Characterization of Silver and Aluminum custom mirror coatings for the MRO interferometric telescopes

Size: px
Start display at page:

Download "Characterization of Silver and Aluminum custom mirror coatings for the MRO interferometric telescopes"

Transcription

1 Characterization of Silver and Aluminum custom mirror coatings for the MRO interferometric telescopes Krista M. McCord a, Dan A. Klinglesmith a, Colby A. Jurgenson a, Eric J. Bakker a Reed A. Schmell b, Rodney A. Schmell b, Darren Gartner b, Anthony Jaramillo c, Kelly Romero b, Andres Rael b, Jeff Lewis b a New Mexico Tech/ Magdalena Ridge Observatory, 101 East Road, Socorro, NM, b Optical Surface Technologies, LLC, 2801 Broadbent Pkwy, Ste B, Albuquerque, NM, c W.M. Keck Observatory, Mamalahoa Highway, Kamuela, HI ABSTRACT We report on the design, application, and testing of custom protected silver and aluminum coatings for use on the Magdalena Ridge Observatory Interferometers (MROI) unit telescopes. The coatings were designed by Optical Surface Technologies (OST), and tested under normal observational conditions on Magdalena Ridge. Mirror coating samples fabricated by OST were given to MRO, and then placed in an insulated automated enclosure at the observatory site. Within the enclosure, environmental conditions such as temperature and humidity were continuously monitored. The automated enclosure was instructed to open during the night dependent upon weather conditions matching those that would occur under normal operations of the interferometer. This paper tracks the affect of the Magdalena Ridge environment on the performance of the coatings, specifically with regards to reflectivity. Keywords: telescopes, mirror coatings, interferometry, reflectivity tests, astronomy 1. INTRODUCTION The Magdalena Ridge Observatory Interferometer 1 will be a ten telescope optical interferometric array. It will be located on the top of Magdalena Ridge at an elevation of 3,185 meters and will operate in different photometric band passes in a wavelength range from 0.6 μm to 2.4 μm. The 1.4-meter unit telescopes will be arranged in a Y shape configuration. Advanced Mechanical and Optical Systems (AMOS) in Belgium is designing and constructing the telescopes. Each unit telescope will contain a primary, secondary, and tertiary mirror to direct the incoming light into the beam relay pipes. The primary mirror will have an aluminum coating and the secondary and tertiary mirrors will be coated with silver. The telescopes will be individually housed in a transportable enclosure. Fig. 1. The image above is an actual aerial photo of the Magdalena Ridge with an overlaid CAD drawing of the unit telescope pads and enclosures done by the architect M3.

2 Fig. 2. The above figure shows the design of the unit telescopes and indicates where the primary, secondary and tertiary mirrors will be placed. Courtesy of AMOS. Optical Surface Technologies (OST) will design and fabricate the mirrors and coatings for each unit telescope. OST has provided MROI with a number of different silver and aluminum coated mirror samples. These samples were exposed to the environment on Magdalena Ridge to determine how the weather would affect their reflectivity. An automated enclosure 2 was built and programmed to withstand the environment on Magdalena Ridge to test these coating samples. The enclosure was placed near the array arms and the coating samples were exposed to the environment at night during normal operating weather conditions. The purpose of this experiment was to see how the weather would affect the coatings. This would show the durability of the coatings and the differences in the change of reflectivity. This paper will describe in detail the experimental setup, coatings that were tested, and results. 2. MIRROR COATING REQUIREMENTS There are 4 major considerations for the quality of the unit telescope coatings: reflectivity, polarization, scattering and durability. The interferometer has 12 mirrors between the sky and the science instruments. The first 3 mirrors (primary, secondary and tertiary) are exposed to the outside environment. The remaining mirrors and other optical components are either in vacuum tubes or within a thermally controlled environment. Therefore the highest possible reflectivity is required for each mirror surface. In order to obtain fringes we need to maintain the polarization aspect for each mirror in the chain. The facility is located at high elevation where recoating of a large optical surface is difficult.

