information

Defect-Aware SOC Test Scheduling

Defect-Aware SOC Test Scheduling Defect-Aware SOC Test Scheduling Erik Larsson +, Julien Pouget*, and Zebo Peng + Ebedded Systes Laboratory + LIRMM* Departent of Coputer Science Montpellier 2 University Linköpings universitet CNRS Sweden

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Stochastic Machine Scheduling with Precedence Constraints

Stochastic Machine Scheduling with Precedence Constraints Stochastic Machine Scheduling with Precedence Constraints Martin Skutella Fakultät II, Institut für Matheatik, Sekr. MA 6-, Technische Universität Berlin, 0623 Berlin, Gerany skutella@ath.tu-berlin.de

More information

Longest Processing Time rule for identical parallel machines revisited

Longest Processing Time rule for identical parallel machines revisited Longest Processing Tie rule for identical parallel achines revisited Federico Della Croce a,b,, Rosario Scataacchia a arxiv:1801.05489v1 [cs.ds] 16 Jan 2018 a Dipartiento di Ingegneria Gestionale e della

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

On Constant Power Water-filling

On Constant Power Water-filling On Constant Power Water-filling Wei Yu and John M. Cioffi Electrical Engineering Departent Stanford University, Stanford, CA94305, U.S.A. eails: {weiyu,cioffi}@stanford.edu Abstract This paper derives

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

INTEGRATIVE COOPERATIVE APPROACH FOR SOLVING PERMUTATION FLOWSHOP SCHEDULING PROBLEM WITH SEQUENCE DEPENDENT FAMILY SETUP TIMES

INTEGRATIVE COOPERATIVE APPROACH FOR SOLVING PERMUTATION FLOWSHOP SCHEDULING PROBLEM WITH SEQUENCE DEPENDENT FAMILY SETUP TIMES 8 th International Conference of Modeling and Siulation - MOSIM 10 - May 10-12, 2010 - Haaet - Tunisia Evaluation and optiization of innovative production systes of goods and services INTEGRATIVE COOPERATIVE

More information

Support Vector Machines. Maximizing the Margin

Support Vector Machines. Maximizing the Margin Support Vector Machines Support vector achines (SVMs) learn a hypothesis: h(x) = b + Σ i= y i α i k(x, x i ) (x, y ),..., (x, y ) are the training exs., y i {, } b is the bias weight. α,..., α are the

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Constant-Space String-Matching. in Sublinear Average Time. (Extended Abstract) Wojciech Rytter z. Warsaw University. and. University of Liverpool

Constant-Space String-Matching. in Sublinear Average Time. (Extended Abstract) Wojciech Rytter z. Warsaw University. and. University of Liverpool Constant-Space String-Matching in Sublinear Average Tie (Extended Abstract) Maxie Crocheore Universite de Marne-la-Vallee Leszek Gasieniec y Max-Planck Institut fur Inforatik Wojciech Rytter z Warsaw University

More information

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get:

Now multiply the left-hand-side by ω and the right-hand side by dδ/dt (recall ω= dδ/dt) to get: Equal Area Criterion.0 Developent of equal area criterion As in previous notes, all powers are in per-unit. I want to show you the equal area criterion a little differently than the book does it. Let s

More information

On the Inapproximability of Vertex Cover on k-partite k-uniform Hypergraphs

On the Inapproximability of Vertex Cover on k-partite k-uniform Hypergraphs On the Inapproxiability of Vertex Cover on k-partite k-unifor Hypergraphs Venkatesan Guruswai and Rishi Saket Coputer Science Departent Carnegie Mellon University Pittsburgh, PA 1513. Abstract. Coputing

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

arxiv: v1 [cs.dc] 19 Jul 2011

arxiv: v1 [cs.dc] 19 Jul 2011 DECENTRALIZED LIST SCHEDULING MARC TCHIBOUKDJIAN, NICOLAS GAST, AND DENIS TRYSTRAM arxiv:1107.3734v1 [cs.dc] 19 Jul 2011 ABSTRACT. Classical list scheduling is a very popular and efficient technique for

