H Y D R O L O G Y I R R I G A T I O N C E

Size: px
Start display at page:

Download "H Y D R O L O G Y I R R I G A T I O N C E"

Transcription

1 H Y D R O L O G Y & I R R I G A T I O N C E

2 Chapter 1: HYDROLOGICAL CYCLE AND PRECIPITATION 7 HYDROLOGIC CYCLE... 7 PRECIPITATION... 8 MEASUREMENT OF PRECIPITATION... 9 ESTIMATION OF MISSING DATA ABSTRACTIONS FROM PRECIPITATION EVAPORATION SUMMARY FORMULA TIPS PREVIOUS YEAR GATE QUESTIONS Chapter 2: INFILTRATION AND RUNOFF INFILTRATION RUNOFF RUNOFF RAINFALL RELATIONS STAGE DISCHARGE RELATIONSHIP SUMMARY TIPS PREVIOUS GATE QUESTIONS Chapter 3: HYDROGRAPHS Hydrographs Hydrograph Analysis Unit Hydrograph Career Avenues GATE Coaching by IITians

3 Synthetic Unit Hydrograph Use and Limitations of Unit Hydrograph PROBLEM SUMMARY TIPS PREVIOUS YEAR GATE QUESTIONS Chapter 4: Floods and Flood Estimation Floods Planning of Reservoirs Flood Routing PROBLEM SUMMARY FORMULA TIPS PREVIOUS YEAR GATE QUESTIONS Chapter 5: Well Hydraulics Ground Water Resources Well Irrigation Occurrence of Ground Water Well Hydraulics Equilibrium Equations Well Interference Pumping Tests (Or Aquifier Tests) SUMMARY Career Avenues GATE Coaching by IITians

4 FORMULA TIPS PREVIOUS YEAR GATE QUESTIONS Chapter 6: Introduction to Irrigation INTRODUCTION STORAGE OF SOME MAJOR DAMS (2) IMPACT OF IRRIGATION ON HUMAN ENVIRONMENT WATER RESOURCES OF INDIA NEED OF IRRIGATION IN INDIA IDEAL WEATHER FOR KHARIF AND RABI SEASONS CROPS OF KHARIF SEASON CROPS OF RABI SEASON OTHER MAJOR CROPS MULTIPLE CROPPING SUMMARY TIPS Chapter 7: Water Requirements of Crops SOIL WATER RELATIONSHIPS ROOT-ZONE SOIL WATER INFILTRATION CONSUMPTION USE (OR EVAPOTRANSPIRATION) IRRIGATION REQUIREMENT FREQUENCY OF IRRIGATION SUMMARY Career Avenues GATE Coaching by IITians

5 FORMULA TIPS PREVIOUS YEAR GATE QUESTIONS Chapter 8: Canal Irrigation ESTIMATION OF DESIGN DISCHARGE OF A CANAL SUMMARY FORMULA TIPS PREVIOUS YEAR GATE QUESTIONS Chapter 9: Canal Head Works LOCATION OF HEADWORKS ON RIVERS DIFFERENT UNITS OF HEADWORKS FISH LADDER CANAL HEAD REGULATOR DESIGN OF WEIR WEIR CREST, GLACIS, AND IMPERVIOUS FLOOR UPSTREAM AND DOWNSTREAM LOOSE PROTECTION SUMMARY FORMULA TIPS PREVIOUS YEAR GATE QUESTIONS: Chapter 10: Gravity Dams FORCES ON A GRAVITY DAM Career Avenues GATE Coaching by IITians

6 STRESS ANALYSIS OF GRAVITY DAMS ELEMENTARY PROFILE OF A GRAVITY DAM SUMMARY FORMULA TIPS PREVIOUS YEAR GATE QUESTIONS: Chapter 11: Water Logging WATERLOGGING ECONOMICS OF CANAL LINING DRAINAGE OF IRRIGATED LANDS SUMMARY FORMULA TIPS Chapter 12: Methods of Irrigation METHODS OF IRRIGATION WATER USE SUBSYSTEMS SURFACE IRRIGATION SUMMARY TIPS PREVIOUS YEAR GATE QUESTIONS Career Avenues GATE Coaching by IITians

7 Chapter 1: HYDROLOGICAL CYCLE AND PRECIPITATION The word hydrology means science of water which deals with the spatial and temporal characteristics of the earth s water in all its aspects such as occurrence, circulation, distribution, physical and chemical properties, and impact on environment and living things. HYDROLOGIC CYCLE The total water of earth, excluding deep ground water, is in constant circulation from the earth (including oceans) to atmosphere and back to the earth and oceans. This cycle of water amongst earth, oceans, and atmospheric systems is known as hydrologic cycle. Figure shown below is an enormously simplified sketch of the hydrologic cycle for which sun is the source of energy. The hydrologic cycle can be visualized to begin with the evaporation(due to solar heat) of water from the oceans, streams and lakes of the earth into the earth s atmosphere. The water vapor, under suitable conditions, get condensed to form clouds moving with wind all over the earth s surface and which, in turn, may result in precipitation (in the form of rain water, snow, hail, sleet etc.) over the oceans as well as the land surface of the earth. Part of the precipitation, even while falling, may evaporate back into the atmosphere. Another part of the precipitation may be intercepted by vegetation on the ground or other surfaces. The intercepted precipitation may either evaporate into the atmosphere or fall back on the earth s surface. The greater part of the precipitation falling on the earth s surface is retained in the upper soil from where it may return to the atmosphere through evaporation and transpiration by plants and/or find its way, over and through the soil surface as runoff, to stream (or river) channels and the runoff thus becoming stream flow. Yet another part of the precipitation may penetrate into the ground to become part of the ground water. The water of stream channels, under the influence of gravity, moves towards lower levels to ultimately meet the oceans. Water from ocean may also find its way into the adjoining aquifers. Part of the stream water also gets evaporated back into the atmosphere from the surface of the stream. The ground water too moves towards the lower levels to ultimately reach the oceans. The ground water, at times, is a source of stream flow. Hydrologic system is defined as a structure or volume in space surrounded by a boundary that receives water and other inputs, operates on them internally, and produces them as outputs. The global hydrologic cycle can be termed a hydrologic system containing three sub-systems: the atmospheric water system, the surface water system, and the subsurface water system. Another example of the hydrologic system is storm-rainfall-runoff process on a watershed. Watershed (or drainage basin or catchment) is a topographic area that drains rain water falling on it into a surface stream and discharges surface stream flow through one particular location identified as watershed outlet or watershed mouth. The term watershed used for the catchment area should be distinguished from the watershed used in the context of canal alignment 7 Career Avenues GATE Coaching by IITians

