Regularizing seismic inverse problems by model reparameterization using plane-wave construction

Size: px
Start display at page:

Download "Regularizing seismic inverse problems by model reparameterization using plane-wave construction"

Transcription

1 GEOPHYSICS, VOL. 71, NO. 5 SEPTEMBER-OCTOBER 2006 ; P. A43 A47, 6 FIGS / Regularizing seismic inverse problems by model reparameterization using plane-wave construction Sergey Fomel 1 and Antoine Guitton 2 ABSTRACT We define plane-wave construction PWC, an operator for generating data aligned along predefined locally variable slopes, as the inverse of plane-wave destruction, an operator used for measuring the slopes. PWC can be applied for efficient regularization of seismic estimation problems. Using simple examples, we demonstrate how PWC enhances the coherency of seismic images, improves velocity estimation methods, and separates primaries and multiples with a pattern-based approach. INTRODUCTION Model reparameterization Harlan, 1995 is a form of inverse problem regularization particularly attractive for large-scale, underdetermined estimation problems typical in geophysics Fomel and Claerbout, Reparameterization constrains the estimated model by using a preconditioning operator to force a particular behavior. In seismic application, the desirable behavior is often associated with locally planar structures. To estimate slopes of locally planar events, Fomel 2002 developed a method of plane-wave destruction PWD following earlier ideas of Claerbout PWD predicts each seismic trace from its neighbor by following local plane-wave slopes, then estimates the slopes by subtracting the prediction and minimizing the error. Highorder, accurate destruction filters are used for estimating local slopes of seismic events and can be applied to problems such as fault detection, data regularization, and noise attenuation. Estimating local slopes can also replace traditional velocity analysis and enable velocity-independent time-domain seismic imaging Fomel, 2005b. In this paper, we introduce plane-wave construction PWC, the inverse of the PWD operator. We show that PWC is an efficient regularizer for speeding up iterative optimization that involves models with local plane-wave structure. In that sense, one can view PWC as a higher-order generalization of steering filters, which steer model estimations toward local dips Clapp et al., 1998a, We illustrate PWC applications using existing data sets from the field. The immediate effect of PWC is to smooth the data along dominant event slopes. In application to coherency enhancement in seismic images, iterative least-squares inversion with PWC reparameterization extracts portions of the image aligned with the dominant slopes. Using PWC with iterative reweighting preserves fault geometry during coherency enhancement. When applied to the classic velocity estimation problem, PWC forces consistency between the velocity structure and reflector geometry. In the multiple suppression problem, PWC reparameterization can separate primary and multiple events based on differences in their local slopes. PWC requires sequential seismic traces. It may not be immediately applicable to 3D problems, but transformation from plane-wave construction to plane-wave shaping Fomel, 2005a addresses this problem Fomel and Guitton, PLANE-WAVE CONSTRUCTION DEFINED The PWC operator is the mathematical inverse of the PWD operator. Let us represent a seismic section s as a collection of traces: s = s 1 s 2... s N T. A PWD operator Fomel, 2002 predicts each trace from its neighbor and subtracts the prediction from the original trace. In the linear operator notation, we can write the PWD operator as r = Ds, where r is the destruction residual and D is the destruction operator, defined as 1 Manuscript received by the Editor January 12, 2006; revised manuscript received March 1, 2006; published online September 11, The University of Texas ataustin, JohnA. and Katherine G. Jackson School of Geosciences, Bureau of Economic Geology, University Station, Box X,Austin, Texas sergey.fomel@beg.utexas.edu. 2 3DGeo Development Inc., 4633 Old Ironsides Drive, Suite 401, Santa Clara, California antoine@3dgeo.com Society of Exploration Geophysicists. All rights reserved. A43

2 A44 Fomel and Guitton P 1,2 I 0 0 D = I N P 0 P 2,3 I 0, P N 1,N I where I stands for the identity operator, P is the prediction operator defined by Fomel 2002, and P i,j describes the prediction of trace j from trace i. We predict a trace by shifting the original trace along the dominant event slope. We then estimate the dominant slope by minimizing the prediction error which is the output of D using regularized least-squares optimization. Regularization constrains the estimated slopes to vary smoothly inside the data space. The PWC operator C is the inverse of D: P 1,2 I 0 0 C 0 P 2,3 I P N 1,N I 1 P 1,2 P N 1,N P 2,3 P N 1,N P N 1,N I P 1,2 I 0 0 P 1,2 P 2,3 P 2,3 I 0 I P 1,2 I 0 0 P 1,3 P 2,3 I 0, 3 P 1,N P 2,N P N 1,N I For efficiency, we apply PWC as a recursive triangular inversion. We compute the output of recursively as c = Cs = c 1 c 2... s N T 4 c 1 = s 1, c k = s k + P k 1,k c k 1 k = 2, 3,..., N. The PWC operator c is a smoothing operator along local plane waves. Reparameterization by the PWC operator C provides effective regularization and can help accelerate the convergence of iterative optimization in inverse problems Harlan, 1995; Fomel and Claerbout, When we use PWC reparameterization in leastsquares inversion of the forward modeling operator d = Lm = LCp, PWC leads to the formal inversion mˆ = Cpˆ = CC T LCC T L T + 2 I N 1 d. 7 Here, m is the model, pˆ is the reparameterized model, d is the observed data, is the regularization parameter, and mˆ is the regularized model estimate. The CC T operator functions as the model covariance operator. In large-scale problems, we can compute the inversion in equation 7 by an iterative conjugate-gradient algorithm. Fomel and Claerbout 2003 suggest a different approach to recursive filter reparameterization, based on the helix transformation Claerbout, The total cost of plane-wave construction is proportional to the data size and to the cost of an elementary prediction, P k 1,k, which operates at the speed of tridiagonal inversion for a matrix of the tracelength size Fomel, This operation is comfortably efficient in practical applications. APPLICATIONS Following are three practical applications of PWC reparameterization in solving inverse problems. 5 6 Coherency enhancement The simplest kind of regularized inversion involves I from equation 6 as the identity operator I N. The corresponding application of PWC reparameterization results in a deconvolution that enhances both the continuity and structural consistency of seismic images. A coherency enhancement operator is h = Hs = CWC T CWC T + 2 I N 1 s. 8 Figure 1. a Seismic image after prestack time migration. b Local dips estimated with plane-wave destruction. We add a diagonal weighting operator W to prevent plane-wave smoothing across structural discontinuities, and we define W as a diagonalized magnitude of p from an unweighted inversion in equation 7. When iterated, this method corresponds to iteratively reweighted least squares with a simulated L 1 norm for vector p Trad et al., We apply coherency enhancement to a timemigrated seismic image from a Gulf of Mexico data set Claerbout, 2005, shown in Figure 1. We

