EARTHQUAKE EARLY WARNING SYSTEM AT A LOCAL GOVERNMENT AND A PRIVATE COMPANY IN JAPAN

Size: px
Start display at page:

Download "EARTHQUAKE EARLY WARNING SYSTEM AT A LOCAL GOVERNMENT AND A PRIVATE COMPANY IN JAPAN"

Transcription

1 First European Conference on Earthquake Engineering and Seismology (A joint event of the 13 th ECEE & 30 th General Assembly of the ESC) Geneva, Switzerland, 3-8 September 2006 Paper Number: 741 EARTHQUAKE EARLY WARNING SYSTEM AT A LOCAL GOVERNMENT AND A PRIVATE COMPANY IN JAPAN Hiroaki NEGISHI 1 and Shunroku YAMAMOTO 2 SUMMARY We have developed a real-time earthquake information system, which provides earthquake information just a few seconds after P-wave arrival at the nearest station from a hypocenter [Horiuchi et al., 2005]. This system determines hypocenter and magnitude immediately by using telemetry seismographs network operated by National Research Institute for Earth Science and Disaster Prevention (NIED). Thus we get early warning for big ground motion before it begins in an area a little far from a hypocenter. Now we are conducting the actual proof experiment in collaboration with a local government and a private company, in order to verify the validity and practicality about the broadcasting and application of this information. The earthquake alarm information is automatically sent from NIED to the Fujisawa City Office, Kanagawa, Japan, having large earthquake occurrences. Data processing PCs at the office estimate seismic intensity and S-wave arrival time and display them. The PC has a function to control an eight-channel electric relay automatically according to the information, so we can control patrol lights, some instruments, etc. We started the system in July 2002, and now 13 public halls; two municipal schools and a city hospital have this system. Tokio Marine and Nichido Risk Consulting Co., Ltd., a risk-consulting subsidiary of one of the major casualty insurance companies in Japan, introduced this system in June The earthquake alarm information is mainly used for the employee s safety. Data processing PCs transmit information on seismic intensity and S-wave arrival time to the monitor unit (a display, speakers and a four-color patrol light) and employee s cellular phones. We are also using it for the business of the company. The earthquake information triggers Payment insurance calculation system to estimates the payment insurance and to call members for the damage assessment automatically. 1. INTRODUCTION In recent years, seismologists and engineers have designed a number of real-time seismic systems for quickly providing earthquake information following an earthquake. These systems have been developed in countries where large population centers are vulnerable to large earthquake disasters. The idea behind Early Warning is that it takes a finite amount of time for seismic waves to travel. For locations somewhat far from the hypocenter, the damaging radiation is mostly in the S-wave, which travels at 3 to 4 km/sec. If we know very quickly that an earthquake has occurred, it is possible to send a warning before the S-wave arrival at a site. Various kinds of earthquake early warning systems have been developed in some countries, such as the Urgent Earthquake Detection and Alarm System (UrEDAS) in Japan [Nakamura, 1988, 1996], the Earthquake Alarm System in Taiwan [Teng et al., 1997; Wu et al., 1998, 2001]. 1 Earthquake Disaster Mitigation Research Center, National Research Institute for Earth Science and Disaster Prevention, 4th Floor, Human Renovation Museum, 1-5-2, Kaigan-dori, Wakinohama, Chuo, Kobe, , JAPAN negishi@bosai.go.jp 2 National Research Institute for Earth Science and Disaster Prevention, 3-1, Tenno-dai, Tsukuba, , JAPAN syama@bosai.go.jp 1

2 Figure 1: High-sensitivity Seismic Network Operated by NIED in Japan. One of the most effective and successful systems is the Mexico City alert system developed by Espinosa Aranda et al., [1995]. Mexico City is built on an old lakebed, which greatly amplifies seismic waves, and a subduction zone run along the western coast of Mexico frequently produces large earthquakes. They placed 12 seismic stations near the coast, and established a quick information transmission system to broadcast earthquake alert to the city when the seismograph catches a large quake signals. On September 14, 1995 there was a M7.3 earthquake on the edge of the Guerrero Gap that activated the early warning system. An alert was successfully broadcasted in Mexico City 72 seconds before the arrival of the strong shaking. In the cases that major earthquake location is clear and far from cities, this system is comparatively easily effective, like in Mexico. In Japan, however, any places have potentials of the large earthquake occurrence and there are many cities with various distances from the earthquake source areas. So we need to have a system that can pick accurate arrival time of seismic phases, and determine hypocenter and magnitude with a few station data, to broadcast earthquake early warning practically. We have developed such total system, which automatically determines hypocenter and magnitude very quickly, and provides an earthquake early warning just a few seconds (almost less than 5 to 6 seconds) after P-wave arrival at the nearest station to a hypocenter. The detailed method of the determination algorithms is expressed in Horiuchi et al. [2005]. Here we will present mainly on the actual proof experiment in collaboration with a local government and a private company, in order to verify the validity and practicality about the broadcasting and application of this information. 2

3 2. EARTHQUAKE EARLY WARNING SYSTEM Before the main subject, we will present on the automatic processing system for the hypocenter determination briefly. Horiuchi et al. [2005] have developed an earthquake early warning system that determines earthquake parameters (origin time, hypocenter and magnitude) within a few seconds after P-wave s arrival at the closest station, and then transmits the information before the S-wave arrival in areas of possible serious earthquake damage. For the purpose of quick determination of hypocenter and magnitude, we have developed a new method of hypocenter location using a dense seismic network. This method uses not only P wave arrival time but also not-yet-arrival time. Quantitative definition of not-yet-arrival time data makes it possible to determine accurate epicenter location, depth and origin time with only two arrival stations. On the other hand, a wide and dense seismic network with real-time telemetry is also necessary to use this method effectively. After the 1995 Kobe earthquake National Research Institute for Earth Science and Disaster Prevention (NIED) have established a highly sensitive and dense seismic network in Japan, named Hi-net. The network uses three-component velocity seismometers in boreholes deeper than 100 m (the deepest one has depth of 3000 m), and sends waveform data to the NIED data center via frame-relay telemetry. The telemetry delay is almost shorter than 2 seconds for 95% of the data packets. As the result, we have a dense and uniform seismic network with real-time telemetry for almost all of Japan (Figure 1). The establishment of this seismic network makes the earthquake early warning system possible in Japan. Figure 2 shows an example of Earthquake Early Warning information broadcasted by our system. This event occurred in the offshore of Miyagi Prefecture, Tohoku, Japan in 26 May The rupture of this earthquake began at the depth of about 70 km, and 10.8 seconds after that the nearest station to the epicenter caught the P- wave. The first earthquake early warning information was sent momentarily at the time when P-wave reached the secondarily nearest station. As the result, we succeeded in giving a warning 10 to 20 seconds before the main shock hits to some major cities, such as Shiogama (about 13 seconds) and Sendai (about 16 seconds). Figure 2: Plots of acceleration seismograms for the 2003 Off Miyagi Prefecture Earthquake. 3