More information

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS Jochen Till, Sebastian Engell, Sebastian Panek, and Olaf Stursberg Process Control Lab (CT-AST), University of Dortund,

More information

Fast Montgomery-like Square Root Computation over GF(2 m ) for All Trinomials

Fast Montgomery-like Square Root Computation over GF(2 m ) for All Trinomials Fast Montgoery-like Square Root Coputation over GF( ) for All Trinoials Yin Li a, Yu Zhang a, a Departent of Coputer Science and Technology, Xinyang Noral University, Henan, P.R.China Abstract This letter

More information

e-companion ONLY AVAILABLE IN ELECTRONIC FORM

e-companion ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1070.0427ec pp. ec1 ec5 e-copanion ONLY AVAILABLE IN ELECTRONIC FORM infors 07 INFORMS Electronic Copanion A Learning Approach for Interactive Marketing to a Custoer

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

arxiv: v1 [cs.ds] 29 Jan 2012

arxiv: v1 [cs.ds] 29 Jan 2012 A parallel approxiation algorith for ixed packing covering seidefinite progras arxiv:1201.6090v1 [cs.ds] 29 Jan 2012 Rahul Jain National U. Singapore January 28, 2012 Abstract Penghui Yao National U. Singapore

More information

On the Communication Complexity of Lipschitzian Optimization for the Coordinated Model of Computation

On the Communication Complexity of Lipschitzian Optimization for the Coordinated Model of Computation journal of coplexity 6, 459473 (2000) doi:0.006jco.2000.0544, available online at http:www.idealibrary.co on On the Counication Coplexity of Lipschitzian Optiization for the Coordinated Model of Coputation

More information

A Bernstein-Markov Theorem for Normed Spaces

A Bernstein-Markov Theorem for Normed Spaces A Bernstein-Markov Theore for Nored Spaces Lawrence A. Harris Departent of Matheatics, University of Kentucky Lexington, Kentucky 40506-0027 Abstract Let X and Y be real nored linear spaces and let φ :

More information

Optimal Resource Allocation in Multicast Device-to-Device Communications Underlaying LTE Networks

Optimal Resource Allocation in Multicast Device-to-Device Communications Underlaying LTE Networks 1 Optial Resource Allocation in Multicast Device-to-Device Counications Underlaying LTE Networks Hadi Meshgi 1, Dongei Zhao 1 and Rong Zheng 2 1 Departent of Electrical and Coputer Engineering, McMaster

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t.

This model assumes that the probability of a gap has size i is proportional to 1/i. i.e., i log m e. j=1. E[gap size] = i P r(i) = N f t. CS 493: Algoriths for Massive Data Sets Feb 2, 2002 Local Models, Bloo Filter Scribe: Qin Lv Local Models In global odels, every inverted file entry is copressed with the sae odel. This work wells when

More information

Analyzing Simulation Results

Analyzing Simulation Results Analyzing Siulation Results Dr. John Mellor-Cruey Departent of Coputer Science Rice University johnc@cs.rice.edu COMP 528 Lecture 20 31 March 2005 Topics for Today Model verification Model validation Transient

More information

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3 A. Find all ordered pairs a, b) of positive integers for which a + b = 3 08. Answer. The six ordered pairs are 009, 08), 08, 009), 009 337, 674) = 35043, 674), 009 346, 673) = 3584, 673), 674, 009 337)

More information

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution Testing approxiate norality of an estiator using the estiated MSE and bias with an application to the shape paraeter of the generalized Pareto distribution J. Martin van Zyl Abstract In this work the norality

More information

Mathematical Model and Algorithm for the Task Allocation Problem of Robots in the Smart Warehouse

Mathematical Model and Algorithm for the Task Allocation Problem of Robots in the Smart Warehouse Aerican Journal of Operations Research, 205, 5, 493-502 Published Online Noveber 205 in SciRes. http://www.scirp.org/journal/ajor http://dx.doi.org/0.4236/ajor.205.56038 Matheatical Model and Algorith

More information

Bipartite subgraphs and the smallest eigenvalue

Bipartite subgraphs and the smallest eigenvalue Bipartite subgraphs and the sallest eigenvalue Noga Alon Benny Sudaov Abstract Two results dealing with the relation between the sallest eigenvalue of a graph and its bipartite subgraphs are obtained.