3 Plane-wave construction A45 estimate local event slopes Figure 1a to define the PWC operator. Figure 2 shows the output of coherency enhancement using equation 8 and the corresponding noise component removed from the data. Coherency enhancement highlights locally continuous reflectors while preserving the geometry of faults. Hockers and Fehmers 2002 describe a similar effect, which they called Van Gogh filtering for the brush-stroke appearance of the resulting seismic image. Figure 2. a Seismic image after coherency enhancement. b Difference between the enhanced image and the original image. Figure 3. Seismic image from Figure 2 overlaid on the interval velocity model estimated by a Dix inversion reparameterized by planewave construction. Figure 4. a Migration velocity used for prestack time migration. b Migration velocity predicted by regularized Dix inversion. Velocity estimation To demonstrate an application of PWC to the seismic velocity estimation problem, we used the same data set shown in Figure 1. We then chose a simple Dix inversion formula Dix, 1955 applied for interval velocity estimation. Formulating Dix inversion as a regularized estimation problem rendered the forward operator L in equations 6 and 7 into a simple integration Clapp et al., 1998b; Valenciano et al., PWC reparameterization, using the dip field estimated from the seismic image, forces the estimated velocity to follow the geological structure. Figure 3 shows the resultant interval velocity model. Compare this model with Figure 4, which shows the contrast between the input and predicted rms migration velocity. The estimated model not only explains the observed data but also follows a geological structure consistent with the seismic image. Multiple suppression Separation of primary and multiple reflections is one of the most important tasks in seismic data processing. Slope-based prediction, such as PWC reparameterization, can be a useful method for separating multiples from primaries. A characteristic that distinguishes surface-related multiple events is variation among slopes as a result of differing apparent velocities. The advantage of using a slope-based prediction is that, for estimating dominant slopes of multiple events, we can utilize models of the multiples that may have incorrect amplitudes and wavelets as long as they correctly predict event geometry Guitton, Figure 5 shows an example of a multiple-infested common-midpoint CMP gather from the Mobil amplitude-variation-with-offset AVO data set Keys and Foster, 1998, its prediction with the surface-related multiple elimination SRME method Verschuur et al., 1992, and two dominant slopes estimated from the data and corresponding to primary and multiple reflections. Even though SRME does not provide correct amplitudes and wavelets in predicting the multiple events, it can guide the slope estimation method toward extracting the dominant slopes of these events.

4 A46 Fomel and Guitton Using the PWC operator, the model of the data is Nemeth et al., 2000; Guitton, 2002 comparison of velocity semblance scans before and after multiple suppression. Using PWC removes a large portion of the multiple energy from the data. d = C p p + C n n = C p C n p n, 9 CONCLUSIONS where C p is plane-wave construction along primary slopes and C n is plane-wave construction along multiple slopes. In accordance with equation 7, the least-squares estimate of the multiples is mˆ = C n nˆ = C n C n T C p C p T + C n C n T + 2 I N 1 d. 10 Figure 6 shows the estimated primary and multiple events and The PWC operator generates models aligned with predefined locally variable dips. It is the inverse of plane-wave destruction, an operator used for measuring local dips. It is applicable as a model regularizer in seismic estimation problems such as coherency enhancement, velocity estimation, and multiple suppression. As an efficient operator for smoothing data along dominant event slopes, PWC can be incorporated for regularization of any inversion problems that operate with locally planar data. We anticipate more applications of the proposed method that go beyond applications discussed here. ACKNOWLEDGMENTS Sergey Fomel thanks Norsk Hydro for partially supporting this research. REFERENCES Figure 5. a CMP gather from the Mobil AVO data set b multiple model from surfacerelated multiple elimination prediction, c estimated dominant slope of the primary reflections. d Estimated dominant slope of the multiple reflections. Figure 6. a Estimated primary reflections data with multiples removed, b estimated multiple reflections, c velocity scan of the original gather, d velocity scan of the gather after multiple suppression. Claerbout, J. F., 1992, Earth soundings analysis: Processing versus inversion: Blackwell Scientific Publications, Inc., 1998, Multidimensional recursive filters via a helix: Geophysics, 63, , 2005, Basic Earth imaging: Stanford Exploration Project, bei/toc_html/index.html. Clapp, R. G., B. L. Biondi, and J. F. Claerbout, 2004, Incorporating geologic information into reflection tomography: Geophysics, 69, Clapp, R. G., B. L. Biondi, S. B. Fomel, and J. F. Claerbout, 1998a, Regularizing velocity estimation using geologic dip information: 68th Annual International Meeting, SEG, ExpandedAbstracts, Clapp, R. G., P. Sava, and J. F. Claerbout, 1998b, Interval velocity estimation with a null-space, in SEP-97, , Stanford Exploration Project. Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20, Fomel, S. B., 2002, Applications of plane-wave destruction filters: Geophysics, 67, , 2005a, Shaping regularization in geophysical estimation problems: 75th Annual International Meeting, SEG, ExpandedAbstracts, , 2005b, Velocity-independent time-domain seismic imaging using local event slopes: 75th Annual International Meeting, SEG, Expanded Abstracts, Fomel, S. B., and J. F. Claerbout, 2003, Multidimensional recursive filter preconditioning in geophysical estimation problems: Geophysics, 68, Fomel, S. B., and A. Guitton, 2005, Model preconditioning by plane-wave construction in geophysical estimation problems: 75th Annual International Meeting, SEG, ExpandedAbstracts, Guitton, A., 2002, Coherent noise attenuation using inverse problems and prediction-error filters: First Break, 20, , 2005, Multiple attenuation in complex geology with a pattern-based approach: Geophysics, 70, V97 V107. Harlan, W. S., 1995, Regularization by model reparameterization: Hockers, C., and G. Fehmers, 2002, Fast structural interpretation with structure-oriented filtering: The Leading Edge, 21,