8 PRECIPITATION The atmospheric air always contains moisture. Evaporation from the oceans is the major source (about 90%) of the atmospheric moisture for precipitation. Continental evaporation contributes only about 10% of the atmospheric moisture for precipitation. The common forms of precipitation are drizzle or mist (water droplets of diameters less than 0.5 mm), rain (water drops of size between 0.5 mm and 6.0 mm), snow (ice crystals combining to form flakes with average specific gravity of about 0.1), sleet (rain water drops, falling through air at or below freezing temperatures, turned to frozen rain drops), and hail (precipitation in the form of ice balls of diameter more than about 8 mm). Most of the precipitation, generally, is in the form of rains. Therefore, the terms precipitation and rain fall are considered synonymous. Rainfall, i.e., liquid precipitation, is considered light when the rate of rainfall is upto 2.5 mm/hr, moderate when the rate of rainfall is between 2.5 mm/hr and about 7.5 mm/hr, and heavy when the rate of rainfall is higher than about 7.5 mm/hr. The temporal variation of annual rainfall at a given place is expressed in terms of the coefficient of variation, Cv defined as 8 Career Avenues GATE Coaching by IITians

9 The coefficient of variation of the annual rainfall for different places may vary between15 (for regions of high rainfall) and 70 (for regions of scanty rainfall) with an average value of about 30. MEASUREMENT OF PRECIPITATION PRECIPITATION GAUGES Precipitation (of all kinds) is measured in terms of depth of water (in millimeters) that would accumulate on a level surface if the precipitation remained where it fell. A variety of instruments have been developed for measuring precipitation (or precipitation rate) and are known as precipitation gauges or, simply, rain gauges which are classified as either recording or nonrecording rain gauges. Non-recording rain gauges only collect rain water which, when measured suitably, gives the total amount of rainfall at the rain gauge station during the measuring interval. The Indian Meteorological Department has adopted Symon s rain gauge. A glass bottle and funnel with brass rim are put in a metallic cylinder such that the top of the cylinder is 305mm above the ground level. Rain water falls into the glass bottle through the funnel. The water collected in the bottle is measured with the help of a standard measuring glass jar which is supplied with the rain gauge. The jar measures rainfall in millimeters. At each station, rainfall observations are taken twice daily at 8.30 a.m. and 5.30 p.m. Recording rain gauges automatically record the intensity of rainfall and the time of its occurrence in the form of a trace (or graph) marked on a graph paper wrapped round a revolving drum. Following three types are the most widely used recording rain gauges: Tipping bucket rain gauge, Weighing bucket rain gauge, and Siphon rain gauge. 9 Career Avenues GATE Coaching by IITians

10 Tipping bucket rain gauge: A 300 mm diameter funnel collects rain water and conducts it to one of the two small buckets which are so designed that when 0.25 mm of rainfall is collected in a bucket, it tilts and empties its water into a bigger storage tank and, simultaneously, moves the other bucket below the funnel. When any of the two buckets tilts, it actuates an electric circuit causing a pen to make a mark on a revolving drum. The recording equipment can be remotely located in a building away from the rain gauge. At a scheduled time, the rain water collected in the storage tank can be measured to yield total rainfall in the measuring duration. The rainfall intensity (and also the total rainfall) can be estimated by studying the record sheet on which each mark indicates 0.25 mm of rain in the duration elapsed between the two adjacent marks. Weighing bucket rain gauge: This gauge has a system by which the rain that falls into a bucket set on a platform is weighed by a weighing device suitably attached to the platform. The increasing weight of rain water in the bucket moves the platform. This movement is suitably transmitted to a pen which makes a trace of accumulated amount of rainfall on a suitably graduated chart wrapped round a clock driven revolving drum. The rainfall record of this gauge is in the form of a mass curve of rainfall. The slope of this curve at any given time gives the intensity of rainfall at that time. Siphon rain gauge: This gauge is also called float type rain gauge as this gauge has a chamber which contains a light and hollow float. The vertical movement of float on account of rise in the water level in the chamber (due to rain water falling in it) is transmitted by a suitable mechanism to move a pen on a clock-driven revolving chart. The record of rainfall is in the form of a mass curve of rainfall and, hence, the slope of the curve gives the intensity of rainfall. Bureau of Indian Standards has laid down the following guidelines for selecting the site for rain gauges (IS : ): The rain gauge shall be placed on a level ground, not upon a slope or a terrace and never upon a wall or roof. On no account the rain gauge shall be placed on a slope such that the ground falls away steeply in the direction of the prevailing wind. The distance of the rain gauge from any object shall not be less than twice the height of the object above the rim of the gauge. Great care shall be taken at mountain and coast stations so that the gauges are not unduly exposed to the sweep of the wind. A belt of trees or a wall on the side of the prevailing wind at a distance exceeding twice its height shall form an efficient shelter. In hills where it is difficult to find a level space, the site for the rain gauge shall be chosen where it is best shielded from high winds and where the wind does not cause eddies. The location of the gauge should not be changed without taking suitable precautions. Description of the site and surroundings should be made a matter of record. 10 Career Avenues GATE Coaching by IITians