3 As a result of these considerations the MROI project has specified that our primary mirror will be coated with aluminum and have a SiO 2 overcoat for durability. The secondary and tertiary mirrors will be coated with silver and have an overcoat that will minimize the polarization effects. The reflectivity requirements for the silver and aluminum coatings are listed below. Silver Coatings Aluminum coatings nm 92% nm 85% nm 97% nm 85% nm 95% Also the mirrors must be able to undergo frequent cleaning with a soap and water solution and/or with CO 2 snow. coatings must maintain their reflectivity for at least 12 months. The 3. RATIONALE FOR COATING CHOICES Since we are looking for high reflectivity and long durability, we have chosen aluminum 2 with a protective overcoat of SiO 2 for our primary mirror. In this study we were looking at the effects of the thickness of the SiO 2 overcoat for reflectivity and durability. The higher durability of the protected aluminum coating was desired for the large primary mirror because recoating would require removing the mirror from the telescope and transporting it off our high mountain observatory. CO 2 snow cleaning will be used to remove dust. For the smaller secondary and tertiary mirrors the most important aspect is that of reflectivity, as long as a reasonable durability can be maintained. Hence we chose silver as the reflecting surface along with a SiO 2 overcoat for durability. These smaller mirrors can reasonably be cleaned with CO 2 snow in place without danger to the primary mirror. Table 1 details the parameters of the different batches that were decided upon for our initial testing. Table 1: Batch parameters for sample witness mirrors Layer 1 Layer 2 Layer 3 coating run samples not standard cleaned T ( ⁰C) depth (nm) base depth (nm) over coat depth (nm) over coat P011209c1 E42 E Ag 31 SiO 2 P012109c1 A44 G Ag 181 SiO HfO 2 D030907c1 B46 D Al 30 SiO 2 D030409c1 A Al 25 SiO 2 D032309c1 323A 323B Al 25 SiO 2 The table includes the batch number which includes the date (mmddyy) that the batch was produced. For each batch samples were created. One, standard, was kept in a desiccator at the MROI office and the other, not cleaned, was exposed to environment on the Ridge as described below. It was not cleaned over the period of this experiment. The

4 substrate temperature and the deposition depth for each layer are also given. For the silver batches there was an undercoat of chromium used to allow the silver to adhere to the mirror substrate. The aluminum was applied using a magnetron sputtering technique. The silver was applied to the substrate by a resistance evaporation technique. The SiO 2 overcoats were applied by magnetron sputtering. 4. EXPERIMENTAL SETUP 4.1 Hardware The test enclosure is a modified metal trash can 3 containing a high torque motor that lifts the lid of the trash can to expose the witness mirrors. The high torque motor was purchased from LinEngineering along with a driver so that the motor could be computer controlled. A spool was attached to the shaft of the high torque motor to pull a wire that is connected to the lid. A pulley system is attached to the back side of the trash can to increase the torque when opening the lid. To reduce condensation inside the test enclosure, foam insulation was installed on the inside walls of the trash can. The actual unit telescope enclosures will have humidity and temperature control. To simulate this with the test enclosure, desiccant was placed inside the test enclosure to control the humidity. Lights were installed around the sides of the enclosure to prevent ice from forming around the lid and stop the motor from opening the test enclosure. Fig. 3. The image above shows the automated enclosure with the mirror coating samples inside. The samples are sitting on foam padding near the opening of the enclosure. 4.2 Software A LabView program was written to control the automated enclosure. The requirements for the program were: The enclosure must open at night during specific weather conditions and be closed during the day. The program must read a weather data file from a nearby weather station.

5 The program must be able to close the enclosure immediately if the weather changes suddenly or if the weather station goes down. The program must know if the enclosure is open or closed. The program first compares the computer time with a specified opening time interval. If the computer time does not fall within this interval the enclosure will automatically close if it is open or will remain closed. If the computer time is within this interval, the program then compares the computer time with the time collected from the weather station nearby. This is to verify that the weather station is up and running. In a situation where the weather station is inoperable, the enclosure will be told by the program to close or remain closed. If the weather station is in operation, the program will read the humidity and wind speed from a data file provided by the weather station. If the humidity from the weather file is less than or equal to 60% and/or the wind speed is less than or equal to 10 m/s, the enclosure will open. If these values are higher than 60% or 10 m/s the enclosure will immediately close. This program is based on loops therefore the program continuously checks and compares times and weather data. Fig. 4. The above flow chart describes the protocol that the program for the automated enclosure follows. The computer Loop executes every 3 minutes to make sure the weather has not drastically changed. 5. RESULTS In this section we present the results of a 6 month study of the reflectivity and durability of the witness mirror samples. The results for both the aluminum and silver coating are presented. 5.1 Silver coating results: Two different batches of silver coatings were tested. The batches each had two mirrors; where one was kept in a dessicator as a standard and the other was placed up on the Ridge. Once a month, the mirrors were taken off of the Ridge and reflectivity tests were made at OST using a Cary 5000 UV-NIR-infrared spectrophotometer at a 0⁰ incidence angle. These mirrors have undergone testing for a period of at least six months. Figure 5 shows a typical scan of a silver coating. The sample was scanned from 200nm 2400nm but only the region from 400nm 2400nm is shown as that is the region of interest for MROI. Three lines are shown, the curved line is the actual reflectivity measurements from the

6 Cary The step function line shows the MROI reflectivity requirements. The boxes at the bottom of the graph are the wavelength regions that are used to measure the average reflectivities that are used to determine if the sample meets the requirements. Fig. 5. A typical standard silver scan. Shown here is the actual scan, the MROI required reflectivity and the band passes used for measuring the degradation. The degradation results are shown in Figure 6. The plots on the left side of Figure 6 are for the standard samples and the plots of the right side are for the samples that have been exposed to Ridge environment. Fig. 6. Reflectivity as a function of time for the silver coatings. The horizontal lines at 97% and 92% are the MROI reflectivity requirements. The + symbol lines are for the short wavelength range ( nm) and the * are for the long wavelength range ( nm).