5 Plane-wave construction A47 Keys, R. G., and D. J. Foster, eds., 1998, Comparison of seismic inversion methods on a single real data set: SEG. Nemeth, T., H. Sun, and G. T. Schuster, 2000, Separation of signal and coherent noise by migration filtering: Geophysics, 65, Trad, D., T. Ulrych, and M. Sacchi, 2003, Latest views of the sparse Radon transform: Geophysics, 68, Valenciano, A. A., M. Brown, A. Guitton, and M. D. Sacchi, 2004, Interval velocity estimation using edge-preserving regularization: 74th Annual International Meeting, SEG, ExpandedAbstracts, Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar, 1992, Adaptive surface-related multiple elimination: Geophysics, 57,

Adaptive multiple subtraction using regularized nonstationary regression

Adaptive multiple subtraction using regularized nonstationary regression GEOPHSICS, VOL. 74, NO. 1 JANUAR-FEBRUAR 29 ; P. V25 V33, 17 FIGS. 1.119/1.343447 Adaptive multiple subtraction using regularized nonstationary regression Sergey Fomel 1 ABSTRACT Stationary regression

More information

Multiple realizations: Model variance and data uncertainty

Multiple realizations: Model variance and data uncertainty Stanford Exploration Project, Report 108, April 29, 2001, pages 1?? Multiple realizations: Model variance and data uncertainty Robert G. Clapp 1 ABSTRACT Geophysicists typically produce a single model,

More information

Stanford Exploration Project, Report 115, May 22, 2004, pages

Stanford Exploration Project, Report 115, May 22, 2004, pages Stanford Exploration Project, Report 115, May 22, 2004, pages 249 264 248 Stanford Exploration Project, Report 115, May 22, 2004, pages 249 264 First-order lateral interval velocity estimates without picking

More information

Stanford Exploration Project, Report 105, September 5, 2000, pages 41 53

Stanford Exploration Project, Report 105, September 5, 2000, pages 41 53 Stanford Exploration Project, Report 105, September 5, 2000, pages 41 53 40 Stanford Exploration Project, Report 105, September 5, 2000, pages 41 53 Short Note Multiple realizations using standard inversion

More information

Multiple realizations using standard inversion techniques a

Multiple realizations using standard inversion techniques a Multiple realizations using standard inversion techniques a a Published in SEP report, 105, 67-78, (2000) Robert G Clapp 1 INTRODUCTION When solving a missing data problem, geophysicists and geostatisticians

More information

Effect of velocity uncertainty on amplitude information

Effect of velocity uncertainty on amplitude information Stanford Exploration Project, Report 111, June 9, 2002, pages 253 267 Short Note Effect of velocity uncertainty on amplitude information Robert G. Clapp 1 INTRODUCTION Risk assessment is a key component

More information

Short Note. Plane wave prediction in 3-D. Sergey Fomel 1 INTRODUCTION

Short Note. Plane wave prediction in 3-D. Sergey Fomel 1 INTRODUCTION Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 291?? Short Note Plane wave prediction in 3-D Sergey Fomel 1 INTRODUCTION The theory of plane-wave prediction in three dimensions is

More information

Bureau of Economic Geology, The University of Texas at Austin, Austin, TX. Research Associate, Geophysics from 11/2004

Bureau of Economic Geology, The University of Texas at Austin, Austin, TX. Research Associate, Geophysics from 11/2004 Paul C. Sava Bureau of Economic Geology, The University of Texas at Austin, University Station, Box X, Austin, TX 78758, (512) 471-0327 paul.sava@beg.utexas.edu, http://sepwww.stanford.edu/sep/paul Research

More information

Stanford Exploration Project, Report 111, June 9, 2002, pages INTRODUCTION FROM THE FILTERING TO THE SUBTRACTION OF NOISE

Stanford Exploration Project, Report 111, June 9, 2002, pages INTRODUCTION FROM THE FILTERING TO THE SUBTRACTION OF NOISE Stanford Exploration Project, Report 111, June 9, 2002, pages 199 204 Short Note Theoretical aspects of noise attenuation Antoine Guitton 1 INTRODUCTION In Guitton (2001) I presented an efficient algorithm

More information

arxiv: v1 [physics.geo-ph] 23 Dec 2017

arxiv: v1 [physics.geo-ph] 23 Dec 2017 Statics Preserving Sparse Radon Transform Nasser Kazemi, Department of Physics, University of Alberta, kazemino@ualberta.ca Summary arxiv:7.087v [physics.geo-ph] 3 Dec 07 This paper develops a Statics

More information

P S-wave polarity reversal in angle domain common-image gathers

P S-wave polarity reversal in angle domain common-image gathers Stanford Exploration Project, Report 108, April 29, 2001, pages 1?? P S-wave polarity reversal in angle domain common-image gathers Daniel Rosales and James Rickett 1 ABSTRACT The change in the reflection

More information

Incorporating geologic information into reflection tomography

Incorporating geologic information into reflection tomography GEOPHYSICS, VOL. 69, NO. 2 (MARCH-APRIL 2004); P. 533 546, 27 FIGS. 10.1190/1.1707073 Incorporating geologic information into reflection tomography Robert G. Clapp, Biondo Biondi, and Jon F. Claerbout