11 AVERAGE DEPTH OF PRECIPITATION OVER AN AREA The information on the average depth of precipitation (or rainfall) over a specified area on either the storm basis or seasonal basis or annual basis is often required in several types of hydrologic problems. The depth of rainfall measured by a rain gauge is valid for that rain gauge station and in its immediate vicinity. Over a large area like watershed (or catchment) of a stream, there will be several such stations and the average depth of rainfall over the entire area can be estimated by one of the following methods: Arithmetic Mean Method This is the simplest method in which average depth of rainfall is obtained by obtaining the sum of the depths of rainfall (say P1, P2, P3, P4... Pn) measured at stations 1, 2, 3,...n and dividing the sum by the total number of stations i.e. n. Thus, This method is suitable if the rain gauge stations are uniformly distributed over the entire area and the rainfall variation in the area is not large. Theissen Polygon Method The Theissen polygon method takes into account the non-uniform distribution of the gauges by assigning a weightage factor for each rain gauge. In this method, the entire area is divided into number of triangular areas by joining adjacent rain gauge stations with straight lines, as shown in Fig. 2.7 (a and b). If a bisector is drawn on each of the lines joining adjacent rain gauge stations, there will be number of polygons and each polygon, within itself, will have only one rain gauge station. Assuming that rainfall Pi recorded at any station i is representative rainfall of the area Ai of the polygon i within which rain gauge station is located, the weighted average depth of rainfall P for the given area is given as 11 Career Avenues GATE Coaching by IITians

12 Isohyetal Method An isohyet is a contour of equal rainfall. Knowing the depths of rainfall at each rain gauge station of an area and assuming linear variation of rainfall between any two adjacent stations, one can draw a smooth curve passing through all points indicating the same value of rainfall, Fig. 2.7 (c). The area between two adjacent isohyets is measured with the help of a planimeter. The average depth of rainfall P for the entire area A is given as Since this method considers actual spatial variation of rainfall, it is considered as the best method for computing average depth of rainfall. Example 2.1 The average depth of annual precipitation as obtained at the rain gauge stations for a specified area is as shown in Fig. 2.7 (a). The values are in cms. Determine the average depth of annual precipitation using (i) the arithmetic mean method, (ii) Theissen polygon method, and (iii) isohyetal method. Solution (i) Arithmetic mean method: Using Eq. (2.2), the average depth of annual precipitation, (ii) Theissen polygons for the given problem have been shown in Fig. 2.7 (b). The computations for the average depth of annual precipitation are shown in the following Table: 12 Career Avenues GATE Coaching by IITians

13 PRECIPITATION GAUGE NETWORK The spatial variability of the precipitation, nature of the terrain and the intended uses of the precipitation data govern the density (i.e., the catchment area per rain gauge) of the precipitation gauge (or rain gauge) network. Obviously, the density should be as large as possible depending upon the economic and other considerations such as topography, accessibility etc. The World Meteorological Organization (WMO) recommends the following ideal densities (acceptable values given in brackets) of the precipitation gauge network (3): For flat regions of temperate, Mediterranean, and tropical zones, 600 to 900 sq. km ( sq. km) per station. 13 Career Avenues GATE Coaching by IITians

14 For mountainous regions of temperate, Mediterranean, and tropical zones, 100 to 250 sq. km (250 to 1000 sq. km) per station. For small mountainous islands with irregular precipitation, 25 sq. km per station. For arid and polar zones, 1500 to 10,000 sq. km per station. At least ten per cent of rain gauge stations should be equipped with self-recording gauges to know the intensities of rainfall. The Bureau of Indian Standards (4) recommends the following densities for the precipitation gauge network: In plains: 520 sq. km per station; In regions of average elevation of 1000 m: 260 to 390 sq. km per station; and In predominantly hilly areas with heavy rainfall: 130 sq. km per station. For an existing network of raingauge stations, one may need to know the adequacy of the raingauge stations and, therefore, the optimal number of raingauge stations N required for a desired accuracy (or maximum error in per cent, ) in the estimation of the mean rainfall. The optimal number of raingauge stations N is given as Example 2.2 A catchment has eight rain gauge stations. The annual rainfall recorded by these gauges in a given year is as listed in column 2 of the following Table. 14 Career Avenues GATE Coaching by IITians

15 ESTIMATION OF MISSING DATA The continuity of a record of precipitation data may have been broken with missing data due to several reasons such as damage (or fault) in a rain gauge during a certain period. The missing data is estimated using the rainfall data of the neighboring rain gauge stations. The missing annual precipitation Px at a station x is related to the annual precipitation values, P1, P2, P3...Pm and normal annual precipitation, N1, N2, N3...Nm at the neighboring stations 1, 2, 3,...M respectively. The normal precipitation (for a particular duration) is the mean value of rainfall on a particular day or in a month or year over a specified 30-year period. The 30-year normals are computed every decade. The term normal annual precipitation at any station is, therefore, the mean of annual precipitations at that station based on 30-year record. The missing annual precipitation Pxis simply given as If the normal annual precipitations at various stations are within about 10% of the normal annual precipitation at station x, i.e., Nx. Otherwise, one uses the normal ratio method which gives 15 Career Avenues GATE Coaching by IITians

16 DEPTH-AREA-DURATION (DAD) ANALYSIS Depth-area-duration (DAD) curves, Fig. 2.9, are plots of accumulated average precipitation versus area for different durations of a storm period. Depth-area-duration analysis of a storm is performed to estimate the maximum amounts of precipitation for different durations and over different areas. A storm of certain duration over a specified basin area seldom results in uniform rainfall depth over the entire specified area. The difference between the maximum rainfall depth over an area P0 and its average rainfall depth P for a given storm, i.e., P0 P increases with increase in the basin area and decreases with increase in the storm duration. The depth-areaduration curve is obtained as explained in the following example: ABSTRACTIONS FROM PRECIPITATION Prior to rain water reaching the watershed outlet as surface runoff or stream flow, it has to satisfy certain demands of the watershed such as interception, depression storage, evaporation and evapo-transpiration, and infiltration. A part of precipitation may be caught by vegetation on the ground and subsequently get evaporated. This part of precipitation is termed intercepted precipitation or interception loss (which, incidentally, is the gain for the atmospheric water) which does not include through-fall (the intercepted water that drips off the plant leaves to join the surface runoff) and stem flow(the intercepted water that runs along the leaves, branches and stem of the plants to reach the ground surface. 16 Career Avenues GATE Coaching by IITians