4 3. APPLICATIONS TO LOCAL GOVERNMENT AND COMMERCIAL COMPANY We started real-time operation of this system in July 2002 as a proof experiment. The earthquake alarm information is automatically sent to the Disaster Prevention Center of Fujisawa City, Kanagawa Prefecture, Japan, and the Tokio Marine Nichido Risk-consulting Co. Ltd., Tokyo Japan [Negishi et al., 2004]. We use two units of personal computers operated by Linux. Each unit has at least two computers because of redundancy. One unit determines earthquake parameters by using the method mentioned in the previous chapter, Figure 3: The outline of the Earthquake Early Warning System in Fujisawa City, Kanagawa, Japan. Figure 4: Example of graphical display of earthquake information displayed on client computer. 4

5 and the other PCs send the results by XML packets to users. The latter PCs send the earthquake information (hypocenter location, magnitude and origin time) automatically to the personal computers that placed at the user s data center via exclusive network lines. The host computer at each center receives the information and estimates seismic intensity, arrival time of S-waves (regarded as main shock) using the information and some local parameters, such as site location and site amplification response due to soil condition. The site information of earthquake early warning is used in various ways, for not only dissemination to citizens but also control of some instruments and mechanical systems. 3.1 Case Study for Local Government Fujisawa City is located in the south part of Kanagawa Prefecture that lies in the center of the Japanese Archipelago, and faces the western Pacific Ocean. Fujisawa is a cultural city with a population of approximately 390,000 and is endowed with housing, industry, agriculture, commerce, tourism and education. Fujisawa city is one of the cities that are expected to have damages due to the Tokai earthquake and/or Kanto earthquake near future. The collaborative experiment of real-time earthquake information system between NIED and Fujisawa City has started on July The outline of the system is shown in Figure 3. The earthquake-monitoring unit placed at NIED is checking waveform data telemetered from Hi-net stations continuously. Just a few seconds after the detection of large earthquake, the server determines earthquake parameters immediately and sends the information to the data distribution unit. The unit makes XML packets and sends them to the data server placed at the Disaster Prevention Center of Fujisawa City via exclusive network line. This unit also has a function to monitor the health condition of the monitoring unit, network line and the distribution server itself. The information about the system trouble is sent to the administrators in charge immediately when a certain part of the system is down. Earthquake information is shown by the graphic display plainly laid out, as shown in Figure 4. Hypocenter location and S phase wavefront (redrawn every second) are displayed on geographical map, and estimated seismic intensity and leading time are displayed, too. Synthetic voice speaks seismic intensity and counts down leading time. The earthquake warning is passed on to the person in charge of disaster mitigation in the city office by these display and voice. As the result, they can promptly take a necessary action. The earthquake information display device has an eight-channel relay that triggered by earthquake information, and can control various equipments. In this proof experiment, we are trying to control the radio communication system of the Disaster Prevention Center of Fujisawa city by the switching relay, and to report earthquake information to staffs by the voice at the same time. Now the system is placed at the Disaster Prevention Center, the district disaster prevention bases (there are 13 stations), Fujisawa City Hospital, and some municipal schools. Earthquake information is sent to these places via the regional intranet. 3.2 Case Study for Commercial Company Tokio Marine and Nichido Risk Consulting Co., Ltd. is a risk-consulting subsidiary of one of the major casualty insurance companies in Japan. The proof experiment with the company was begun in June This system is designed for the purpose to secure the safety of employees. The outline of the system is shown in Figure 5. The flow of data processing is almost the same as the experiment in the Fujisawa city. The terminal also has the patrol light with two or more colors, and we can identify the seismic intensity according to the color of the lamp without seeing the screen of the computer. Additionally, information is immediately delivered to employee's cellular phones by short mail (Figure 6a). This system has an another important function. In risk consulting companies, it is one of the most important businesses to estimate the claims paid of earthquake insurance and to construct the system of the damage assessment immediately after the occurrence of large earthquake. We tried to develop a system that automatically carries out these works by earthquake early warning information (Figure 6b). The distribution of the seismic intensity and damage is automatically estimated by using the real-time hypocenter information and focal mechanism solution that delivered soon after the earthquake early warning and calculation of claims paid and damage assessment are conducted with them. Thus, earthquake early warning is effective to not only the reduction of human damage but also reduction of economical damage. 5

6 Figure 5: The outline of the Earthquake Early Warning System in Tokio Marine and Nichido Risk Consulting Co. Ltd. Figure 6: a. (Left) Example of Earthquake Early Warning Information by Short-Mail-Service of Cellular Phone. b. (Right) Analysis Window of Focal Mechanism Data for Payment Insurance Calculation System. 4. DISCUSSION AND CONCLUSION For practical use of Earthquake Early Warning, several problems have to be solved, such as 1) Large and dense seismic array, 2) Network infrastructure of real-time telemetry and high-spec computer(s), 3) Quick determination algorithms for earthquake parameters, 4) Effective applications for disaster mitigation using earthquake early warning, and 5) Society that can utilize real-time earthquake information effectively, e.g., education. 6