7 The standard samples have maintained more than enough reflectivity and have been stable for at least 6 months. The samples that have been exposed to the Ridge environment have lost reflectivity to the point that they are now below the MROI reflectivity requirements. 5.2 Aluminum coating results: Two aluminum coating batches were tested. For each batch one mirror was placed in a dessicator to be the standard and the other mirror was exposed to the Ridge environment. As with the silver batches, these mirrors had reflectivity tests done once a month at OST. A typical reflectivity scan is shown in figure 7. Fig. 7. A typical standard aluminum scan. The graph shows the actual reflectivity as measured from the Cary 5000, the MROI requirements and the band passes used for computing an average reflectivity. Fig. 8. Reflectivity as a function of time for the aluminum coatings. The horizontal lines at 95% and 85% are the MROI reflectivity requirements for the aluminum coatings. The + line is for the nm range, the * line is for the nm range and the simple line is for the nm range.

8 As shown in Figure 8, the aluminum standard samples are holding up well above the MROI reflectivity requirements over the 5 months that they have been tested. On the other hand the samples that have been exposed to the ridge environment and have not been cleaned are losing reflectivity. The visible and near infrared band passes are still above the MROI requirements while the infrared band have deteriorated below the MROI requirements. 5.3 Fitting degradation rates We have attempted to fit the silver and aluminum degradation rates. The silver degradation can be fit with a Gaussian function: R = R 0 * e -1/2(t/t 0 )2. (1) Whereas the aluminum degradation rates were better fit with simple exponential function: R = R 0 * e -t/t 0. (2) Where R 0 is the first measured reflectivity and t and t 0 are in days. The results for the fitting are shown in table 2. Table 2: Fitting coefficients for coating degradation coating Sample ID Wavelength nm R 0 % T 0 days function Silver E % 320 Gaussian Silver E Gaussian Silver G Gaussian Silver G Gaussian Aluminum D Exponential Aluminum D Exponential Aluminum D Exponential 6. CONCLUSION Further testing is needed to choose a proper coating for the unit telescope optics. The next step is to have OST make new mirror coating samples based on the coating properties above. With these samples two cleaning processes will be added. This cleaning will be done on a monthly basis. The first cleaning process will be that one of the mirrors on the ridge will be washed with Orvus. The second cleaning process will be to use CO 2 snow. As before there will be a standard sample left in the desiccators at the research office building and one sample that is exposed to the ridge observing conditions but not cleaned. The reflectivity of the mirrors will be tested for reflectivity each month and a prolifometer will be used to measure the surface profile of the mirror samples. Based on the results presented here we have decided that the next set of batches will constructed as shown in Table 3. OST will prepare 6 silver batches and 3 aluminum batches. The substrate will be 1.5-inch diameter Zerodur blanks polished to the same specifications as the telescope mirrors.

9 Table 3 Future batches Batch Layer 1 Layer 2 Layer 3 temperature 1 180nm Ag 200nm SiO 2 100⁰C 2 180nm Ag 180nm SiO NbO 5 100⁰C 3 180nm Ag 30nm SiO 2 100⁰C 4 180nm Ag 200nm SiO 2 75⁰C 5 180nm Ag 180nm SiO NbO 5 75⁰C 6 180nm Ag 30nm SiO 2 75⁰C 7 120nm Al 200nm SiO 2 50⁰C 8 120nm Al 55nm SiO 2 50⁰C 9 120nm Al 30nm SiO 2 50⁰C The coating methods will be the same as the previous batches and there will be 70nm layer of chromium under the silver layer. 7. ACKNOWLEDGEMENTS The Magdalena Ridge Observatory is funded by Agreement No. N C902 with the Naval Research Laboratory (NRL). MROI is hosted by the New Mexico Institute of Mining and Technology (NMT) at Socorro, NM, USA, in collaboration with the University of Cambridge (UK). Our collaborators at the University of Cambridge wish to also acknowledge their funding via STFC (formerly PPARC) in the UK. [1] 8. REFERENCES Creech-Eakman, M.J, Romero, V., Westpfahl D., Cormier, C., Haniff, C., Buscher D., Bakker E., Berger L., Block; E., Coleman T., Festler P., Jurgenson C., King R., Klinglesmith D., McCord K., Olivares A., Parameswariah C., Payne I., Paz T., Ryan E., Salcido C., Santoro F., Selina R., Shtromberg A., Steenson J., Baron F., Boysen R., Coyne J., Fisher M., Seneta E., Sun X., Thureau N., Wilson D., Young J., Magdalena Ridge Observatory interferometer: progress towards first light, Proc. SPIE 7013, (2008) [2] Willey, R. R., [Practical Design and Production of Optical Thin Films], Marcel Dekker, New York, 294- [3] 298 (2002) McCord, K. M., Jurgenson, C., Klinglesmith, D. A., Schmell, R., Jaramillo, A. Mirror Coating Verification Tests at the Magdalena Ridge Observatory Interferometer, BAAS 41, 432 (2008)

Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only.

Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Copyright 2010 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material

More information

M. J. Creech-Eakman New Mexico Tech MROI Proj. Scientist On behalf of the NMT and Cambridge Teams

M. J. Creech-Eakman New Mexico Tech MROI Proj. Scientist On behalf of the NMT and Cambridge Teams M. J. Creech-Eakman New Mexico Tech MROI Proj. Scientist On behalf of the NMT and Cambridge Teams Magdalena Ridge Observatory Federally funded 2000-2011, 2014 EIS completed in 2003 Two facilities at MRO

More information

A new path to first light for the Magdalena Ridge Observatory Interferometer

A new path to first light for the Magdalena Ridge Observatory Interferometer A new path to first light for the Magdalena Ridge Observatory Interferometer M. J. Creech-Eakman a, V. Romero a, I. Payne a, C. A. Haniff b, D. F. Buscher b, J. S. Young b, R. Cervantes a, C. Dahl a, A.

More information

High fidelity imaging of geosynchronous satellites with the MROI

High fidelity imaging of geosynchronous satellites with the MROI High fidelity imaging of geosynchronous satellites with the MROI John Young a, Christopher Haniff a, David Buscher a, Michelle Creech-Eakman b, and Ifan Payne b a Cavendish Laboratory, University of Cambridge,

More information

Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Advances in Stellar Interferometry, SPIE and is made

Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Advances in Stellar Interferometry, SPIE and is made Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Advances in Stellar Interferometry, SPIE and is made available as an electronic reprint Proc. 6268 with permission

More information

CHARA 2017: Year 13 Science Review Adaptive Optics and Open Access. Update on the MROI. M. J. Creech-Eakman. On behalf of the MROI team

CHARA 2017: Year 13 Science Review Adaptive Optics and Open Access. Update on the MROI. M. J. Creech-Eakman. On behalf of the MROI team Update on the MROI M. J. Creech-Eakman On behalf of the MROI team MROI Project Scientist NMT Physics Professor Overview of Talk General Introduction to MROI Progress in past Few Years Plans Associated

More information

Magdalena Ridge Observatory: the Start-up of a New Observatory

Magdalena Ridge Observatory: the Start-up of a New Observatory Magdalena Ridge Observatory: the Start-up of a New Observatory Eric J. Bakker, Dave Westpfahl, Gary Loos New Mexico Tech/Magdalena Ridge Observatory, 801 Leroy Place, Socorro, NM, 87801, USA ABSTRACT This

More information

Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations Anders M. Jorgensen a, H. R. Schmitt b,c, D. Mozurkewich d, J. T. Armstrong b, S. Restaino b, R. L. Hindsley b a New

More information

Magdalena Ridge Observatory Interferometer. M. J. Creech-Eakman

Magdalena Ridge Observatory Interferometer. M. J. Creech-Eakman Magdalena Ridge Observatory Interferometer M. J. Creech-Eakman Overview of Talk Instrument/Site Description Science Reference Mission Technical Progress Personnel/Staffing Schedule Conclusions SPIE - Glasgow

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

1 Naval Research Laboratory Remote Sensing Division, Code Aberdeen Ave SE Kirtland AFB, NM 87117

1 Naval Research Laboratory Remote Sensing Division, Code Aberdeen Ave SE Kirtland AFB, NM 87117 Carbon Fiber Reinforced Polymer (CFRP) Telescope Program at the Naval Research Laboratory Sergio R. Restaino 1, Ty Martinez 1, Jonathan R. Andrews 1, Christopher C. Wilcox 1, S. Teare 2, Robert Romeo 3,

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies ASTR 1120 General Astronomy: Stars & Galaxies!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift) "ODA# Detecting

More information

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies ! ASTR 1120 General Astronomy: Stars & Galaxies On to Telescopes!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift)

More information

1 o.3. 0 o.5. Dec. 1 o.0 R.A. on 0. o 5 off 1. o 0 1. o

1 o.3. 0 o.5. Dec. 1 o.0 R.A. on 0. o 5 off 1. o 0 1. o An Optical Reector System for the CANGAROO-II Telescope Akiko Kawachi for the CANGAROO Collaboration 1 Institute for Cosmic Ray Research, University of Tokyo Tanashi, Tokyo 188-8502, Japan 2 Abstract.