17 EVAPORATION Evaporation is the physical phenomenon by which a liquid is transformed to a gas. The rate of evaporation of precipitation depends on (i) the vapor pressure of water, (ii) prevailing temperature, (iii) wind speed, and (iv) atmospheric pressure. Transpiration is a phenomenon due to which water received by the plant through its root system leaves the plant and reaches the atmosphere in the form of water vapor. Evaporation and transpiration are usually considered together as evapo-transpiration (or consumptive use). SUMMARY The common forms of precipitation are drizzle or mist, rain, snow, sleet and hail. Three types are the most widely used recording rain gauges: (i) Tipping bucket rain gauge, (ii) Weighing bucket rain gauge and (iii) Siphon rain gauge. As per the World Meteorological Organization (WMO) the ideal densities (acceptable values given in brackets) of the precipitation gauge network : For flat regions of temperate, Mediterranean, and tropical zones, 600 to 900 sq. km ( sq. km) per station. For mountainous regions of temperate, Mediterranean, and tropical zones, 100 to 250 sq. km (250 to 1000 sq. km) per station. For small mountainous islands with irregular precipitation, 25 sq. km per station. For arid and polar zones, 1500 to 10,000 sq. km per station. As per the Bureau of Indian Standards the densities for the precipitation gauge network: In plains: 520 sq. km per station; In regions of average elevation of 1000 m: 260 to 390 sq. km per station; and In predominantly hilly areas with heavy rainfall: 130 sq. km per station. The rate of evaporation of precipitation depends on (i) the vapor pressure of water, (ii) prevailing temperature, (iii) wind speed, and (iv) atmospheric pressure. Evaporation and transpiration are usually considered together as evapo-transpiration (or consumptive use). 17 Career Avenues GATE Coaching by IITians

18 FORMULA Coefficient of variation, Cv defined as Arithmetic Mean Method Theissen Polygon Method Isohyetal Method The normal annual precipitation considering the mean of annual precipitations (< 10% variation) : The normal annual precipitation considering the normal ratio method (> 10% variation) : 18 Career Avenues GATE Coaching by IITians

19 TIPS This is comparatively an easy chapter to prepare for the exam and a one mark question can be expected once in two years from this chapter. An important question would be finding the missing data from the chapter. PREVIOUS YEAR GATE QUESTIONS 1. While applying the rational formula for computing the design discharge, the rainfall duration is stipulated as the time of concentration because (A) (B) (C) (D) this leads to the largest possible rainfall intensity this leads to the smallest possible rainfall intensity the time of concentration is the smallest rainfall duration for which the rational formula is applicable the time of concentration is the largest rainfall duration for which the rational formula is applicable. 2. The intensity of rainfall and time interval of typical storm are Time interval Intensity of rainfall (Min) (mm/min) The maximum intensity of rainfall for 20 min duration of the storm is (A) 1.5 mm/min (B) 1.85 mm/min (C) 2.2 mm/min (D) 3.7 mm/min 19 Career Avenues GATE Coaching by IITians

20 Answers: 1. (c) Time of concentration (t c ) is the time when entire catchment starts contributing to surface run-off at channel and this is the minimum time required. So, smallest rainfall duration for which the rational formula is applicable. 2. (b) Maximum Intensity is for time interval minutes where it is = (2.2* *10) / ( ) = 1.85 mm/min 20 Career Avenues GATE Coaching by IITians

Module 1. Lecture 2: Weather and hydrologic cycle (contd.)

Module 1. Lecture 2: Weather and hydrologic cycle (contd.) Lecture 2: Weather and hydrologic cycle (contd.) Hydrology Hydor + logos (Both are Greek words) Hydor means water and logos means study. Hydrology is a science which deals with the occurrence, circulation

More information

Precipitation. Prof. M.M.M. Najim

Precipitation. Prof. M.M.M. Najim Precipitation Prof. M.M.M. Najim Learning Outcome At the end of this section students will be able to Explain different forms of precipitation Identify different types of rain gauges Measure rainfall using

More information

ENGINEERING HYDROLOGY

ENGINEERING HYDROLOGY ENGINEERING HYDROLOGY Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. CH.15 practice TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The short-term state of the atmosphere is called a) climate. c) water cycle. b) weather.

More information

Engineering Hydrology

Engineering Hydrology Engineering Hydrology Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

12 SWAT USER S MANUAL, VERSION 98.1

12 SWAT USER S MANUAL, VERSION 98.1 12 SWAT USER S MANUAL, VERSION 98.1 CANOPY STORAGE. Canopy storage is the water intercepted by vegetative surfaces (the canopy) where it is held and made available for evaporation. When using the curve

More information

CHAPTER TWO: PRECIPITATION

CHAPTER TWO: PRECIPITATION CHAPTER TWO: PRECIPITATION The term precipitation denotes all forms of water that reach the earth from the atmosphere. The usual forms are rainfall, snowfall, hail, frost and dew. Of all these, only the

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 14

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 14 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 14 Good morning and welcome to this video course on advanced hydrology. In the last

More information

Hydrologic Overview & Quantities

Hydrologic Overview & Quantities Hydrologic Overview & Quantities It is important to understand the big picture when attempting to forecast. This includes the interactive components and hydrologic quantities. Hydrologic Cycle The complexity

More information

HYDROSPHERE NOTES. Water cycle: The continuous movement of water into the air, onto land, and then back to water sources.