More information

TOM 1.7. Sparse Norm Reflection Tomography for Handling Velocity Ambiguities

TOM 1.7. Sparse Norm Reflection Tomography for Handling Velocity Ambiguities SEG/Houston 2005 Annual Meeting 2554 Yonadav Sudman, Paradigm and Dan Kosloff, Tel-Aviv University and Paradigm Summary Reflection seismology with the normal range of offsets encountered in seismic surveys

More information

Structure-constrained relative acoustic impedance using stratigraphic coordinates a

Structure-constrained relative acoustic impedance using stratigraphic coordinates a Structure-constrained relative acoustic impedance using stratigraphic coordinates a a Published in Geophysics, 80, no. 3, A63-A67 (2015) Parvaneh Karimi ABSTRACT Acoustic impedance inversion involves conversion

More information

Implicit 3-D depth migration by wavefield extrapolation with helical boundary conditions

Implicit 3-D depth migration by wavefield extrapolation with helical boundary conditions Stanford Exploration Project, Report 97, July 8, 1998, pages 1 13 Implicit 3-D depth migration by wavefield extrapolation with helical boundary conditions James Rickett, Jon Claerbout, and Sergey Fomel

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2017) 210, 184 195 GJI Marine geosciences and applied geophysics doi: 10.1093/gji/ggx150 Structure-, stratigraphy- and fault-guided regularization in

More information

A Petroleum Geologist's Guide to Seismic Reflection

A Petroleum Geologist's Guide to Seismic Reflection A Petroleum Geologist's Guide to Seismic Reflection William Ashcroft WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication Contents Preface Acknowledgements xi xiii Part I Basic topics and 2D interpretation

More information

Shot-profile migration of multiple reflections

Shot-profile migration of multiple reflections Stanford Exploration Project, Report 111, June 10, 2002, pages?? 33 Shot-profile migration of multiple reflections Antoine Guitton 1 ABSTRACT A shot-profile migration algorithm is modified to image multiple

More information

Elastic least-squares reverse time migration

Elastic least-squares reverse time migration CWP-865 Elastic least-squares reverse time migration Yuting Duan, Paul Sava, and Antoine Guitton Center for Wave Phenomena, Colorado School of Mines ABSTRACT Least-squares migration (LSM) can produce images

More information

Seismic tomography with co-located soft data

Seismic tomography with co-located soft data Seismic tomography with co-located soft data Mohammad Maysami and Robert G. Clapp ABSTRACT There is a wide range of uncertainties present in seismic data. Limited subsurface illumination is also common,

More information

Comparison between least-squares reverse time migration and full-waveform inversion

Comparison between least-squares reverse time migration and full-waveform inversion Comparison between least-squares reverse time migration and full-waveform inversion Lei Yang, Daniel O. Trad and Wenyong Pan Summary The inverse problem in exploration geophysics usually consists of two

More information

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985)

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985) Comparison of angle decomposition methods for wave-equation migration Natalya Patrikeeva and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Angle domain common image gathers offer

More information

SUMMARY INTRODUCTION LOCALIZED PHASE ESTIMATION

SUMMARY INTRODUCTION LOCALIZED PHASE ESTIMATION Local similarity with the envelope as a seismic phase detector Sergey Fomel, The University of Texas at Austin, and Mirko van der Baan, University of Alberta SUMMARY We propose a new seismic attribute,

More information

On non-stationary convolution and inverse convolution

On non-stationary convolution and inverse convolution Stanford Exploration Project, Report 102, October 25, 1999, pages 1 137 On non-stationary convolution and inverse convolution James Rickett 1 keywords: helix, linear filtering, non-stationary deconvolution

More information

Adaptive linear prediction filtering for random noise attenuation Mauricio D. Sacchi* and Mostafa Naghizadeh, University of Alberta

Adaptive linear prediction filtering for random noise attenuation Mauricio D. Sacchi* and Mostafa Naghizadeh, University of Alberta Adaptive linear prediction filtering for random noise attenuation Mauricio D. Sacchi* and Mostafa Naghizadeh, University of Alberta SUMMARY We propose an algorithm to compute time and space variant prediction

More information

Time-migration velocity analysis by velocity continuation

Time-migration velocity analysis by velocity continuation GEOPHYSICS, VOL. 68, NO. 5 (SEPTEMBER-OCTOBER 2003); P. 1662 1672, 15 FIGS. 10.1190/1.1620640 Time-migration velocity analysis by velocity continuation Sergey Fomel ABSTRACT Time-migration velocity analysis

More information

ANGLE-DEPENDENT TOMOSTATICS. Abstract

ANGLE-DEPENDENT TOMOSTATICS. Abstract ANGLE-DEPENDENT TOMOSTATICS Lindsay M. Mayer, Kansas Geological Survey, University of Kansas, Lawrence, KS Richard D. Miller, Kansas Geological Survey, University of Kansas, Lawrence, KS Julian Ivanov,

More information

A Southern North Sea Multi-Survey presdm using Hybrid Gridded Tomography

A Southern North Sea Multi-Survey presdm using Hybrid Gridded Tomography A Southern North Sea Multi-Survey presdm using Hybrid Gridded Tomography Ian Jones* GX Technology, Egham, United Kingdom ijones@gxt.com Emma Evans and Darren Judd GX Technology, Egham, United Kingdom and

More information

Deconvolution imaging condition for reverse-time migration

Deconvolution imaging condition for reverse-time migration Stanford Exploration Project, Report 112, November 11, 2002, pages 83 96 Deconvolution imaging condition for reverse-time migration Alejandro A. Valenciano and Biondo Biondi 1 ABSTRACT The reverse-time

More information

Calculation of the sun s acoustic impulse response by multidimensional

Calculation of the sun s acoustic impulse response by multidimensional Calculation of the sun s acoustic impulse response by multidimensional spectral factorization J. E. Rickett and J. F. Claerbout Geophysics Department, Stanford University, Stanford, CA 94305, USA Abstract.