7 In addition, we should research on the correspondence when mis-information is sent, and the social economy information and the given influence. The above-mentioned matter appears in the pioneering early warning system in Mexico [Espinosa Aranda et al., 1995]. The system hopes to provide a 60 sec warning to Mexico City. The warnings are disseminated by radio and public speakers. There are speakers in public schools and 25 campuses. Early warning signals also go to various government, utility, and transportation agencies. An estimated 2,000,000 people will hear a warning. Early in the project, there were many false alarms that affected public confidence, but recently many of the technical problems causing the false warning have been solved. In case of the M7.3 earthquake in 1995, although there was only minor damage in Mexico City from the earthquake the system showed it could work well. All the participating radio stations broadcasted the pre-determined alert messages. Due to a good education effort in some of the large high rises that had speakers, there were orderly evacuated out of the building. This experience shows that with good education efforts, early warning systems in certain situations have the potential for preventing heavy casualties from earthquakes. These are the valuable data for us to operate earthquake early warning system effectively. Since 2003, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and NIED started a joint research project entitled Research Project for the Practical Use of Real-time Earthquake Information Networks. The research object of this project has wide fields, from upgrading earthquake early warning system, developing effective user applications, to researching its economical influences and psychological influences. Practical earthquake early warning system should not be designed only by seismologists. Incorporative knowledge of seismologists, engineers, computer system experts, and emergency management professionals, is necessary to design and develop a reliable and stable earthquake early warning system. 5. ACKNOWLEDGEMENTS We are grateful to Messrs Shinji Abe, Toshio Mogi, Takashi Satta and Noboru Sugiyama of Disaster Prevention Center of Fujisawa City for support of the proof experiment in their city. We also would like to express our appreciation to Messrs Masaru Matsumoto, Tomohisa Sashida and Yoshiaki Ogane of Tokio Marine and Nichido Risk Consulting Co. Ltd. for their support of the proof experiment in their company. Valuable advices from Drs. Shigeki Horiuchi and Shoji Sakata of National Research Institute for Earth Science and Disaster Prevention are also appreciated. 6. REFERENCES Epinosa Aranda, Jimenez, J.H., Ibarrola, G., Alcantar, F., Aguilar, A., Inosrroza, M., and Maldonado, S. (1995), Mexico Coty seismic alert system, Seismological Research Letters, 66, Horiuchi, S., Negishi, H., Abe, K., Kamimura, A., and Fujinawa, Y. (2005), An Automatic Processing System for Broadcasting Earthquake Alarms, Bulletin of Seismological Society of America, 95, Nakamura, Y. (1988), On the Urgent Earthquake Detection and Alarm System (UrEDAS), Proceedings Ninth World Conference, Earthquake Engineering VII, Japan Association for Earthquake Disaster Prevention, Tokyo, Kyoto, Nakamura, Y. (1996), Real-time Information Systems for Hazards Mitigation, Proceedings Eleventh World Conference, Earthquake Engineering, CD-ROM, Paper No. 2134, Pergamon, Oxford. Negishi, H., Yamamoto, S., Sakata, S., Abe, S., Mogi, T., Satta, T., Sugiyama, N., Matsumoto, M., Sashida, T., and Ogane, S. (2004), Use and Application of the Real-time Earthquake Information Fujisawa City and The Tokio Marine Risk Consulting CO., LTD. -, 2004 Japan Earth and Planetary Science Joint Meeting, S046-P027. Teng, T.L., Wu, Y.M., Shin, T.C., Tsai, Y.B., and Lee W.H.K. (1997), One Minute After: Strong Motion Map, Effective Epicenter, and Effective Magnitude, Bulleting of Seismological Society of America, 87, Wu, Y.M., Shin, T.L., and Tsai, Y.B. (1998), Quick and Reliable Determination of Magnitude for Seismic Early Warning, Bulleting of Seismological Society of America, 88, Wu, Y.M., Shin, T.L., and Chang, H. (2001), Near Real-time Mapping of Peak Ground Acceleration and Peak Ground Velocity Following A Strong Earthquake, Bulleting of Seismological Society of America, 91,

- Information before strong ground motion -

- Information before strong ground motion - -Earthquake Early Warning - Information before strong ground motion - Mitsuyuki HOSHIBA Japan Meteorological Agency January 12, 2007 1 Distribution of Earthquakes Causing Tsunami (1896~2004) in Japan Distribution

More information

Disclaimer. This report was compiled by an ADRC visiting researcher (VR) from ADRC member countries.

Disclaimer. This report was compiled by an ADRC visiting researcher (VR) from ADRC member countries. Disclaimer This report was compiled by an ADRC visiting researcher (VR) from ADRC member countries. The views expressed in the report do not necessarily reflect the views of the ADRC. The boundaries and

More information

Making the Original Earthquake Early Warning System including epicentral earthquake

Making the Original Earthquake Early Warning System including epicentral earthquake Making the Original Earthquake Early Warning System including epicentral earthquake Protecting your life and minimizing damage. TEL: 0742-53-7833 4F, Oshikuma-cho 557-7, Nara-City 631-0011, Japan URL http://www.jjjnet.com

More information

JMA Tsunami Warning Services. Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency

JMA Tsunami Warning Services. Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency JMA Tsunami Warning Services Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency Organization Chart of the Government of Japan Cabinet Office Diet Ministry of Internal

More information

Determination of earthquake early warning parameters, τ c and P d, for southern California

Determination of earthquake early warning parameters, τ c and P d, for southern California Geophys. J. Int. (2007) 170, 711 717 doi: 10.1111/j.1365-246X.2007.03430.x Determination of earthquake early warning parameters, τ c and P d, for southern California Yih-Min Wu, 1 Hiroo Kanamori, 2 Richard

More information

Establishment and Operation of a Regional Tsunami Warning Centre

Establishment and Operation of a Regional Tsunami Warning Centre Establishment and Operation of a Regional Tsunami Warning Centre Dr. Charles McCreery, Director NOAA Richard H. Hagemeyer Pacific Tsunami Warning Center Ewa Beach, Hawaii USA Why A Regional Tsunami Warning

More information

14 State of the Art and Progress in the Earthquake Early Warning System in Taiwan

14 State of the Art and Progress in the Earthquake Early Warning System in Taiwan 14 State of the Art and Progress in the Earthquake Early Warning System in Taiwan Yih-Min Wu 1, Nai-Chi Hsiao 2, William H.K. Lee 3, Ta-liang Teng 4, Tzay-Chyn Shin 2 1 Department of Geosciences, National

More information

Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity

Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity LETTER Earth Planets Space, 63, 547 551, 2011 Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity Mitsuyuki Hoshiba 1, Kazuhiro

More information

中村洋光 Hiromitsu Nakamura 防災科学技術研究所 National Research Institute for Earth Science and Disaster Prevention, Japan (NIED) Outline

中村洋光 Hiromitsu Nakamura 防災科学技術研究所 National Research Institute for Earth Science and Disaster Prevention, Japan (NIED) Outline Earthquake Early Warning in Japan 中村洋光 Hiromitsu Nakamura 防災科学技術研究所 National Research Institute for Earth Science and Disaster Prevention, Japan (NIED) Outline Overview of the earthquake early warning

More information

Practical Use of the Earthquake Early Warning (EEW) System for Shinkansen

Practical Use of the Earthquake Early Warning (EEW) System for Shinkansen Practical Use of the Earthquake Early Warning (EEW) System for Shinkansen Shinji Sato, Kimitoshi Ashiya, Shunroku Yamamoto, Naoyasu Iwata, Masahiro Korenaga, and Shunta Noda Railway Technical Research

More information

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3488 PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM

More information

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE GENERAL PERSPECTIVE The Highest Magnitude Ever Recorded The 2011 off the Pacific Coast of Tohoku Earthquake (hereafter, the 2011 Tohoku- Pacific Earthquake

More information

Journal of Earthquake and Tsunami, Vol. 3, No. 4 (2009)