More information

Nonclairvoyant Scheduling to Minimize the Total Flow Time on Single and Parallel Machines

Nonclairvoyant Scheduling to Minimize the Total Flow Time on Single and Parallel Machines Nonclairvoyant Scheduling to Miniize the Total Flow Tie on Single and Parallel Machines LUCA BECCHETTI AND STEFANO LEONARDI University of Roe La Sapienza, Roe, Italy Abstract. Scheduling a sequence of

More information

Page 1 Lab 1 Elementary Matrix and Linear Algebra Spring 2011

Page 1 Lab 1 Elementary Matrix and Linear Algebra Spring 2011 Page Lab Eleentary Matri and Linear Algebra Spring 0 Nae Due /03/0 Score /5 Probles through 4 are each worth 4 points.. Go to the Linear Algebra oolkit site ransforing a atri to reduced row echelon for

More information

ORIGAMI CONSTRUCTIONS OF RINGS OF INTEGERS OF IMAGINARY QUADRATIC FIELDS

ORIGAMI CONSTRUCTIONS OF RINGS OF INTEGERS OF IMAGINARY QUADRATIC FIELDS #A34 INTEGERS 17 (017) ORIGAMI CONSTRUCTIONS OF RINGS OF INTEGERS OF IMAGINARY QUADRATIC FIELDS Jürgen Kritschgau Departent of Matheatics, Iowa State University, Aes, Iowa jkritsch@iastateedu Adriana Salerno

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Scheduling Contract Algorithms on Multiple Processors

Scheduling Contract Algorithms on Multiple Processors Fro: AAAI Technical Report FS-0-04. Copilation copyright 200, AAAI (www.aaai.org). All rights reserved. Scheduling Contract Algoriths on Multiple Processors Daniel S. Bernstein, Theodore. Perkins, Shloo

More information

Understanding Machine Learning Solution Manual

Understanding Machine Learning Solution Manual Understanding Machine Learning Solution Manual Written by Alon Gonen Edited by Dana Rubinstein Noveber 17, 2014 2 Gentle Start 1. Given S = ((x i, y i )), define the ultivariate polynoial p S (x) = i []:y

More information

FLOWSHOP SCHEDULES WITH SEQUENCE DEPENDENT SETUP TIMES

FLOWSHOP SCHEDULES WITH SEQUENCE DEPENDENT SETUP TIMES Journal of the Operations Research Society of Japan Vo!. 29, No. 3, Septeber 1986 1986 The Operations Research Society of Japan FLOWSHOP SCHEDULES WITH SEQUENCE DEPENDENT SETUP TIMES Jatinder N. D. Gupta

More information

An FPTAS for the minimum total weighted tardiness problem with a fixed number of distinct due dates

An FPTAS for the minimum total weighted tardiness problem with a fixed number of distinct due dates An FPTAS for the iniu total weighted tardiness proble with a fixed nuber of distinct due dates George Karaostas Stavros G. Kolliopoulos Jing Wang February 3, 2009 Abstract Given a sequencing of jobs on

More information

Maximum Entropy Interval Aggregations

Maximum Entropy Interval Aggregations Maxiu Entropy Interval Aggregations Ferdinando Cicalese Università di Verona, Verona, Italy Eail: cclfdn@univr.it Ugo Vaccaro Università di Salerno, Salerno, Italy Eail: uvaccaro@unisa.it arxiv:1805.05375v1

More information

Sharp Time Data Tradeoffs for Linear Inverse Problems

Sharp Time Data Tradeoffs for Linear Inverse Problems Sharp Tie Data Tradeoffs for Linear Inverse Probles Saet Oyak Benjain Recht Mahdi Soltanolkotabi January 016 Abstract In this paper we characterize sharp tie-data tradeoffs for optiization probles used