More information

Edge preserved denoising and singularity extraction from angles gathers

Edge preserved denoising and singularity extraction from angles gathers Edge preserved denoising and singularity extraction from angles gathers Felix Herrmann, EOS-UBC Martijn de Hoop, CSM Joint work Geophysical inversion theory using fractional spline wavelets: ffl Jonathan

More information

Improved Radon transforms for filtering of coherent noise

Improved Radon transforms for filtering of coherent noise Radon transforms for coherent-noise filtering Improved Radon transforms for filtering of coherent noise Shauna K. Oppert and R. James Brown ABSTRACT Radon transforms rely on the ability to predict the

More information

Trace balancing with PEF plane annihilators

Trace balancing with PEF plane annihilators Stanford Exploration Project, Report 84, May 9, 2001, pages 1 333 Short Note Trace balancing with PEF plane annihilators Sean Crawley 1 INTRODUCTION Land seismic data often shows large variations in energy

More information

Elastic least-squares reverse time migration using the energy norm Daniel Rocha & Paul Sava Center for Wave Phenomena, Colorado School of Mines

Elastic least-squares reverse time migration using the energy norm Daniel Rocha & Paul Sava Center for Wave Phenomena, Colorado School of Mines Elastic least-squares reverse time migration using the energy norm Daniel Rocha & Paul Sava Center for Wave Phenomena, Colorado School of Mines SUMMARY We derive linearized modeling and migration operators

More information

Morse, P. and H. Feshbach, 1953, Methods of Theoretical Physics: Cambridge University

Morse, P. and H. Feshbach, 1953, Methods of Theoretical Physics: Cambridge University Bibliography Albertin, U., D. Yingst, and H. Jaramillo, 2001, Comparing common-offset Maslov, Gaussian beam, and coherent state migrations: 71st Annual International Meeting, SEG, Expanded Abstracts, 913

More information

Subsalt imaging by common-azimuth migration

Subsalt imaging by common-azimuth migration Stanford Exploration Project, Report 100, April 20, 1999, pages 113 125 Subsalt imaging by common-azimuth migration Biondo Biondi 1 keywords: migration, common-azimuth, wave-equation ABSTRACT The comparison

More information

Smoothing along geologic dip

Smoothing along geologic dip Chapter 1 Smoothing along geologic dip INTRODUCTION AND SUMMARY Velocity estimation is generally under-determined. To obtain a pleasing result we impose some type of regularization criteria such as preconditioning(harlan,

More information

Velocity analysis using AB semblance a

Velocity analysis using AB semblance a Velocity analysis using AB semblance a a Published in Geophysical Prospecting, v. 57, 311-321 (2009) Sergey Fomel ABSTRACT I derive and analyze an explicit formula for a generalized semblance attribute,

More information

Estimating a pseudounitary operator for velocity-stack inversion

Estimating a pseudounitary operator for velocity-stack inversion Stanford Exploration Project, Report 82, May 11, 2001, pages 1 77 Estimating a pseudounitary operator for velocity-stack inversion David E. Lumley 1 ABSTRACT I estimate a pseudounitary operator for enhancing

More information

Exploring three-dimensional implicit wavefield extrapolation with the helix transform a

Exploring three-dimensional implicit wavefield extrapolation with the helix transform a Exploring three-dimensional implicit wavefield extrapolation with the helix transform a a Published in SEP report, 95, 43-60 (1997) Sergey Fomel and Jon F. Claerbout 1 ABSTRACT Implicit extrapolation is

More information

Summary. Introduction

Summary. Introduction Detailed velocity model building in a carbonate karst zone and improving sub-karst images in the Gulf of Mexico Jun Cai*, Hao Xun, Li Li, Yang He, Zhiming Li, Shuqian Dong, Manhong Guo and Bin Wang, TGS

More information

One-step extrapolation method for reverse time migration

One-step extrapolation method for reverse time migration GEOPHYSICS VOL. 74 NO. 4 JULY-AUGUST 2009; P. A29 A33 5 FIGS. 10.1190/1.3123476 One-step extrapolation method for reverse time migration Yu Zhang 1 and Guanquan Zhang 2 ABSTRACT We have proposed a new

More information

Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation Gaurav Dutta, Kai Lu, Xin Wang and Gerard T. Schuster, King Abdullah University of Science and Technology

More information

for multicomponent seismic data Wave-equation angle-domain imaging

for multicomponent seismic data Wave-equation angle-domain imaging Wave-equation angle-domain imaging for multicomponent seismic data Paul Sava and Sergey Fomel Bureau of Economic Geology University of Texas at Austin September 5, 2005 EAGE/SEG Research Workshop on Multicomponent

More information

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX

The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX The i-stats: An Image-Based Effective-Medium Modeling of Near-Surface Anomalies Oz Yilmaz*, GeoTomo LLC, Houston, TX Summary Near-surface modeling for statics corrections is an integral part of a land

More information

Investigating fault shadows in a normally faulted geology

Investigating fault shadows in a normally faulted geology Investigating fault shadows in a normally faulted geology Sitamai Ajiduah* and Gary Margrave CREWES, University of Calgary, sajiduah@ucalgary.ca Summary Fault shadow poses a potential development risk

More information

Statics preserving projection filtering Yann Traonmilin*and Necati Gulunay, CGGVeritas

Statics preserving projection filtering Yann Traonmilin*and Necati Gulunay, CGGVeritas Yann Traonmilin*and Necati Gulunay, CGGVeritas Summary Projection filtering has been used for many years in seismic processing as a tool to extract a meaningful signal out of noisy data. We show that its

More information

TOM 2.6. SEG/Houston 2005 Annual Meeting 2581

TOM 2.6. SEG/Houston 2005 Annual Meeting 2581 Oz Yilmaz* and Jie Zhang, GeoTomo LLC, Houston, Texas; and Yan Shixin, PetroChina, Beijing, China Summary PetroChina conducted a multichannel large-offset 2-D seismic survey in the Yumen Oil Field, Northwest

More information

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion

SeisLink Velocity. Key Technologies. Time-to-Depth Conversion Velocity Calibrated Seismic Imaging and Interpretation Accurate Solution for Prospect Depth, Size & Geometry Accurate Time-to-Depth Conversion was founded to provide geologically feasible solutions for