More information

Spectral Resolution in Interferometry

Spectral Resolution in Interferometry Spectral Resolution in Interferometry Christopher Tycner Michelson Postdoctoral Fellow @ U. S. Naval Observatory Flagstaff Station Outline Spectral Resolution in Interferometry Implementation Benefits

More information

Status of Interferometry Planning in Europe

Status of Interferometry Planning in Europe Status of Interferometry Planning in Europe Andreas Glindemann November 13, 2006 with input from V. Foresto, Ch. Haniff, T. Herbst, G. Perrin, J. Surdej Future Directions for Interferometry Tucson Arizona,

More information

Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA

Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA PTI as seen from the catwalk of the 200 telescope Michelson Interferometer stellar

More information

Characterizing Closure-phase Measurements at IOTA

Characterizing Closure-phase Measurements at IOTA Characterizing Closure-phase Measurements at IOTA Ragland, S. 1,2,3, Traub, W. 1, Berger, J.-P. 4, Millan-Gabet, R. 5, Monnier, J. D. 6, Pedretti, E. 6, Schloerb, F. P. 7, Carleton, N. P. 1, Haguenauer,

More information

COAST: recent technology and developments

COAST: recent technology and developments COAST: recent technology and developments Christopher A. Haniff a, John E. Baldwin a, Alastair G. Basden a, Nazim A. Bharmal a, Roger C. Boysen a, David F. Buscher a, James W. Keen a, Craig D. Mackay b,

More information

Figuring sequences on a super-smooth sample using ion beam technique

Figuring sequences on a super-smooth sample using ion beam technique Figuring sequences on a super-smooth sample using ion beam technique Jean-Phillippe Tock a, Jean-Paul Collette a, Patrick Gailly a, Dirk Kampf b a Centre Spatial de Liège Université de Liège Parc Scientifique

More information

OHANA phase II: a prototype demonstrator of fiber linked interferometry between very large telescopes

OHANA phase II: a prototype demonstrator of fiber linked interferometry between very large telescopes OHANA phase II: a prototype demonstrator of fiber linked interferometry between very large telescopes G. Perrin 1, O. Lai 2, J. Woillez 1, J. Guerin 1, F. Reynaud 3, S. T. Ridgway 4, P. J. Léna 1, P. L.

More information

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use.

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use. 1. Introduction The XTOD Offset Systems are designed to spatially separate the useful FEL radiation from high-energy spontaneous radiation and Bremsstrahlung γ-rays. These unwanted radiations are generated

More information

Fig 1. Power Tower during Operation

Fig 1. Power Tower during Operation Accurate Flux Calculations Using Thermographic IR cameras in Concentrated Solar Power Fields A. Eitan*, G. Naor*, R. Hayut*, I. Segev*, J. Golbert**, S. Pekarsky*, A. Zisken*, G. Medan*, A. Feigelstock*,

More information

Auxiliary Telescopes at Dome C

Auxiliary Telescopes at Dome C Bulletin de la Société Royale des Sciences de Liège, Vol. 74, 5-6, 2005 Auxiliary Telescopes at Dome C O. Pirnay, C. Flebus and P. Gloesener Advanced Mechanical and Optical Systems (AMOS S.A.) Rue des

More information

Multiple-baseline detection of a geostationary satellite with the Navy Precision Optical Interferometer

Multiple-baseline detection of a geostationary satellite with the Navy Precision Optical Interferometer Multiple-baseline detection of a geostationary satellite with the Navy Precision Optical Interferometer Henrique R. Schmitt a, J. Thomas Armstrong a, Ellyn K. Baines a, James A. Benson b, James H. Clark

More information

The VLT dealing with the Atmosphere, a Night Operation point of view

The VLT dealing with the Atmosphere, a Night Operation point of view The VLT dealing with the Atmosphere, a Night Operation point of view Julio Navarrete European Organization for Astronomical Research in the Southern Hemisphere Alonso de Cordova 3107, Vitacura, Santiago-Chile

More information

Circular Motion and Centripetal Force

Circular Motion and Centripetal Force [For International Campus Lab ONLY] Objective Measure the centripetal force with the radius, mass, and speed of a particle in uniform circular motion. Theory ----------------------------- Reference --------------------------

More information

The Navy Precision Optical Interferometer for SSA applications: an update

The Navy Precision Optical Interferometer for SSA applications: an update The Navy Precision Optical Interferometer for SSA applications: an update Sergio R. Restaino, Naval Research Laboratory, Remote Sensing Division J.R. Andrews, J.T. Armstrong, E. Baines, J.C. Clark and

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

Why Use a Telescope?