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

Randomized Recovery for Boolean Compressed Sensing

Randomized Recovery for Boolean Compressed Sensing Randoized Recovery for Boolean Copressed Sensing Mitra Fatei and Martin Vetterli Laboratory of Audiovisual Counication École Polytechnique Fédéral de Lausanne (EPFL) Eail: {itra.fatei, artin.vetterli}@epfl.ch

More information

arxiv: v1 [math.nt] 14 Sep 2014

arxiv: v1 [math.nt] 14 Sep 2014 ROTATION REMAINDERS P. JAMESON GRABER, WASHINGTON AND LEE UNIVERSITY 08 arxiv:1409.411v1 [ath.nt] 14 Sep 014 Abstract. We study properties of an array of nubers, called the triangle, in which each row

More information

A Generalized Permanent Estimator and its Application in Computing Multi- Homogeneous Bézout Number

A Generalized Permanent Estimator and its Application in Computing Multi- Homogeneous Bézout Number Research Journal of Applied Sciences, Engineering and Technology 4(23): 5206-52, 202 ISSN: 2040-7467 Maxwell Scientific Organization, 202 Subitted: April 25, 202 Accepted: May 3, 202 Published: Deceber

More information

N-Point. DFTs of Two Length-N Real Sequences

N-Point. DFTs of Two Length-N Real Sequences Coputation of the DFT of In ost practical applications, sequences of interest are real In such cases, the syetry properties of the DFT given in Table 5. can be exploited to ake the DFT coputations ore

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

An improved self-adaptive harmony search algorithm for joint replenishment problems

An improved self-adaptive harmony search algorithm for joint replenishment problems An iproved self-adaptive harony search algorith for joint replenishent probles Lin Wang School of Manageent, Huazhong University of Science & Technology zhoulearner@gail.co Xiaojian Zhou School of Manageent,

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

A Quantum Observable for the Graph Isomorphism Problem

A Quantum Observable for the Graph Isomorphism Problem A Quantu Observable for the Graph Isoorphis Proble Mark Ettinger Los Alaos National Laboratory Peter Høyer BRICS Abstract Suppose we are given two graphs on n vertices. We define an observable in the Hilbert

More information

Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5,

Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, Sequence Analysis, WS 14/15, D. Huson & R. Neher (this part by D. Huson) February 5, 2015 31 11 Motif Finding Sources for this section: Rouchka, 1997, A Brief Overview of Gibbs Sapling. J. Buhler, M. Topa:

More information

When Short Runs Beat Long Runs

When Short Runs Beat Long Runs When Short Runs Beat Long Runs Sean Luke George Mason University http://www.cs.gu.edu/ sean/ Abstract What will yield the best results: doing one run n generations long or doing runs n/ generations long

More information

Improved multiprocessor global schedulability analysis

Improved multiprocessor global schedulability analysis Iproved ultiprocessor global schedulability analysis Sanjoy Baruah The University of North Carolina at Chapel Hill Vincenzo Bonifaci Max-Planck Institut für Inforatik Sebastian Stiller Technische Universität

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee227c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee227c@berkeley.edu October

More information

Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang, , China

Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang, , China 6th International Conference on Machinery, Materials, Environent, Biotechnology and Coputer (MMEBC 06) Solving Multi-Sensor Multi-Target Assignent Proble Based on Copositive Cobat Efficiency and QPSO Algorith

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

Multiprocessor scheduling with rejection

Multiprocessor scheduling with rejection Multiprocessor scheduling with rejection Bartal, Y.; Leonardi, S.; Marchetti Spaccaela, A.; Sgall, J.; Stougie, L. Published in: SIAM Journal on Discrete Matheatics DOI: 10.1137/S0895480196300522 Published:

More information

Mixed Robust/Average Submodular Partitioning

Mixed Robust/Average Submodular Partitioning Mixed Robust/Average Subodular Partitioning Kai Wei 1 Rishabh Iyer 1 Shengjie Wang 2 Wenruo Bai 1 Jeff Biles 1 1 Departent of Electrical Engineering, University of Washington 2 Departent of Coputer Science,