More information

Downloaded 05/01/17 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 05/01/17 to Redistribution subject to SEG license or copyright; see Terms of Use at Mapping Imbricate Structures in the Thrust Belt of Southeast Turkey by Large-Offset Seismic Survey Oz Yilmaz*, Anatolian Geophysical, Istanbul, Turkey; and Serdar Uygun, Ali Ölmez, and Emel Çalı, Turkish

More information

Improving subsurface imaging in geological complex area: Structure PReserving INTerpolation in 6D (SPRINT6D)

Improving subsurface imaging in geological complex area: Structure PReserving INTerpolation in 6D (SPRINT6D) Improving subsurface imaging in geological complex area: Structure PReserving INTerpolation in 6D (SPRINT6D) Dan Negut* and Mark Ng, Divestco Inc. Copyright 2008, ACGGP This paper was selected for presentation

More information

Plane-wave migration in tilted coordinates

Plane-wave migration in tilted coordinates Stanford Exploration Project, Report 124, April 4, 2006, pages 1 16 Plane-wave migration in tilted coordinates Guojian Shan and Biondo Biondi ABSTRACT Plane-wave migration in tilted coordinates is powerful

More information

Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 683??

Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 683?? Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 683?? 682 Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 683?? Velocity continuation by spectral methods Sergey

More information

Stepwise Multiple Elimination using Linear Transforms: An alternative approach to SRME for stacking multiple-free near offsets in the Barents Sea

Stepwise Multiple Elimination using Linear Transforms: An alternative approach to SRME for stacking multiple-free near offsets in the Barents Sea : An alternative approach to SRME for stacking multiple-free near offsets in the Barents Sea Anthony Hardwick*, Carl Lang and Bent Kjølhamar, TGS. Summary A novel, de-aliased method called Stepwise Multiple

More information

Data examples of logarithm Fourier domain bidirectional deconvolution

Data examples of logarithm Fourier domain bidirectional deconvolution Data examples of logarithm Fourier domain bidirectional deconvolution Qiang Fu and Yi Shen and Jon Claerbout ABSTRACT Time domain bidirectional deconvolution methods show a very promising perspective on

More information

Image-space wave-equation tomography in the generalized source domain

Image-space wave-equation tomography in the generalized source domain Image-space wave-equation tomography in the generalized source domain Yaxun Tang, Claudio Guerra, and Biondo Biondi ABSTRACT We extend the theory of image-space wave-equation tomography to the generalized

More information

Interval anisotropic parameters estimation in a least squares sense Case histories from West Africa

Interval anisotropic parameters estimation in a least squares sense Case histories from West Africa P-263 Summary Interval anisotropic parameters estimation in a least squares sense Patrizia Cibin*, Maurizio Ferla Eni E&P Division (Milano, Italy), Emmanuel Spadavecchia - Politecnico di Milano (Milano,

More information

Multiple horizons mapping: A better approach for maximizing the value of seismic data

Multiple horizons mapping: A better approach for maximizing the value of seismic data Multiple horizons mapping: A better approach for maximizing the value of seismic data Das Ujjal Kumar *, SG(S) ONGC Ltd., New Delhi, Deputed in Ministry of Petroleum and Natural Gas, Govt. of India Email:

More information

Pitfalls of seismic interpretation in prestack time- vs. depthmigration

Pitfalls of seismic interpretation in prestack time- vs. depthmigration 2104181 Pitfalls of seismic interpretation in prestack time- vs. depthmigration data Tengfei Lin 1, Hang Deng 1, Zhifa Zhan 2, Zhonghong Wan 2, Kurt Marfurt 1 1. School of Geology and Geophysics, University

More information

Summary. Tomography with geological constraints

Summary. Tomography with geological constraints : an alternative solution for resolving of carbonates Olga Zdraveva*, Saeeda Hydal, and Marta Woodward, WesternGeco Summary Carbonates are often present in close proximity to salt in the sedimentary basins

More information

Stolt residual migration for converted waves

Stolt residual migration for converted waves Stanford Exploration Project, Report 11, September 18, 1, pages 1 6 Stolt residual migration for converted waves Daniel Rosales, Paul Sava, and Biondo Biondi 1 ABSTRACT P S velocity analysis is a new frontier

More information

From PZ summation to wavefield separation, mirror imaging and up-down deconvolution: the evolution of ocean-bottom seismic data processing

From PZ summation to wavefield separation, mirror imaging and up-down deconvolution: the evolution of ocean-bottom seismic data processing From PZ summation to wavefield separation, mirror imaging and up-down deconvolution: the evolution of ocean-bottom seismic data processing Sergio Grion, CGGVeritas Summary This paper discusses present

More information

Unravel Faults on Seismic Migration Images Using Structure-Oriented, Fault-Preserving and Nonlinear Anisotropic Diffusion Filtering

Unravel Faults on Seismic Migration Images Using Structure-Oriented, Fault-Preserving and Nonlinear Anisotropic Diffusion Filtering PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2019 SGP-TR-214 Unravel Faults on Seismic Migration Images Using Structure-Oriented,

More information

Chapter 1. Introduction EARTH MODEL BUILDING

Chapter 1. Introduction EARTH MODEL BUILDING Chapter 1 Introduction Seismic anisotropy in complex earth subsurface has become increasingly important in seismic imaging due to the increasing offset and azimuth in modern seismic data. To account for

More information

WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING

WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING Technical paper WE SRS2 11 ADAPTIVE LEAST-SQUARES RTM FOR SUBSALT IMAGING Authors C. Zeng (TGS), S. Dong (TGS), B. Wang (TGS) & Z. Zhang* (TGS) 2016 TGS-NOPEC Geophysical Company ASA. All rights reserved.