Why Use a Telescope? 1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

More information

Using Calibrated Specular Reflectance Standards for Absolute and Relative Reflectance Measurements

Using Calibrated Specular Reflectance Standards for Absolute and Relative Reflectance Measurements Using Calibrated Specular Reflectance Standards for Absolute and Relative Reflectance Measurements Applications Overview here are two fundamental techniques for measuring specular reflectance with a UV/VIS/NIR

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *4808110537* PHYSICS 0625/21 Paper 2 Core May/June 2012 1 hour 15 minutes

More information

Upgrades and Current SSA Activities at the Navy Precision Optical Interferometer

Upgrades and Current SSA Activities at the Navy Precision Optical Interferometer Upgrades and Current SSA Activities at the Navy Precision Optical Interferometer Henrique R. Schmitt a, J. T. Armstrong a, E. K. Baines a, J. H. Clark III a, R. B. Hindsley a, S. R. Restaino a a Remote

More information

Peacock Labs Mirror Coating Testing and Analysis Phase II and IIA. --- Preliminary ---

Peacock Labs Mirror Coating Testing and Analysis Phase II and IIA. --- Preliminary --- Goals of Phase II 1 Peacock Labs Mirror Coating Testing and Analysis Phase II and IIA --- Preliminary --- Bruce D. Holenstein and Dylan R. Holenstein November 11, 2010 Rev. 1, November 14, 2010 Rev. 2,

More information

Developing Instrumentation for Fabricating and Characterizing Thin Film Aluminum Mirrors

Developing Instrumentation for Fabricating and Characterizing Thin Film Aluminum Mirrors Brigham Young University BYU ScholarsArchive All Student Publications 2017-08-18 Developing Instrumentation for Fabricating and Characterizing Thin Film Aluminum Mirrors P. Claire Segura psegura@oberlin.edu

More information

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson McMath-Pierce Adaptive Optics Overview Christoph Keller National Solar Observatory, Tucson Small-Scale Structures on the Sun 1 arcsec Important astrophysical scales (pressure scale height in photosphere,

More information

Page 1. Name: 4) State the actual air pressure, in millibars, shown at Miami, Florida on the given weather map.

Page 1. Name: 4) State the actual air pressure, in millibars, shown at Miami, Florida on the given weather map. Name: Questions 1 and 2 refer to the following: A partial station model and meteorological conditions table, as reported by the weather bureau in the city of Oswego, New York, are shown below. 1) Using

More information

Arduino Weather Station And Ascom Observing Conditions

Arduino Weather Station And Ascom Observing Conditions Arduino Weather Station And Ascom Observing Conditions This is a weather station using Arduino with an Ascom Observing Conditions driver on top so we can plug into various Astronomy Software packages.

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Light Pollution. Atmospheric Seeing. Seeing Through the Atmosphere. Atmospheric Absorption of Light

Light Pollution. Atmospheric Seeing. Seeing Through the Atmosphere. Atmospheric Absorption of Light Lec 8: 2 FEB 2012 ASTR 130 - Introductory Astronomy II (Chapter 6) LAST TIME - Optics and Telescopes Basic Functions of a Telescope Reflecting v. Refracting Affects of the Atmosphere TODAY Modern Astronomical

More information

D DAVID PUBLISHING. Simulation of Accelerated Ageing of UV-Radiation for Photodegradable Geotextiles/Geomembranes. 1. Introduction

D DAVID PUBLISHING. Simulation of Accelerated Ageing of UV-Radiation for Photodegradable Geotextiles/Geomembranes. 1. Introduction Journal of Geological Resource and Engineering 1 (2016) 44-50 doi:10.17265/2328-2193/2016.01.005 D DAVID PUBLISHING Simulation of Accelerated Ageing of UV-Radiation for Photodegradable Geotextiles/Geomembranes

More information

INTERNATIONAL. Member Observatory. The Boquete Optical SETI Observatory. (11/5/15)

INTERNATIONAL. Member Observatory. The Boquete Optical SETI Observatory. (11/5/15) INTERNATIONAL Member Observatory The Boquete Optical SETI Observatory. (11/5/15) Boquete, Panama is located about 25 miles south of the Panama/Costa Rica Border on the slopes of Vulcan Baru, the tallest

More information

AP Physics B Summer Assignment

AP Physics B Summer Assignment BERGEN COUNTY TECHNICAL SCHOOL AP Physics B Summer Assignment 2011 Solve all problems on separate paper. This will be due the first week of school. If you need any help you can e-mail Mr. Zavorotniy at