Journal of Earthquake and Tsunami, Vol. 3, No. 4 (2009) Journal of Earthquake and Tsunami, Vol. 3, No. 4 (2009) 261 272 EFFECTS OF EARTHQUAKE EARLY WARNING TO EXPRESSWAY DRIVERS BASED ON DRIVING SIMULATOR EXPERIMENTS YOSHIHISA MARUYAMA, MASATO SAKAYA and FUMIO

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

Progress on Development of an Earthquake Early Warning System Using Low-Cost Sensors

Progress on Development of an Earthquake Early Warning System Using Low-Cost Sensors See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/265966173 Progress on Development of an Earthquake Early Warning System Using Low-Cost Sensors

More information

Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake

Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake LETTER Earth Planets Space, 60, 155 160, 2008 Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake Yih-Min Wu 1 and Hiroo Kanamori 2 1

More information

Lessons Learned from Past Tsunamis Warning and Emergency Response

Lessons Learned from Past Tsunamis Warning and Emergency Response UNESCO IOC CTIC US NOAA ITIC Regional Training Workshop on Strengthening Tsunami Warning and Emergency Response Standard Operating Procedures and the Development of the ICG/CARIBE-EWS PTWC New Enhanced

More information

HISTORY OF HEAVY RAINFALL DISASTER INFORMATION IN JAPAN

HISTORY OF HEAVY RAINFALL DISASTER INFORMATION IN JAPAN transmission, for a state-of-the-art review. In addition, issues expected to arise in the future are discussed. HISTORY OF HEAVY RAINFALL DISASTER INFORMATION IN JAPAN Progress of Rainfall Observation

More information

REAL-TIME ASSESSMENT OF EARTHQUAKE DISASTER IN YOKOHAMA BASED ON DENSE STRONG-MOTION NETWORK

REAL-TIME ASSESSMENT OF EARTHQUAKE DISASTER IN YOKOHAMA BASED ON DENSE STRONG-MOTION NETWORK REAL-TIME ASSESSMENT OF EARTHQUAKE DISASTER IN YOKOHAMA BASED ON DENSE STRONG-MOTION NETWORK Saburoh MIDORIKAWA 1 And Susumu ABE 2 SUMMARY This paper describes a system for REal-time Assessment of earthquake

More information

Quick and Reliable Determination of Magnitude for Seismic Early Warning

Quick and Reliable Determination of Magnitude for Seismic Early Warning Bulletin of the Seismological Society of America, Vol. 88, No. 5, pp. 1254-1259, October 1998 Quick and Reliable Determination of Magnitude for Seismic Early Warning by Yih-Min Wu, Tzay-Chyn Shin, and

More information

FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK

FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK Cinthia CALDERON MEE1771 Supervisor: Takumi HAYASHIDA Toshiaki YOKOI ABSTRACT

More information

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake J-RAPID Symposium March 6-7, 2013 Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake Y. Honkura Tokyo Institute of Technology Japan Science and Technology

More information

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake.

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake. 2.2 Strong Ground Motion 2.2.1 Strong Ground Motion Network The world densest digital strong ground motion network of Taiwan with the station mesh of 3 km in the urban areas (Shin et al., 2) monitored

More information

PRELIMINARY STUDY OF GROUND MOTION CHARACTERISTICS IN FURUKAWA DISTRICT, JAPAN, BASED ON VERY DENSE SEISMIC-ARRAY-OBSERVATION

PRELIMINARY STUDY OF GROUND MOTION CHARACTERISTICS IN FURUKAWA DISTRICT, JAPAN, BASED ON VERY DENSE SEISMIC-ARRAY-OBSERVATION Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan PRELIMINARY STUDY OF GROUND MOTION CHARACTERISTICS IN

More information

ShakeAlert Earthquake Early Warning

ShakeAlert Earthquake Early Warning ShakeAlert Earthquake Early Warning Doug Given USGS, Pasadena Earthquake Program, Early Warning Coordinator 10 seconds 50 seconds 90 seconds USGS Earthquake Hazard Responsibilities USGS has the lead federal

More information

Earthquake early warning: Adding societal value to regional networks and station clusters

Earthquake early warning: Adding societal value to regional networks and station clusters Earthquake early warning: Adding societal value to regional networks and station clusters Richard Allen, UC Berkeley Seismological Laboratory rallen@berkeley.edu Sustaining funding for regional seismic

More information

Flood Management in Japan

Flood Management in Japan Flood Management in Japan 1. Comprehensive Flood Control Measures 2. Provision of River information 3. Responses to the Niigata Torrential Rain Disaster 4. About ICHARM 5. Responses to 2011 Thailand Floods

More information

EARTHQUAKE EARLY WARNING SYSTEM FOR RAILWAYS AND ITS PERFORMANCE

EARTHQUAKE EARLY WARNING SYSTEM FOR RAILWAYS AND ITS PERFORMANCE Journal of JSCE, Vol. 1, 322-328, 2013 Special Topic - 2011 Great East Japan Earthquake (Invited Paper) EARTHQUAKE EARLY WARNING SYSTEM FOR RAILWAYS AND ITS PERFORMANCE Shunroku YAMAMOTO 1 and Masahiko

More information

M 7.1 EARTHQUAKE 5KM ENE OF RABOSO, MEXICO EXACT LOCATION: N W DEPTH: 51.0KM SEPTEMBER 19, 1:14 LOCAL TIME

M 7.1 EARTHQUAKE 5KM ENE OF RABOSO, MEXICO EXACT LOCATION: N W DEPTH: 51.0KM SEPTEMBER 19, 1:14 LOCAL TIME M 7.1 EARTHQUAKE 5KM ENE OF RABOSO, MEXICO EXACT LOCATION: 18.584 N 98.399 W DEPTH: 51.0KM SEPTEMBER 19, 2017 @ 1:14 LOCAL TIME Photo: Eduardo Verdugo / AP Photo: Alfredo Estrella/ Agence France-Presse/

More information

Special edition paper Development of Shinkansen Earthquake Impact Assessment System

Special edition paper Development of Shinkansen Earthquake Impact Assessment System Development of Shinkansen Earthquake Impact Assessment System Makoto Shimamura*, Keiichi Yamamura* Assuring safety during earthquakes is a very important task for the Shinkansen because the trains operate

More information

STRATEGY FOR TAKING FULL ADVANTAGE OF EARTHQUAKE EARLY WARNING SYSTEM FOR EARTHQUAKE DISASTER REDUCTION

STRATEGY FOR TAKING FULL ADVANTAGE OF EARTHQUAKE EARLY WARNING SYSTEM FOR EARTHQUAKE DISASTER REDUCTION ABSTRACT : STRATEGY FOR TAKING FULL ADVANTAGE OF EARTHQUAKE EARLY WARNING SYSTEM FOR EARTHQUAKE DISASTER REDUCTION K. Meguro 1 1 Director/Professor, International Center for Urban Safety Engineering, Institute