More information

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough K. Shiraishi* (JAMSTEC), M. Robb (Emerson Paradigm), K. Hosgood (Emerson

More information

Improved image aids interpretation: A case history

Improved image aids interpretation: A case history Ye Zheng, Scott Cheadle (Veritas GeoServices, Calgary, Canada) Glenn M. Rising (Perez Companc Norcen Corod, Venezuela) SUMMARY The Oritupano-Leona 3D of Eastern Venezuela was originally acquired and processed

More information

Quantitative Predication for Reservior Porosity via AVO

Quantitative Predication for Reservior Porosity via AVO Quantitative Predication for Reservior Porosity via AVO Li Ang, Exploration & Development Institute, Daqing Oilfeild Co.Ltd, Daqing, Heilongjiang, China lihnsdbj@gmail.com And Chen Shumin, Exploration

More information

W011 Full Waveform Inversion for Detailed Velocity Model Building

W011 Full Waveform Inversion for Detailed Velocity Model Building W011 Full Waveform Inversion for Detailed Velocity Model Building S. Kapoor* (WesternGeco, LLC), D. Vigh (WesternGeco), H. Li (WesternGeco) & D. Derharoutian (WesternGeco) SUMMARY An accurate earth model

More information

Complex-beam Migration and Land Depth Tianfei Zhu CGGVeritas, Calgary, Alberta, Canada

Complex-beam Migration and Land Depth Tianfei Zhu CGGVeritas, Calgary, Alberta, Canada Page 1 of 10 Home Articles Interviews Print Editions Complex-beam Migration and Land Depth Tianfei Zhu CGGVeritas, Calgary, Alberta, Canada DECEMBER 2012 FOCUS ARTICLE Summary Gaussian-beam depth migration

More information

Observations of Azimuthal Anisotropy in Prestack Seismic Data

Observations of Azimuthal Anisotropy in Prestack Seismic Data Observations of Azimuthal Anisotropy in Prestack Seismic Data David Gray* CGGVeritas, Calgary, AB, Canada dave.gray@cggveritas.com Summary A method for displaying prestack seismic data that highlights

More information

Improving the quality of Velocity Models and Seismic Images. Alice Chanvin-Laaouissi

Improving the quality of Velocity Models and Seismic Images. Alice Chanvin-Laaouissi Improving the quality of Velocity Models and Seismic Images Alice Chanvin-Laaouissi 2015, 2015, PARADIGM. PARADIGM. ALL RIGHTS ALL RIGHTS RESERVED. RESERVED. Velocity Volumes Challenges 1. Define sealed

More information

Curvelet imaging & processing: sparseness constrained least-squares migration

Curvelet imaging & processing: sparseness constrained least-squares migration Curvelet imaging & processing: sparseness constrained least-squares migration Felix J. Herrmann and Peyman P. Moghaddam (EOS-UBC) felix@eos.ubc.ca & www.eos.ubc.ca/~felix thanks to: Gilles, Peyman and

More information

Interpolation of nonstationary seismic records using a fast non-redundant S-transform

Interpolation of nonstationary seismic records using a fast non-redundant S-transform Interpolation of nonstationary seismic records using a fast non-redundant S-transform Mostafa Naghizadeh and Kris A. Innanen CREWES University of Calgary SEG annual meeting San Antonio 22 September 2011

More information

We Improved Salt Body Delineation Using a new Structure Extraction Workflow

We Improved Salt Body Delineation Using a new Structure Extraction Workflow We-08-08 Improved Salt Body Delineation Using a new Structure Extraction Workflow A. Laake* (WesternGeco) SUMMARY Current salt imaging workflows require thorough geological understanding in the selection

More information

Wave-equation prestack depth migration for sub-basalt P and converted wave imaging

Wave-equation prestack depth migration for sub-basalt P and converted wave imaging Stanford Exploration Project, Report 110, September 18, 2001, pages 1 31 Wave-equation prestack depth migration for sub-basalt P and converted wave imaging Morgan Brown, Biondo Biondi, and Clement Kostov

More information

Residual statics analysis by LSQR

Residual statics analysis by LSQR Residual statics analysis by LSQR Residual statics analysis by LSQR Yan Yan, Zhengsheng Yao, Gary F. Margrave and R. James Brown ABSRAC Residual statics corrections can be formulated as a linear inverse

More information

Elements of 3D Seismology Second Edition

Elements of 3D Seismology Second Edition Elements of 3D Seismology Second Edition Copyright c 1993-2003 All rights reserved Christopher L. Liner Department of Geosciences University of Tulsa August 14, 2003 For David and Samantha And to the memory

More information

H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil

H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil H005 Pre-salt Depth Imaging of the Deepwater Santos Basin, Brazil Y. Huang* (CGGVeritas), D. Lin (CGGVeritas), B. Bai (CGGVeritas), S. Roby (CGGVeritas) & C. Ricardez (CGGVeritas) SUMMARY Several discoveries,

More information

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E.

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E. Rock Physics and Quantitative Wavelet Estimation for Seismic Interpretation: Tertiary North Sea R.W.Simm 1, S.Xu 2 and R.E.White 2 1. Enterprise Oil plc, Grand Buildings, Trafalgar Square, London WC2N

More information

SUMMARY. (Sun and Symes, 2012; Biondi and Almomin, 2012; Almomin and Biondi, 2012).

SUMMARY. (Sun and Symes, 2012; Biondi and Almomin, 2012; Almomin and Biondi, 2012). Inversion Velocity Analysis via Differential Semblance Optimization in the Depth-oriented Extension Yujin Liu, William W. Symes, Yin Huang,and Zhenchun Li, China University of Petroleum (Huadong), Rice

More information

Weighted stacking of seismic AVO data using hybrid AB semblance and local similarity a

Weighted stacking of seismic AVO data using hybrid AB semblance and local similarity a Weighted stacking of seismic AVO data using hybrid AB semblance and local similarity a a Published in Journal of Geophysics and Engineering, 13, no. 152-163 (2016) Pan Deng, Yangkang Chen, Yu Zhang, Hua-Wei

More information

Seismic attributes for fault/fracture characterization

Seismic attributes for fault/fracture characterization Satinder Chopra* and Kurt J. Marfurt + *Arcis Corporation, Calgary; + University of Houston, Houston Summary Seismic attributes have proliferated in the last three decades at a rapid rate and have helped