HYDROSPHERE NOTES. Water cycle: The continuous movement of water into the air, onto land, and then back to water sources. Hon Environmental Science HYDROSPHERE NOTES The Hydrosphere and the Water Cycle: Water cycle: The continuous movement of water into the air, onto land, and then back to water sources. Evaporation: the

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Flood and Flood Hazards Dr. Patrick Asamoah Sakyi Department of Earth Science, UG, Legon College of Education School of Continuing and Distance Education

More information

Land and Water Study Guide

Land and Water Study Guide Land and Water Study Guide Answer Key Part 1 States of Matter 1. What are the three states of matter for water? Give several examples for each. Solid Ice cube (non water examples = candy bar and a log).

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

Thermal / Solar. When air is warmed it... Rises. Solar Energy. Evaporation. Condensation Forms Clouds

Thermal / Solar. When air is warmed it... Rises. Solar Energy. Evaporation. Condensation Forms Clouds Thermal / Solar Light from the Sun is transformed into what type of energy when it hits Earth's surface? Rises When air is warmed it... Solar Energy Water moves through the water cycle using what type

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

Chapter 2 Planet Earth

Chapter 2 Planet Earth Chapter 2 Planet Earth Section Notes Earth and the Sun s Energy Water on Earth The Land Close-up The Water Cycle World Almanac Major Eruptions in the Ring of Fire Quick Facts Chapter 2 Visual Summary Video

More information

The Dynamic Earth Section 3. Chapter 3 The Dynamic Earth Section 3: The Hydrosphere and Biosphere DAY 1

The Dynamic Earth Section 3. Chapter 3 The Dynamic Earth Section 3: The Hydrosphere and Biosphere DAY 1 Chapter 3 The Dynamic Earth Section 3: The Hydrosphere and Biosphere DAY 1 The Hydrosphere The hydrosphere includes all of the water on or near the Earth s surface. This includes water in the oceans, lakes,

More information

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT Technical briefs are short summaries of the models used in the project aimed at nontechnical readers. The aim of the PES India

More information

Freshwater. 1. The diagram below is a cross-sectional view of rain falling on a farm field and then moving to the water table.

Freshwater. 1. The diagram below is a cross-sectional view of rain falling on a farm field and then moving to the water table. Name: ate: 1. The diagram below is a cross-sectional view of rain falling on a farm field and then moving to the water table. 3. Which conditions produce the most surface water runoff? A. steep slope,

More information

River/Stream Erosion Notes

River/Stream Erosion Notes Name Date ES per Mr. Williams River/Stream Erosion Notes Erosion: the of weathered material. FACT: Running water moves more sediment than ANY other type of erosion. 1. The Water Cycle What happens when

More information

Precipitation Rabi H. Mohtar

Precipitation Rabi H. Mohtar Precipitation Rabi H. Mohtar The objectives of this module are to present and analyze: 1) Precipitation forms, characteristics, and measurements 2) Intensity, Duration, Frequency (IDF) curves and rainfall

More information

Table (6): Annual precipitation amounts as recorded by stations X and Y. No. X Y

Table (6): Annual precipitation amounts as recorded by stations X and Y. No. X Y Example: X and Y are two neighboring rainfall stations. Station X has complete records and station Y has some missing values. Find the linear correlation equation between the two series as mentioned in

More information

MET 3102-U01 PHYSICAL CLIMATOLOGY (ID 17901) Lecture 14

MET 3102-U01 PHYSICAL CLIMATOLOGY (ID 17901) Lecture 14 MET 3102-U01 PHYSICAL CLIMATOLOGY (ID 17901) Lecture 14 The hydrologic cycle evaporation vapor transport precipitation precipitation evaporation runoff Evaporation, precipitation, etc. in cm Vapor transported

More information

UNIT 12: THE HYDROLOGIC CYCLE

UNIT 12: THE HYDROLOGIC CYCLE UNIT 12: THE HYDROLOGIC CYCLE After Unit 12 you should be able to: o Effectively use the charts Average Chemical Composition of Earth s Crust, Hydrosphere and Troposphere, Selected Properties of Earth

More information

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States.

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States. 1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States. Which sequence of events forms the clouds associated with

More information

Appendix D. Model Setup, Calibration, and Validation

Appendix D. Model Setup, Calibration, and Validation . Model Setup, Calibration, and Validation Lower Grand River Watershed TMDL January 1 1. Model Selection and Setup The Loading Simulation Program in C++ (LSPC) was selected to address the modeling needs

More information

Monitoring the world around us since Rainfall Measurement

Monitoring the world around us since Rainfall Measurement Monitoring the world around Rainfall Measurement R W Munro Limited Monitoring the World Around us Since 1864 The Founder Robert William Munro, F.R.Met.Soc. 1839-1912 Established in 1864, R W Munro has

More information

Climate Change or Climate Variability?

Climate Change or Climate Variability? Climate Change or Climate Variability? Key Concepts: Greenhouse Gas Climate Climate change Climate variability Climate zones Precipitation Temperature Water cycle Weather WHAT YOU WILL LEARN 1. You will

More information

Evaporation - Water evaporates (changes from a liquid to a gas) into water vapor due to heat from the Sun.