More information

CHARA 2014 Science & Technology Review. NPOI Update. 24 March 2014 Don Hutter

CHARA 2014 Science & Technology Review. NPOI Update. 24 March 2014 Don Hutter CHARA 2014 Science & Technology Review 24 March 2014 Don Hutter The BASICS NPOI = Navy Precision Optical Interferometer Major funding by Oceanographer of the Navy and Office of Naval Research NPOI is collaboration

More information

Figure testing of 300 mm Zerodur mirrors at cryogenic temperatures

Figure testing of 300 mm Zerodur mirrors at cryogenic temperatures Figure testing of 300 mm Zerodur mirrors at cryogenic temperatures J. W. Baer, W. P. Lotz Ball Aerospace & Technologies Corp. PO Box 1062 Boulder, CO 80306 Keywords: mirrors, figure testing, cryogenic,

More information

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures Kinematics Lab 1 Introduction An object moving in one dimension and undergoing constant or uniform acceleration has a position given by: x(t) =x 0 +v o t +1/2at 2 where x o is its initial position (its

More information

HET HRS M1 and M2 Mirrors Reflectivity and Scattering Measurements

HET HRS M1 and M2 Mirrors Reflectivity and Scattering Measurements HET HRS M1 and M2 Mirrors Reflectivity and Scattering Measurements prepared by François Piché Hobby*Eberly Telescope McDonald Observatory July 15, 1999 HET HRS Mirrors Reflectivity 1. Introduction The

More information

TIE-43: Optical Properties of ZERODUR

TIE-43: Optical Properties of ZERODUR PAGE 1/12 0 Introduction ZERODUR is a glass-ceramic material exhibiting a very low coefficient of thermal expansion The material is therefore used as a mirror substrate for astronomical telescopes or as

More information

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Supporting Information Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation Yuanmu Yang, Wenyi Wang, Parikshit Moitra, Ivan I. Kravchenko, Dayrl P. Briggs,

More information

A. Solar Walls. B. Prototype I

A. Solar Walls. B. Prototype I A Introduction There are many different technologies that are emerging to help develop the future power infrastructure. The importance of these technologies is increasing the sustainability of how our

More information

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tools of the Trade: Telescopes The Powers of a Telescope Collecting Power Bigger telescope,

More information

Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites

Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites William H. Ryan and Eileen V. Ryan Magdalena Ridge Observatory, New Mexico Institute of Mining and Technology 101 East Road, Socorro,

More information

Coating the Gemini Telescopes with Protected

Coating the Gemini Telescopes with Protected CONTRIBUTED Coating the Gemini Telescopes with Protected Silver Thomas Schneider Gemini Observatory Hilo, Hawai i 24 SVC BULLETIN I FALL/WINTER 2016 Brief History of Reflecting Telescopes In the 17th century,

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *5545678956* PHYSICS 0625/02 Paper 2 Core October/November 2008 1 hour 15 minutes Candidates

More information

Maximizing the community exploitation of the VLTI 2nd-generation instruments

Maximizing the community exploitation of the VLTI 2nd-generation instruments https://doi.org/10.1007/s10686-018-9581-6 ORIGINAL ARTICLE Open Access Maximizing the community exploitation of the VLTI 2nd-generation instruments Stefan Kraus 1 & Paulo Garcia 2 & Guy Perrin 3 Received:

More information

Challenges for the next generation stellar interferometer. Markus Schöller European Southern Observatory January 29, 2009

Challenges for the next generation stellar interferometer. Markus Schöller European Southern Observatory January 29, 2009 Challenges for the next generation stellar interferometer Markus Schöller European Southern Observatory January 29, 2009 VLTI Four 8.2m telescopes (UTs) All equipped with AO (MACAO) Six Baselines 47m-130m

More information

Earth s Atmosphere & Telescopes. Atmospheric Effects

Earth s Atmosphere & Telescopes. Atmospheric Effects Earth s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth s atmosphere can absorb certain wavelengths of light so much that astronomers

More information

PoS(ICRC2015)641. Cloud Monitoring using Nitrogen Laser for LHAASO Experiment. Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration

PoS(ICRC2015)641. Cloud Monitoring using Nitrogen Laser for LHAASO Experiment. Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration Cloud Monitoring using Nitrogen Laser for LHAASO Experiment Z.D. Sun 1,Y. Zhang 2,F.R. Zhu 1 for the LHAASO Collaboration [1]School of Physical Science and Technology, Southwest Jiaotong University, Chengdu

More information

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must.

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must. Chapter 5 Telescopes Multiple Choice Questions 1. Using, scientists can use a few smaller telescopes to take images with the same resolution as a much larger telescope. A. Satellite telescopes B. Charge-coupled

More information

6.2 Related Rates Name: Notes

6.2 Related Rates Name: Notes Calculus Write your questions and thoughts here! 6.2 Related Rates Name: Notes Guidelines to solving related rate problems 1. Draw a picture. 2. Make a list of all known and unknown rates and quantities.