More information

Elastic least-squares migration with two-way wave equation forward and adjoint operators

Elastic least-squares migration with two-way wave equation forward and adjoint operators Elastic least-squares migration with two-way wave equation forward and adjoint operators Ke Chen and Mauricio D. Sacchi, Department of Physics, University of Alberta Summary Time domain elastic least-squares

More information

Tomography for Static Corrections and Prestack Depth Imaging

Tomography for Static Corrections and Prestack Depth Imaging Tomography for Static Corrections and Prestack Depth Imaging Xianhuai Zhu, Ph.D. Fusion Petroleum Technologies Inc. 25231 Grogan's Mill Road, Suite 175 The Woodlands, TX 77380, USA Summary Turning-ray

More information

Direct nonlinear traveltime inversion in layered VTI media Paul J. Fowler*, Alexander Jackson, Joseph Gaffney, and David Boreham, WesternGeco

Direct nonlinear traveltime inversion in layered VTI media Paul J. Fowler*, Alexander Jackson, Joseph Gaffney, and David Boreham, WesternGeco Paul J. Fowler*, Alexander Jackson, Joseph Gaffney, and David Boreham, WesternGeco Summary We present a scheme for direct nonlinear inversion of picked moveout traveltimes in block-layered isotropic or

More information

Reflection Seismic Method

Reflection Seismic Method Reflection Seismic Method Data and Image sort orders; Seismic Impedance; -D field acquisition geometries; CMP binning and fold; Resolution, Stacking charts; Normal Moveout and correction for it; Stacking;

More information

AVO inversion in V (x, z) media

AVO inversion in V (x, z) media Stanford Exploration Project, Report 97, July 8, 998, pages 75 94 AVO inversion in V (x, z) media Yalei Sun and Wenjie Dong keywords:.5-d Kirchhoff integral, AVO inversion, fluid-line section ABSTRACT

More information

Seismic Imaging. William W. Symes. C. I. M. E. Martina Franca September

Seismic Imaging. William W. Symes. C. I. M. E. Martina Franca September Seismic Imaging William W. Symes C. I. M. E. Martina Franca September 2002 www.trip.caam.rice.edu 1 0 offset (km) -4-3 -2-1 1 2 time (s) 3 4 5 How do you turn lots of this... (field seismogram from the

More information

Youzuo Lin and Lianjie Huang

Youzuo Lin and Lianjie Huang PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24-26, 2014 SGP-TR-202 Building Subsurface Velocity Models with Sharp Interfaces

More information

Wave-equation tomography for anisotropic parameters

Wave-equation tomography for anisotropic parameters Wave-equation tomography for anisotropic parameters Yunyue (Elita) Li and Biondo Biondi ABSTRACT Anisotropic models are recognized as more realistic representations of the subsurface where complex geological

More information

Th P7 02 A Method to Suppress Salt-related Converted Wave Using 3D Acoustic Modelling

Th P7 02 A Method to Suppress Salt-related Converted Wave Using 3D Acoustic Modelling Th P7 0 A Method to Suppress Salt-related Converted Wave Using 3D Acoustic Modelling J. Kumar* (Petroleum Geo-Services), M. Salem (ENI E&P), D.E. Cegani (ENI E&P) Summary Converted waves can be recorded

More information

Sparsity-promoting migration with multiples

Sparsity-promoting migration with multiples Sparsity-promoting migration with multiples Tim Lin, Ning Tu and Felix Herrmann SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia Courtesy of Verschuur, 29 SLIM Motivation..

More information

C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study

C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study C031 Quantifying Structural Uncertainty in Anisotropic Depth Imaging - Gulf of Mexico Case Study K. Osypov* (WesternGeco), D. Nichols (WesternGeco), Y. Yang (WesternGeco), F. Qiao (WesternGeco), M. O'Briain

More information

Local discontinuity measures for 3-D seismic data

Local discontinuity measures for 3-D seismic data GEOPHYSICS, VOL. 67, NO. 6 (NOVEMBER-DECEMBER 2002); P. 1933 1945, 10 FIGS. 10.1190/1.1527094 Local discontinuity measures for 3-D seismic data Israel Cohen and Ronald R. Coifman ABSTRACT In this work,

More information

Extended isochron rays in prestack depth (map) migration

Extended isochron rays in prestack depth (map) migration Extended isochron rays in prestack depth (map) migration A.A. Duchkov and M.V. de Hoop Purdue University, 150 N.University st., West Lafayette, IN, 47907 e-mail: aduchkov@purdue.edu (December 15, 2008)

More information

Summary. Seismic Field Example

Summary. Seismic Field Example Water-saturation estimation from seismic and rock-property trends Zhengyun Zhou*, Fred J. Hilterman, Haitao Ren, Center for Applied Geosciences and Energy, University of Houston, Mritunjay Kumar, Dept.

More information

Modeling, migration, and inversion in the generalized source and receiver domain

Modeling, migration, and inversion in the generalized source and receiver domain Modeling, migration, and inversion in the generalized source and receiver domain Yaxun Tang ABSTRACT I extend the theory of Born modeling, migration and inversion to the generalized source and receiver

More information

Source Body Migration, an Approximate Inversion Method for Full Tensor Gravity Gradiometer Data

Source Body Migration, an Approximate Inversion Method for Full Tensor Gravity Gradiometer Data Source Body Migration, an Approximate Inversion Method for Full Tensor Gravity Gradiometer Data James Brewster, Alan Morgan, and John Mims * Bell Geospace Inc., 400 N. Sam Houston Pkwy E., Ste. 325, Houston,

More information

Seismic attributes of time-vs. depth-migrated data using self-adaptive window

Seismic attributes of time-vs. depth-migrated data using self-adaptive window Seismic attributes of time-vs. depth-migrated data using self-adaptive window Tengfei Lin*, Bo Zhang, The University of Oklahoma; Zhifa Zhan, Zhonghong Wan, BGP., CNPC; Fangyu Li, Huailai Zhou and Kurt

More information