Evaporation - Water evaporates (changes from a liquid to a gas) into water vapor due to heat from the Sun. Erin Kathryn 2016 Weather is the conditions of Earth s atmosphere at a certain time and place. For example, sunshine, rain, hurricanes, and storms are all examples of weather. Weather is different at different

More information

9. Flood Routing. chapter Two

9. Flood Routing. chapter Two 9. Flood Routing Flow routing is a mathematical procedure for predicting the changing magnitude, speed, and shape of a flood wave as a function of time at one or more points along a watercourse (waterway

More information

Appendix E Guidance for Shallow Flooding Analyses and Mapping

Appendix E Guidance for Shallow Flooding Analyses and Mapping Appendix E Guidance for Shallow Flooding Analyses and Mapping E.1 Introduction Different types of shallow flooding commonly occur throughout the United States. Types of flows that result in shallow flooding

More information

Geog Lecture 19

Geog Lecture 19 Geog 1000 - Lecture 19 Fluvial Geomorphology and River Systems http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 346 355) 1. What is Fluvial Geomorphology? 2. Hydrology and the Water

More information

ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION. A Collection of Learning Experiences WEATHER Weather Student Activity Book

ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION. A Collection of Learning Experiences WEATHER Weather Student Activity Book ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION A Collection of Learning Experiences WEATHER Weather Student Activity Book Name This learning experience activity book is yours to keep.

More information

GEOL 474/674 Practice Exam #1 Fall This exam counts 20% of your grade for this course; your instructions are as follows:

GEOL 474/674 Practice Exam #1 Fall This exam counts 20% of your grade for this course; your instructions are as follows: Write your name here: This exam counts 20% of your grade for this course; your instructions are as follows: 1) You have 75 minutes to finish this exam. 2) No books, notes, or discussion is allowed. If

More information

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM CHAPTER -11 WATER IN THE ATMOSPHERE This chapter deals with Humidity, types of humidity, relative humidity, absolute humidity, specific humidity, dew point, condensation, saturated air, types of precipitation

More information

Drought Monitoring with Hydrological Modelling

Drought Monitoring with Hydrological Modelling st Joint EARS/JRC International Drought Workshop, Ljubljana,.-5. September 009 Drought Monitoring with Hydrological Modelling Stefan Niemeyer IES - Institute for Environment and Sustainability Ispra -

More information

Name: KEY OBJECTIVES HYDROLOGY:

Name: KEY OBJECTIVES HYDROLOGY: Name: KEY OBJECTIVES Correctly define: abrasion, capillarity, deposition, discharge, erosion, evapotranspiration, hydrology, impermeable, infiltration, meander, permeable, porosity, water table, weathering,

More information

6.1 Water. The Water Cycle

6.1 Water. The Water Cycle 6.1 Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This unending circulation of Earth s water supply is the water cycle. The Water Cycle

More information

Chapter 15: Weather and Climate

Chapter 15: Weather and Climate Chapter 15: Weather and Climate Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The short-term state of the atmosphere is called a. climate. c. water cycle.

More information

9/22/14. Chapter 5: Forms of Condensation and Precipitation. The Atmosphere: An Introduction to Meteorology, 12 th.

9/22/14. Chapter 5: Forms of Condensation and Precipitation. The Atmosphere: An Introduction to Meteorology, 12 th. Chapter 5: Forms of Condensation and Precipitation The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University! A cloud is a visible

More information

Report for Area Drainage Studies for 1320 MW (2x660 MW) THERMAL POWER PROJECT AT MIRZAPUR, U.P.

Report for Area Drainage Studies for 1320 MW (2x660 MW) THERMAL POWER PROJECT AT MIRZAPUR, U.P. Report for Area Drainage Studies for 1320 MW (2x660 MW) THERMAL POWER PROJECT AT MIRZAPUR, U.P. 1. Introduction M/s Welspun Energy Uttar Pradesh Ltd. (WEUPL) is putting up 1320 MW (2 x 660 MW) coal fired

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Running Water and Groundwater Running Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This

More information

Engineering Hydrology

Engineering Hydrology Engineering Hydrology Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures? CHAPTER 17 1 What Is Climate? SECTION Climate BEFORE YOU READ After you read this section, you should be able to answer these questions: What is climate? What factors affect climate? How do climates differ

More information

CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS

CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS 80 CHAPTER VII FULLY DISTRIBUTED RAINFALL-RUNOFF MODEL USING GIS 7.1GENERAL This chapter is discussed in six parts. Introduction to Runoff estimation using fully Distributed model is discussed in first

More information

Year 6. Geography. Revision

Year 6. Geography. Revision Year 6 Geography Revision November 2017 Rivers and World knowledge How the water cycle works and the meaning of the terms evaporation, condensation, precipitation, transpiration, surface run-off, groundwater

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Unit 2: The World in Spatial Terms (Lessons 6-7)

Unit 2: The World in Spatial Terms (Lessons 6-7) Unit 2: The World in Spatial Terms (Lessons 6-7) Physical Features of Earth Create Challenges and Opportunities The physical features of Earth create both challenges and opportunities for the people living

More information

CTB3300WCx Introduction to Water and Climate

CTB3300WCx Introduction to Water and Climate CTB3300WCx Introduction to Water and Climate GWC 3 Precipitation Hubert Savenije Welcome! My name is Hubert Savenije and I am a hydrologist. There are many different types of precipitation, besides rainfall.

More information

Solution: The ratio of normal rainfall at station A to normal rainfall at station i or NR A /NR i has been calculated and is given in table below.

Solution: The ratio of normal rainfall at station A to normal rainfall at station i or NR A /NR i has been calculated and is given in table below. 3.6 ESTIMATION OF MISSING DATA Data for the period of missing rainfall data could be filled using estimation technique. The length of period up to which the data could be filled is dependent on individual

More information

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh Open Journal of Geology, 2012, 2, 294-300 http://dx.doi.org/10.4236/ojg.2012.24028 Published Online October 2012 (http://www.scirp.org/journal/ojg) Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Weather and Climate. Weather the condition of the Earth s atmosphere at a particular time and place

Weather and Climate. Weather the condition of the Earth s atmosphere at a particular time and place Weather and Climate Weather the condition of the Earth s atmosphere at a particular time and place Climate the average year-after-year conditions of temperature, precipitation, winds and clouds in an area

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

Chapter-1 Introduction

Chapter-1 Introduction Modeling of rainfall variability and drought assessment in Sabarmati basin, Gujarat, India Chapter-1 Introduction 1.1 General Many researchers had studied variability of rainfall at spatial as well as