More information

SCIENCE OF TSUNAMI HAZARDS

SCIENCE OF TSUNAMI HAZARDS SCIENCE OF TSUNAMI HAZARDS ISSN 8755-6839 Journal of Tsunami Society International Volume 32 Number 1 2013 THE FRENCH TSUNAMI WARNING CENTER FOR THE MEDITERRANEAN AND NORTHEAST ATLANTIC: CENALT P. Roudil,

More information

Unit 5: NWS Hazardous Weather Products. Hazardous Weather and Flooding Preparedness

Unit 5: NWS Hazardous Weather Products. Hazardous Weather and Flooding Preparedness Unit 5: NWS Hazardous Weather Products Objectives Describe the mission of the NWS Describe the basic organizational structure of the NWS Explain the purpose of various NWS products Explain how Probability

More information

Magnitude 7.2 OAXACA, MEXICO

Magnitude 7.2 OAXACA, MEXICO A magnitude 7.2 earthquake has occurred in Oaxaca, Mexico at a depth of 24.6 km (15 miles). It was felt as far away as Guatemala. There have been no reported deaths directly linked to the earthquake. Emergency

More information

THE 2011 TOHOKU EARTHQUAKE IN JAPAN. VSU Lyuben Karavelov, Sofia, Bulgaria. Key words: Tohoku earthquake, strong ground motion, damage

THE 2011 TOHOKU EARTHQUAKE IN JAPAN. VSU Lyuben Karavelov, Sofia, Bulgaria. Key words: Tohoku earthquake, strong ground motion, damage THE 2011 TOHOKU EARTHQUAKE IN JAPAN Radan Ivanov 1 VSU Lyuben Karavelov, Sofia, Bulgaria Abstract: This earthquake which occurred on March 11, 2011, had a magnitude of 9.0, which places it as the fourth

More information

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions Y. Ishii & K. Dan Ohsaki Research Institute, Inc., Tokyo

More information

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy.

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Earthquake Machine Stick-slip: Elastic Rebound Theory Jerky motions on faults produce EQs Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Three

More information

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

4 Associate Professor, DPRI, Kyoto University, Uji, Japan Proceedings of the International Symposium on Engineering Lessons Learned from the 2 Great East Japan Earthquake, March -4, 22, Tokyo, Japan STRONG MOTION ESTIMATION AT THE ELEVATED BRIDGES OF THE TOHOKU

More information

Long-period ground motion characterization by cross wavelet transform

Long-period ground motion characterization by cross wavelet transform Long-period ground motion characterization by cross wavelet transform *Tsoggerel Tsamba 1) and Masato Motosaka 2) 1), 2) International Research Institute of Disaster Science, Tohoku University, Sendai980-8579,Japan

More information

Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan -

Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan - Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan - 1 Subduction zones around the world Haiti Italy Turkey Tohoku Sichuan Taiwan Sumatra

More information

Earthquakes and Tsunamis

Earthquakes and Tsunamis Earthquakes and Tsunamis Kenji Satake Earthquake Research Institute University of Tokyo 1 Part I 2011 Tohoku earthquake and tsunami 2 Fukushima Dai ichi NPP accident Earthquake ground motion Reactors automatically

More information

Earthquake Early Warning Technology Progress in Taiwan

Earthquake Early Warning Technology Progress in Taiwan Paper: Earthquake Early Warning Technology Progress in Taiwan Kuo-Liang Wen 1,2,3, Tzay-Chyn Shin 4, Yih-Min Wu 5, Nai-Chi Hsiao 4, and Bing-Ru Wu 1 1 National Science and Technology Center for Disaster

More information

4-3-1 Earthquake and Tsunami Countermeasures of Tokyo s

4-3-1 Earthquake and Tsunami Countermeasures of Tokyo s 4-3-1 Earthquake and Tsunami Countermeasures of Tokyo s Sewerage Masahiro Hikino* and Gaku Sato** *Planning Section, Planning and Coordinating Division, Bureau of Sewerage, Tokyo Metropolitan Government

More information

Determining the Earthquake Epicenter: Japan

Determining the Earthquake Epicenter: Japan Practice Name: Hour: Determining the Earthquake Epicenter: Japan Measuring the S-P interval There are hundreds of seismic data recording stations throughout the United States and the rest of the world.

More information

Complete Weather Intelligence for Public Safety from DTN

Complete Weather Intelligence for Public Safety from DTN Complete Weather Intelligence for Public Safety from DTN September 2017 White Paper www.dtn.com / 1.800.610.0777 From flooding to tornados to severe winter storms, the threats to public safety from weather-related

More information

Magnitude 7.9 SE of KODIAK, ALASKA

Magnitude 7.9 SE of KODIAK, ALASKA A magnitude 7.9 earthquake occurred at 12:31 am local time 181 miles southeast of Kodiak at a depth of 25 km (15.5 miles). There are no immediate reports of damage or fatalities. Light shaking from this

More information

EARTHQUAKE DISASTER PREVENTION INFORMATION SYSTEM BASED ON RISK ADAPTIVE REGIONAL MANAGEMENT INFORMATION SYSTEM CONCEPT

EARTHQUAKE DISASTER PREVENTION INFORMATION SYSTEM BASED ON RISK ADAPTIVE REGIONAL MANAGEMENT INFORMATION SYSTEM CONCEPT 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 709 EARTHQUAKE DISASTER PREVENTION INFORMATION SYSTEM BASED ON RISK ADAPTIVE REGIONAL MANAGEMENT INFORMATION

More information

GENERAL. CHAPTER 1 BACKGROUND AND PURPOSE OF THE GUIDELINES Background of the Guidelines Purpose of the Guidelines...

GENERAL. CHAPTER 1 BACKGROUND AND PURPOSE OF THE GUIDELINES Background of the Guidelines Purpose of the Guidelines... GENERAL CHAPTER 1 BACKGROUND AND PURPOSE OF THE GUIDELINES... 1 1.1 Background of the Guidelines... 1 1.2 Purpose of the Guidelines... 3 CHAPTER 2 APPLICATION OF THE GUIDELINES... 3 2.1 Potential Users

More information

JMA Tsunami Warning Services. Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency

JMA Tsunami Warning Services. Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency JMA Tsunami Warning Services Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency Tectonic Setting of Japan (Headquarters for Earthquake Research

More information

Early Earthquake Warning Systems

Early Earthquake Warning Systems Early Earthquake Warning Systems Faisal Masood 1 1 National University of Computer and Emerging Sciences, Lahore; l165172@lhr.nu.edu.pk Abstract Seismic activity poses a great risk to densely populated

More information

Tsunami Research and Its Practical Use for Hazard Mitigation. Hiroo Kanamori Seismological Laboratory, California Institute of Technology

Tsunami Research and Its Practical Use for Hazard Mitigation. Hiroo Kanamori Seismological Laboratory, California Institute of Technology Tsunami Research and Its Practical Use for Hazard Mitigation Hiroo Kanamori Seismological Laboratory, California Institute of Technology Cause of Tsunami Earthquakes Landslides Volcanic origin Impact (Dr.