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Coputational and Statistical Learning Theory Proble sets 5 and 6 Due: Noveber th Please send your solutions to learning-subissions@ttic.edu Notations/Definitions Recall the definition of saple based Radeacher

More information

The Inferential Complexity of Bayesian and Credal Networks

The Inferential Complexity of Bayesian and Credal Networks The Inferential Coplexity of Bayesian and Credal Networks Cassio Polpo de Capos,2 Fabio Gagliardi Cozan Universidade de São Paulo - Escola Politécnica 2 Pontifícia Universidade Católica de São Paulo cassio@pucsp.br,

More information

arxiv: v1 [cs.ds] 17 Mar 2016

arxiv: v1 [cs.ds] 17 Mar 2016 Tight Bounds for Single-Pass Streaing Coplexity of the Set Cover Proble Sepehr Assadi Sanjeev Khanna Yang Li Abstract arxiv:1603.05715v1 [cs.ds] 17 Mar 2016 We resolve the space coplexity of single-pass

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng

EE5900 Spring Lecture 4 IC interconnect modeling methods Zhuo Feng EE59 Spring Parallel LSI AD Algoriths Lecture I interconnect odeling ethods Zhuo Feng. Z. Feng MTU EE59 So far we ve considered only tie doain analyses We ll soon see that it is soeties preferable to odel

More information

Randomized Accuracy-Aware Program Transformations For Efficient Approximate Computations

Randomized Accuracy-Aware Program Transformations For Efficient Approximate Computations Randoized Accuracy-Aware Progra Transforations For Efficient Approxiate Coputations Zeyuan Allen Zhu Sasa Misailovic Jonathan A. Kelner Martin Rinard MIT CSAIL zeyuan@csail.it.edu isailo@it.edu kelner@it.edu

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

Replicated Data Placement for Uncertain Scheduling

Replicated Data Placement for Uncertain Scheduling Replicated Data Placeent for Uncertain Scheduling Manohan Chaubey and Erik Saule Departent of Coputer Science University of North Carolina at Charlotte Charlotte, USA Eail: chaubey@uncc.edu, esaule@uncc.edu

More information

INTELLECTUAL DATA ANALYSIS IN AIRCRAFT DESIGN

INTELLECTUAL DATA ANALYSIS IN AIRCRAFT DESIGN INTELLECTUAL DATA ANALYSIS IN AIRCRAFT DESIGN V.A. Koarov 1, S.A. Piyavskiy 2 1 Saara National Research University, Saara, Russia 2 Saara State Architectural University, Saara, Russia Abstract. This article

More information

Principal Components Analysis

Principal Components Analysis Principal Coponents Analysis Cheng Li, Bingyu Wang Noveber 3, 204 What s PCA Principal coponent analysis (PCA) is a statistical procedure that uses an orthogonal transforation to convert a set of observations

More information

arxiv: v3 [cs.ds] 22 Mar 2016

arxiv: v3 [cs.ds] 22 Mar 2016 A Shifting Bloo Filter Fraewor for Set Queries arxiv:1510.03019v3 [cs.ds] Mar 01 ABSTRACT Tong Yang Peing University, China yangtongeail@gail.co Yuanun Zhong Nanjing University, China un@sail.nju.edu.cn

More information

6.2 Grid Search of Chi-Square Space

6.2 Grid Search of Chi-Square Space 6.2 Grid Search of Chi-Square Space exaple data fro a Gaussian-shaped peak are given and plotted initial coefficient guesses are ade the basic grid search strateg is outlined an actual anual search is

More information

Bloom Filters. filters: A survey, Internet Mathematics, vol. 1 no. 4, pp , 2004.

Bloom Filters. filters: A survey, Internet Mathematics, vol. 1 no. 4, pp , 2004. Bloo Filters References A. Broder and M. Mitzenacher, Network applications of Bloo filters: A survey, Internet Matheatics, vol. 1 no. 4, pp. 485-509, 2004. Li Fan, Pei Cao, Jussara Aleida, Andrei Broder,

More information