More information

MIDDLE SCHOOL SCIENCE LABORATORY 1ST SEMESTER

MIDDLE SCHOOL SCIENCE LABORATORY 1ST SEMESTER Name: Date: Teacher: MR. ALBERT HERNANDEZ Grade: 1 A I. Read the text below and answer the questions that follows. A) Phases of the moon. As the moon orbits around Earth, different parts of it appear to

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

Climate versus Weather

Climate versus Weather Climate versus Weather What is climate? Climate is the average weather usually taken over a 30-year time period for a particular region and time period. Climate is not the same as weather, but rather,

More information

Name Date Class. well as the inland, found near the Tropics. 4. In the, or the regions near the Equator, you may find a lush

Name Date Class. well as the inland, found near the Tropics. 4. In the, or the regions near the Equator, you may find a lush WATER, CLIMATE, AND VEGETATION Vocabulary Activity DIRECTIONS: Fill in the Blanks Select a term from below to complete each of the following sentences. CHAPTER 1. The constant movement of water, a process

More information

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL Dawen YANG, Eik Chay LOW and Toshio KOIKE Department of

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Geography 415 Hydrology

Geography 415 Hydrology 1 Geography 415 Hydrology LAB 1 (January 23, 2003) TA: Drew Lejbak Office: ES 310, 220-5590, atlejbak@ucalgary.ca Hours: Friday 10:00am 12:00pm, or by appointment Drop Box: Outside ES 313 1. Estimation

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

Weather Instruments WHAT IS WEATHER

Weather Instruments WHAT IS WEATHER TOPIC TWO 1 WHAT IS WEATHER Weather is the combined short-term conditions found in the lower atmosphere. These conditions include precipitation, or rain and snow, as well as wind, pressure, storminess,

More information

2nd Grade. Earth's Water. Slide 1 / 111 Slide 2 / 111. Slide 3 / 111. Slide 4 / 111. Slide 5 (Answer) / 111. Slide 5 / 111. Role of Water on Earth

2nd Grade. Earth's Water. Slide 1 / 111 Slide 2 / 111. Slide 3 / 111. Slide 4 / 111. Slide 5 (Answer) / 111. Slide 5 / 111. Role of Water on Earth Slide 1 / 111 Slide 2 / 111 2nd Grade Role of Water on Earth 2015-11-20 www.njctl.org Slide 3 / 111 Slide 4 / 111 Table of Contents: The Role of Water on Earth Earth's Water The Use of Maps Click on the

More information

CLIMATE READY BOSTON. Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016

CLIMATE READY BOSTON. Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016 CLIMATE READY BOSTON Sasaki Steering Committee Meeting, March 28 nd, 2016 Climate Projections Consensus ADAPTED FROM THE BOSTON RESEARCH ADVISORY GROUP REPORT MAY 2016 WHAT S IN STORE FOR BOSTON S CLIMATE?

More information

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS Routing MODULE - ROUTING METHODS Routing is the process of find the distribution of flow rate and depth in space and time along a river or storm sewer. Routing is also called Flow routing or flood routing.

More information

Fukien Secondary School Monthly Vocabulary/Expression List for EMI Subjects Secondary Two. Subject: Geography

Fukien Secondary School Monthly Vocabulary/Expression List for EMI Subjects Secondary Two. Subject: Geography Focus: General Specific : Section Two : Unit One 1 Landslide 2 Downslope movement 3 Rock 4 Soil 5 Gravity 6 Natural hazard 7 Rainwater 8 Friction 9 Hilly relief 10 Unstable 11 Season 12 Saturated 13 Construction

More information

Type of Precipitation

Type of Precipitation Precipitation Type of Precipitation Measurement of rainfall Location of rain gauges Categorisation Climate Estimation of basin rainfall Finding Average rainfall, Standard deviation, and Coefficient of

More information

WATER IN THE ATMOSPHERE

WATER IN THE ATMOSPHERE CHAPTER Y ou have already learnt that the air contains water vapour. It varies from zero to four per cent by volume of the atmosphere and plays an important role in the weather phenomena. Water is present

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

Rainfall Analysis. Prof. M.M.M. Najim

Rainfall Analysis. Prof. M.M.M. Najim Rainfall Analysis Prof. M.M.M. Najim Learning Outcome At the end of this section students will be able to Estimate long term mean rainfall for a new station Describe the usage of a hyetograph Define recurrence

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

GEOG415 Mid-term Exam 110 minute February 27, 2003

GEOG415 Mid-term Exam 110 minute February 27, 2003 GEOG415 Mid-term Exam 110 minute February 27, 2003 1 Name: ID: 1. The graph shows the relationship between air temperature and saturation vapor pressure. (a) Estimate the relative humidity of an air parcel

More information

Weather, Sun/Water Cycle, and Space. Test Review

Weather, Sun/Water Cycle, and Space. Test Review Weather, Sun/Water Cycle, and Space Test Review Weather Key Concept 1: Weather conditions can vary and change from day to day. Key Concept 2: We can use tools, such as rain gauges, wind vanes, and thermometers

More information

Effect of land use/land cover changes on runoff in a river basin: a case study

Effect of land use/land cover changes on runoff in a river basin: a case study Water Resources Management VI 139 Effect of land use/land cover changes on runoff in a river basin: a case study J. Letha, B. Thulasidharan Nair & B. Amruth Chand College of Engineering, Trivandrum, Kerala,

More information

Haiti and Dominican Republic Flash Flood Initial Planning Meeting

Haiti and Dominican Republic Flash Flood Initial Planning Meeting Dr Rochelle Graham Climate Scientist Haiti and Dominican Republic Flash Flood Initial Planning Meeting September 7 th to 9 th, 2016 Hydrologic Research Center http://www.hrcwater.org Haiti and Dominican

More information

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 04 Gradually Varied Flow Lecture No. # 07 Rapidly Varied Flow: Hydraulic Jump

More information

Our Planet Earth. I nteractions of Earth Systems

Our Planet Earth. I nteractions of Earth Systems CHAPTER 3 LESSON 2 Our Planet Earth I nteractions of Earth Systems Key Concepts How does the water cycle show interactions of Earth systems? How does weather show interactions of Earth systems? How does

More information

Section 1: The Water Cycle. Q1. How many times has the water on Earth been through a complete turn of the water cycle?