More information

Special feature: Are its lessons being adequately applied? Follow-up on the ten-year anniversary of the Hanshin-Awaji Earthquake

Special feature: Are its lessons being adequately applied? Follow-up on the ten-year anniversary of the Hanshin-Awaji Earthquake Special feature: Are its lessons being adequately applied? Follow-up on the ten-year anniversary of the Hanshin-Awaji Earthquake - Are we prepared for future massive earthquakes? - Hisakazu SAKAI Member

More information

Building earthquake early warning for the west coast. Ken Creager Professor of Earth and Space Sciences University of Washington

Building earthquake early warning for the west coast. Ken Creager Professor of Earth and Space Sciences University of Washington Building earthquake early warning for the west coast Ken Creager Professor of Earth and Space Sciences University of Washington How Earthquake Early Warning works: P-waves S-waves 3-fold way of Earthquake

More information

M-8.1 EARTHQUAKE 87KM SW OF PIJIJIAPAN, MEXICO EXACT LOCATION: N W DEPTH: 69.7KM SEPTEMBER 7, 11:49 PST

M-8.1 EARTHQUAKE 87KM SW OF PIJIJIAPAN, MEXICO EXACT LOCATION: N W DEPTH: 69.7KM SEPTEMBER 7, 11:49 PST M-8.1 EARTHQUAKE 87KM SW OF PIJIJIAPAN, MEXICO EXACT LOCATION: 15.068 N 93.715 W DEPTH: 69.7KM SEPTEMBER 7, 2017 @ 11:49 PST Photo: Luis Alberto Cruz / AP Photo: Carlos Jasso 1 THE 2017 CHIAPAS MEXICO

More information

Disaster Risk Reduction in Survey for Seismic Protection of MES

Disaster Risk Reduction in Survey for Seismic Protection of MES Survey for Seismic Protection Ministry of Emergency Situations of Republic of Armenia Disaster Risk Reduction in Survey for Seismic Protection of MES Syuzanna Kakoyan Leading specialist at the Department

More information

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3229 THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION Ken HATAYAMA 1 SUMMARY I evaluated

More information

Earthquake Early Warning in Japan: Warning the General Public and Future Prospects

Earthquake Early Warning in Japan: Warning the General Public and Future Prospects Earthquake Early Warning in Japan: Warning the General Public and Future Prospects Osamu Kamigaichi, Makoto Saito, Keiji Doi, Toshiyuki Matsumori, Shin ya Tsukada, Kiyoshi Takeda, Toshihiro Shimoyama,

More information

Why 1G Was Recorded at TCU129 Site During the 1999 Chi-Chi, Taiwan, Earthquake

Why 1G Was Recorded at TCU129 Site During the 1999 Chi-Chi, Taiwan, Earthquake Bulletin of the Seismological Society of America, 91, 5, pp. 1255 1266, October 2001 Why 1G Was Recorded at TCU129 Site During the 1999 Chi-Chi, Taiwan, Earthquake by Kuo-Liang Wen,* Han-Yih Peng, Yi-Ben

More information

Indian Ocean Tsunami Warning System: Example from the 12 th September 2007 Tsunami

Indian Ocean Tsunami Warning System: Example from the 12 th September 2007 Tsunami Indian Ocean Tsunami Warning System: Example from the 12 th September 2007 Tsunami Charitha Pattiaratchi 1 Professor of Coastal Oceanography, The University of Western Australia Email: chari.pattiaratchi@uwa.edu.au

More information

By Lillian Ntshwarisang Department of Meteorological Services Phone:

By Lillian Ntshwarisang Department of Meteorological Services Phone: By Lillian Ntshwarisang Department of Meteorological Services Phone: +267 3612200 Email: lntshwarisang@gov.bw/ lntshwarisang@gmail.com Introduction Mandate of DMS Function of the Department Services to

More information

METEOROLOGICAL WARNINGS STUDY GROUP (METWSG)

METEOROLOGICAL WARNINGS STUDY GROUP (METWSG) METWSG/4-SN No. 6 12/3/12 METEOROLOGICAL WARNINGS STUDY GROUP (METWSG) FOURTH MEETING Montréal, 15 to 18 May 2012 Agenda Item 6: Wind shear, turbulence and tsunami warnings TSUNAMI INFORMATION (Presented

More information

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake K. Sato, K. Asano & T. Iwata Disaster Prevention Research Institute, Kyoto University, Japan

More information

Training System and Information Network for Earthquake Disaster Mitigation. Taiki SAITO. Building Research Institute (BRI)

Training System and Information Network for Earthquake Disaster Mitigation. Taiki SAITO. Building Research Institute (BRI) 1 Training System and Information Network for Earthquake Disaster Mitigation Taiki SAITO Chief Research Engineer, International Institute of Seismology and Earthquake Engineering (IISEE), Building Research

More information

A = S f 1 (R, D s ) G, (1)

A = S f 1 (R, D s ) G, (1) Earth Planets Space, 62, 611 620, 2010 How precisely can we anticipate seismic intensities? A study of uncertainty of anticipated seismic intensities for the Earthquake Early Warning method in Japan Mitsuyuki

More information

Study on a Simplified Method of Tsunami Risk Assessment

Study on a Simplified Method of Tsunami Risk Assessment Natural Hazards 29: 325 340, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 325 Study on a Simplified Method of Tsunami Risk Assessment HIROAKI SATO River and Coastal Engineering Department,

More information

RELATIONSHIP OF SEISMIC RESPONSES AND STRENGTH INDEXES OF GROUND MOTIONS FOR NPP STRUCTURES

RELATIONSHIP OF SEISMIC RESPONSES AND STRENGTH INDEXES OF GROUND MOTIONS FOR NPP STRUCTURES RELATIONSHIP OF SEISMIC RESPONSES AND STRENGTH INDEXES OF GROUND MOTIONS FOR NPP STRUCTURES Seckin Ozgur CITAK 1 Hiroshi KAWASE 2 and Shinya IKUTAMA 3 1 Research Engineer, Ohsaki Research Institute, Inc.,

More information

Magnitude determination using strong groundmotion attenuation in earthquake early warning

Magnitude determination using strong groundmotion attenuation in earthquake early warning Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 3,, doi:10.1029/2010gl042502, 2010 Magnitude determination using strong groundmotion attenuation in earthquake early warning Ting Li Lin 1

More information

Seismic Hazard Switzerland. When, where, and how often does certain shaking occur in Switzerland?