Section 1: The Water Cycle. Q1. How many times has the water on Earth been through a complete turn of the water cycle? Water EARTH SCIENCE WEATHER WATER Section 1: The Water Cycle What is the water cycle? The water cycle means that any droplet of water will circulate in a nonstop cycle between the ocean, the atmosphere

More information

Bell Work. REVIEW: Our Planet Earth Page 29 Document A & B Questions

Bell Work. REVIEW: Our Planet Earth Page 29 Document A & B Questions 9.12.16 Bell Work REVIEW: Our Planet Earth Page 29 Document A & B Questions Intro to Climate & Weather https://www.youtube.com/watch?v=vhgyoa70q7y Weather vs. Climate Video Climate & Weather 3.1 Weather

More information

Name Date Hour Table. Chapter 12-AP Lesson One

Name Date Hour Table. Chapter 12-AP Lesson One Name Date Hour Table 1. Chapter 12-AP Lesson One 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. Name Date Hour Table Directions: Answer each question to create your word bank.

More information

WATER IN THE ATMOSPHERE

WATER IN THE ATMOSPHERE WATER IN THE ATMOSPHERE I. Humidity A. Defined as water vapor or moisture in the air (from evaporation and condensation). B. The atmosphere gains moisture from the evaporation of water from oceans, lakes,

More information

1 in = ft (round answer to nearest integer)

1 in = ft (round answer to nearest integer) Hydrology LAB 1: DRAINAGE-BASIN PROPERTIES AND SIMPLE METEOROLOGIC CALCULATIONS OBJECTIVES: a. to develop your ability to extract basic drainage-basin data from topographic maps b. to learn how to make

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

SNOW AND GLACIER HYDROLOGY

SNOW AND GLACIER HYDROLOGY SNOW AND GLACIER HYDROLOGY by PRATAP SINGH National Institute of Hydrology, Roorkee, India and VIJAY P. SINGH Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge,

More information

Chapter 2: Physical Geography

Chapter 2: Physical Geography Chapter 2: Physical Geography Pg. 39-68 Learning Goals for Chp2: q q q q q Explain how the Earth moves in space and why seasons change. Outline the factors that influence climate and recognize different

More information

Fresh Water: Streams, Lakes Groundwater & Wetlands

Fresh Water: Streams, Lakes Groundwater & Wetlands Fresh Water:, Lakes Groundwater & Wetlands Oct 27 Glaciers and Ice Ages Chp 13 Nov 3 Deserts and Wind and EXAM #3 Slope hydrologic cycle P = precip I = precip intercepted by veg ET = evapotranspiration

More information

Name: Period : Jaguar Review #10

Name: Period : Jaguar Review #10 Name: Period : Earth & Space Sciences Benchmark B & C Jaguar Review #10 1. The most common element in living organisms is carbon. As new plants and animals grow, a great deal of carbon is required. Where

More information

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 5 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

INTRODUCTION TO HEC-HMS

INTRODUCTION TO HEC-HMS INTRODUCTION TO HEC-HMS Hydrologic Engineering Center- Hydrologic Modeling System US Army Corps of Engineers Hydrologic Engineering Center HEC-HMS Uses Schematics Enter properties: watershed, rivers (reaches),

More information

Earth Science. Explain how Earth's biogeochemical cycles create a balance of materials. Examine the importance of biogeochemical cycles.

Earth Science. Explain how Earth's biogeochemical cycles create a balance of materials. Examine the importance of biogeochemical cycles. Unit 1: DYNAMIC STRUCTURE OF EARTH Introduction to Understand that earth science is based upon the four sciences of astronomy, geology, meteorology, and oceanography. Identify topics studied within the

More information

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather.

according to and water. High atmospheric pressure - Cold dry air is other air so it remains close to the earth, giving weather. EARTH'S ATMOSPHERE Composition of the atmosphere - Earth's atmosphere consists of nitrogen ( %), oxygen ( %), small amounts of carbon dioxide, methane, argon, krypton, ozone, neon and other gases such

More information

Assessment of rainfall observed by weather radar and its effect on hydrological simulation performance

Assessment of rainfall observed by weather radar and its effect on hydrological simulation performance 386 Hydrology in a Changing World: Environmental and Human Dimensions Proceedings of FRIED-Water 2014, Montpellier, France, October 2014 (IAHS Publ. 363, 2014). Assessment of rainfall observed by weather

More information

netw rks Guided Reading Activity Essential Question: How does geography influence the way people live? Earth's Physical Geography

netw rks Guided Reading Activity Essential Question: How does geography influence the way people live? Earth's Physical Geography Guided Reading Activity Lesson 1 Earth and the Sun Essential Question: How does geography influence the way people live? Looking at Earth Directions: What are the layers that make up Earth? Use your textbook

More information

SENSOR PLACEMENT FOR SNOW & ICE MELT APPLICATIONS

SENSOR PLACEMENT FOR SNOW & ICE MELT APPLICATIONS networketi.com SENSOR PLACEMENT FOR SNOW & ICE MELT APPLICATIONS By: Dave Mays A great number of service calls come in with the common problem of the heaters not coming on even though it is snowing outside

More information

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s Skills Worksheet Concept Review In the space provided, write the letter of the description that best matches the term or phrase. 1. condensation 2. floodplain 3. watershed 4. tributary 5. evapotranspiration

More information