Seismic Hazard Switzerland. When, where, and how often does certain shaking occur in Switzerland? Seismic Hazard Switzerland When, where, and how often does certain shaking occur in Switzerland? Hazard The hazard map shows where and how often certain incidents of horizontal acceleration are likely.

More information

Prevention Tsunami wall 10m high (breached by the tsunami due to land level falling by 3m)

Prevention Tsunami wall 10m high (breached by the tsunami due to land level falling by 3m) Plate margin Plates Causes Sendai, Japan Convergent plate margin Pacific and Eurasian Plates Convergent plate margin Sima (Pacific plate) moves towards the sial (Eurasian plate) Sima (Pacific plate) is

More information

Seismic Network and Routine Data Processing - Japan Meteorological Agency -

Seismic Network and Routine Data Processing - Japan Meteorological Agency - Operational Procedures of Agencies Contributing to the ISC Seismic Network and Routine Data Processing - Japan Meteorological Agency - Keiji Doi Seismology and Volcanology Department, Japan Meteorological

More information

e-science on Earthquake Disaster Mitigation in Taiwan

e-science on Earthquake Disaster Mitigation in Taiwan e-science on Earthquake Disaster Mitigation in Taiwan Eric Yen EGI User Forum, April 2011 ~50 earthquakes/day Taiwan Seismicity on Google Earth 0 15 30 70 100 150 km Eurasia Plate S01R Philippine Sea Plate

More information

Estimation of Seismic Shutoff of Intelligent Gas Meters in the Tokyo Metropolitan Area

Estimation of Seismic Shutoff of Intelligent Gas Meters in the Tokyo Metropolitan Area Paper: Estimation of Seismic Shutoff of Intelligent Gas Meters in the Tokyo Metropolitan Area Yoshihisa Maruyama Λ,FumioYamazaki Λ, Yoshihisa Yano ΛΛ, and Naoyuki Hosokawa ΛΛ Λ Department of Urban Environment

More information

THE STUDY ON 4S TECHNOLOGY IN THE COMMAND OF EARTHQUAKE DISASTER EMERGENCY 1

THE STUDY ON 4S TECHNOLOGY IN THE COMMAND OF EARTHQUAKE DISASTER EMERGENCY 1 THE STUDY ON 4S TECHNOLOGY IN THE COMMAND OF EARTHQUAKE DISASTER EMERGENCY 1 Zhou Wensheng 1, Huang Jianxi 2, Li Qiang 3, Liu Ze 3 1 Associate Professor, School of Architecture, Tsinghua University, Beijing.

More information

UNIVERSITY OF WISCONSIN-PARKSIDE TORNADO WARNINGS AND ALERT POLICY ADMINISTRATIVE POLICY NUMBER 39 TABLE OF CONTENTS

UNIVERSITY OF WISCONSIN-PARKSIDE TORNADO WARNINGS AND ALERT POLICY ADMINISTRATIVE POLICY NUMBER 39 TABLE OF CONTENTS UNIVERSITY OF WISCONSIN-PARKSIDE TORNADO WARNINGS AND ALERT POLICY ADMINISTRATIVE POLICY NUMBER 39 TABLE OF CONTENTS Page 1. PURPOSE 2 2. DEFINITIONS 2 3. GENERAL OVERVIEW 2 4. SPECIFIC PROCEDURES 3 4.1

More information

A Prototype Earthquake Early Warning (EEW) System in Beijing Capital Region of China

A Prototype Earthquake Early Warning (EEW) System in Beijing Capital Region of China The 2th International Workshop On Earthquake Early Warning, April 21-22, 2009, Kyoto, Japan A Prototype Earthquake Early Warning (EEW) System in Beijing Capital Region of China Hanshu Peng 1, Zhongliang

More information

revised October 30, 2001 Carlos Mendoza

revised October 30, 2001 Carlos Mendoza Earthquake Sources in the circum-caribbean Region Puerto Rico Tsunami Mitigation and Warning Program Federal Emergency Management Agency Preliminary Report: Task 3 revised October 30, 2001 Carlos Mendoza

More information

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION A major 7.7 magnitude earthquake struck at 8:04 PM local time in western British Columbia, Canada. The epicenter is located on Moresby Island, the southern large island in the Queen Charlotte Islands region.

More information

Outline of Guideline for Development and Utilization of Tsunami Disaster Management Map

Outline of Guideline for Development and Utilization of Tsunami Disaster Management Map Outline of Guideline for Development and Utilization of Tsunami Disaster Management Map Port and Airport Research Institute, Japan The Overseas Coastal Area Development Institute of Japan Ports and Harbours

More information

MEXICO CITY SEISMIC ALERT SYSTEM

MEXICO CITY SEISMIC ALERT SYSTEM MEXICO CITY SEISMIC ALERT SYSTEM J.M. Espinosa-Aranda, A. Jiménez, O. Contreras, G. Ibarrola & R. Ortega Fundación Javier Barros Sierra, A.C., MEXICO Centro de Instrumentación y Registro Sísmico, A.C.,

More information

Please give me the background details of the warning system the US had before and the new improvements now.

Please give me the background details of the warning system the US had before and the new improvements now. ----- Original Message ----- From: VADM Conrad C. Lautenbacher Jr., USN (Ret.) To: Announcement@noaa.gov Sent: Friday, January 28, 2005 1:30 PM Subject: Message from the Under Secretary -- NOAA Tsunami

More information

Seismic Hazard Abatement Program

Seismic Hazard Abatement Program Seismic Hazard Abatement Program Recommendations To take the first steps toward a seismic mitigation program for older existing buildings To improve our current regulatory system for implementation of

More information

EARTHQUAKE RELATED PROJECTS IN NIED, JAPAN. Yoshimitsu Okada NIED (National Research Institute for Earth Science and Disaster Prevention), Japan

EARTHQUAKE RELATED PROJECTS IN NIED, JAPAN. Yoshimitsu Okada NIED (National Research Institute for Earth Science and Disaster Prevention), Japan OECD/NEA WS 1/8 EARTHQUAKE RELATED PROJECTS IN NIED, JAPAN Yoshimitsu Okada NIED (National Research Institute for Earth Science and Disaster Prevention), Japan Abstract Earthquake related projects in NIED

More information

Short Note The Potential for Earthquake Early Warning in Italy Using ElarmS

Short Note The Potential for Earthquake Early Warning in Italy Using ElarmS Bulletin of the Seismological Society of America, Vol. 98, No. 1, pp. 495 503, February 2008, doi: 10.1785/0120070054 Short Note The Potential for Earthquake Early Warning in Italy Using ElarmS by Marco

More information

Wainui Beach Management Strategy (WBMS) Summary of Existing Documents. GNS Tsunami Reports

Wainui Beach Management Strategy (WBMS) Summary of Existing Documents. GNS Tsunami Reports Wainui Beach Management Strategy (WBMS) Summary of Existing Documents GNS Tsunami Reports a) Review of Tsunami Hazard and Risk in New Zealand ( National Risk Report ) b) Review of New Zealand s Preparedness

More information

τ max L Aquila earthquake p magnitude estimation, the case of the April 6, 2009 ORIGINAL ARTICLE Marco Olivieri

τ max L Aquila earthquake p magnitude estimation, the case of the April 6, 2009 ORIGINAL ARTICLE Marco Olivieri DOI 10.1007/s10950-012-9341-4 ORIGINAL ARTICLE τ p magnitude estimation, the case of the April 6, 2009 L Aquila earthquake Marco Olivieri Received: 16 July 2012 / Accepted: 25 October 2012 Springer Science+Business

More information

Characteristics and introduction of Earthquake in Asia-Pacific region

Characteristics and introduction of Earthquake in Asia-Pacific region Characteristics and introduction of Earthquake in Asia-Pacific region 1906 San Francisco 2011 Tohoku 1999 Chi-Chi 1985 Mexico City 2004 Sumatra Chung-Han Chan 詹忠翰 2011 Christchurch To understand the characteristics

More information

Development and Application of Earthquake Early Warning System in NCREE. P.Y. Lin, T.Y. Hsu & H.W. Jiang

Development and Application of Earthquake Early Warning System in NCREE. P.Y. Lin, T.Y. Hsu & H.W. Jiang Development and Application of Earthquake Early Warning System in NCREE P.Y. Lin, T.Y. Hsu & H.W. Jiang Introduction of earthquake wave P Wave (primary wave): 6 ~ 7 km/s S Wave (shear wave or secondary

More information

Vrancea earthquake early warning system: first tests to add location capabilities

Vrancea earthquake early warning system: first tests to add location capabilities Acta Geod Geophys (2015) 50:121 130 DOI 10.1007/s40328-014-0081-5 Vrancea earthquake early warning system: first tests to add location capabilities A. Marmureanu M. Craiu A. Craiu C. Neagoe S. Radulescu

More information

Magnitude 7.0 N of ANCHORAGE, ALASKA

Magnitude 7.0 N of ANCHORAGE, ALASKA A magnitude 7.0 earthquake occurred just before 8:30 am local time 8 miles north of Anchorage at a depth of 40.9 km (25.4 miles). There are reports of major infrastructure damage and damage to many homes

More information

The 2011 Tohoku earthquake and dams

The 2011 Tohoku earthquake and dams The 2011 Tohoku earthquake and dams N. Matsumoto & T. Sasaki Japan Dam Engineering Center, Japan T. Ohmachi Tokyo Institute of Technology, Japan ABSTRACT: The magnitude 9.0 Tohoku earthquake occurred on

More information

Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 Niigata Chuetsu and the 2011 Fukushima Hamado ri Earthquakes

Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 Niigata Chuetsu and the 2011 Fukushima Hamado ri Earthquakes Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 and the 2011 Fukushima Hamado ri Earthquakes Yuka Esashi Supervisors: Kazuki Koketsu and Yujia Guo Department of Earth and Planetary

More information

Natural Disaster :.JP s Experience and Preparation

Natural Disaster :.JP s Experience and Preparation Natural Disaster :.JP s Experience and Preparation 14 March. 2018 Hiro Hotta 1 Where s Japan Japan Puerto Rico earthquakes large enough to feel : 2,000-20,000 times a year typhoons disastrous

More information

Rapid magnitude determination from peak amplitudes at local stations

Rapid magnitude determination from peak amplitudes at local stations Earth Planets Space, 65, 843 853, 2013 Rapid magnitude determination from peak amplitudes at local stations Akio Katsumata 1, Hiroshi Ueno 1, Shigeki Aoki 1, Yasuhiro Yoshida 2, and Sergio Barrientos 3

More information

Lecture Outline Wednesday-Monday April 18 23, 2018

Lecture Outline Wednesday-Monday April 18 23, 2018 Lecture Outline Wednesday-Monday April 18 23, 2018 Questions? Lecture Final Exam Lecture Section 1 Friday May 4, 8:00-10:00am Lecture Section 2 Friday May 4, 3:10-5:10 pm Final Exam is 70% new material

More information

Xiang Wen, & Takahashi Toru Chiba University, Chiba City, Japan. Katada Masaki Kyoto University, Kyoto, Japan

Xiang Wen, & Takahashi Toru Chiba University, Chiba City, Japan. Katada Masaki Kyoto University, Kyoto, Japan Damage Scenario and Its Reduction for Nishi-Chiba Campus, Chiba University due to Tokai, Tonankai, Nankai Coupled Earthquake and The Capital, Tokyo Inland Earthquake Xiang Wen, & Takahashi Toru Chiba University,

More information

ANALYSIS OF EVACUATION BEHAVIORS IN DIFFERENT AREAS BEFORE AND AFTER THE GREAT EAST JAPAN EARTHQUAKE

ANALYSIS OF EVACUATION BEHAVIORS IN DIFFERENT AREAS BEFORE AND AFTER THE GREAT EAST JAPAN EARTHQUAKE Fifth International Conference on Geotechnique, Construction Materials and Environment, Osaka, Japan, Nov. 16-18, 2015, ISBN: 978-4-9905958-4-5 C3051 ANALYSIS OF EVACUATION BEHAVIORS IN DIFFERENT AREAS

More information

KNOWLEDGE NOTE 5-1. Risk Assessment and Hazard Mapping. CLUSTER 5: Hazard and Risk Information and Decision Making. Public Disclosure Authorized

KNOWLEDGE NOTE 5-1. Risk Assessment and Hazard Mapping. CLUSTER 5: Hazard and Risk Information and Decision Making. Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized KNOWLEDGE NOTE 5-1 CLUSTER 5: Hazard and Risk Information and Decision Making Risk Assessment

More information

New Tsunami Disaster Mitigation System considering Local Conditions of Indian Ocean Rim Regions

New Tsunami Disaster Mitigation System considering Local Conditions of Indian Ocean Rim Regions New Tsunami Disaster Mitigation System considering Local Conditions of Indian Ocean Rim Regions Kimiro Meguro Professor, Institute of Industrial Science, The University of Tokyo, Japan Shunichi Koshimura

More information

Risk Assessment and Mitigation. Hurricane Checklist

Risk Assessment and Mitigation. Hurricane Checklist Risk Assessment and Mitigation Hurricane Checklist Hurricane Checklist Hurricanes are severe tropical storms with sustained winds of at least 74 miles per hour. Hurricane winds can reach 160 miles per

More information