More information

Research Programs and Technology Development. Russ Genet and Bruce Holenstein Alt-Az Initiative Hawaii Conference on Light Bucket Astronomy

Research Programs and Technology Development. Russ Genet and Bruce Holenstein Alt-Az Initiative Hawaii Conference on Light Bucket Astronomy Research Programs and Technology Development Russ Genet and Bruce Holenstein 2010-2011 Alt-Az Initiative Hawaii Conference on Light Bucket Astronomy 1 Conference Welcome Alt-Az Initiative Introduction

More information

Protected-silver coatings for the 8-m Gemini telescope mirrors

Protected-silver coatings for the 8-m Gemini telescope mirrors Thin Solid Films 502 (2006) 275 280 www.elsevier.com/locate/tsf Protected-silver coatings for the 8-m Gemini telescope mirrors M. Boccas a, *, T. Vucina a, C. Araya a, E. Vera a, C. Ahhee b a Gemini Observatory,

More information

Optical interferometry: problems and practice

Optical interferometry: problems and practice Outline Optical interferometry: problems and practice Chris Haniff Aims. What is an interferometer? Fundamental differences between optical and radio. Implementation at optical wavelengths. Conclusions.

More information

A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS)

A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS) A faster, more accurate way of characterizing cube beamsplitters using the Agilent Cary 7000 Universal Measurement Spectrophotometer (UMS) Application note Materials Authors Travis Burt, Chris Colley,

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY MEMORANDUM

NATIONAL RADIO ASTRONOMY OBSERVATORY MEMORANDUM NATIONAL RADIO ASTRONOMY OBSERVATORY MEMORANDUM DATE: September 16, 1996 TO: M. Clark, B. Garwood, D. Hogg, H. Liszt FROM: Ron Maddalena SUBJECT: GBT and Aips++ requirements for traditional, all-sky pointing

More information

Applications. Remote Weather Station with Telephone Communications. Tripod Tower Weather Station with 4-20 ma Outputs

Applications. Remote Weather Station with Telephone Communications. Tripod Tower Weather Station with 4-20 ma Outputs Tripod Tower Weather Station with 4-20 ma Outputs Remote Weather Station with Telephone Communications NEMA-4X Enclosure with Two Translator Boards and Analog Barometer Typical Analog Output Evaporation

More information

Model 3024 Albedometer. User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA WWW. ALLWEATHERINC. COM

Model 3024 Albedometer. User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA WWW. ALLWEATHERINC. COM Model 3024 Albedometer User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA 95834 WWW. ALLWEATHERINC. COM TABLE OF CONTENTS INTRODUCTION... 1 THEORY OF OPERATION... 2 General Description... 2 Accuracy...

More information

WeatherHawk Weather Station Protocol

WeatherHawk Weather Station Protocol WeatherHawk Weather Station Protocol Purpose To log atmosphere data using a WeatherHawk TM weather station Overview A weather station is setup to measure and record atmospheric measurements at 15 minute

More information

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines ASTR 1040 Accel Astro: Stars & Galaxies Topics for Today Basic principles of eyes, camera, telescopes Twinkle and absorption by our atmosphere What light gets through, what does not Next lecture: Telescopes

More information

Common questions when planning observations with DKIST Jan 30, 2018

Common questions when planning observations with DKIST Jan 30, 2018 Common questions when planning observations with DKIST Jan 30, 2018 1. Can the DKIST instruments work together? All instruments except Cryo-NIRSP can work together and with Adaptive Optics (AO). All can

More information

UNIT E: SPACE EXPLORATION

UNIT E: SPACE EXPLORATION UNIT E: SPACE EXPLORATION S C I E N C E 9 1 Science 9 Unit E Section 3.0 OPTICAL TELESCOPES, RADIO TELESCOPES, AND OTHER TECHNOLOGIES ADVANCE OUR UNDERSTANDING OF SPACE SECTI ON 3.0 Science 9 Unit E Section

More information

Astar s most important attributes are its mass, temperature, radius, composition, and rate of rotation. The Sun, for

Astar s most important attributes are its mass, temperature, radius, composition, and rate of rotation. The Sun, for T.A. Pauls 1 and D.M. Peterson 2 1 Remote Sensing Division 2 Stony Brook University Vega is a Rapidly Rotating Star Astar s most important attributes are its mass, temperature, radius, composition, and

More information

MONITORING VARIATIONS TO THE NEAR-EARTH SPACE ENVIRONMENT DURING HIGH SOLAR ACTIVITY USING ORBITING ROCKET BODIES

MONITORING VARIATIONS TO THE NEAR-EARTH SPACE ENVIRONMENT DURING HIGH SOLAR ACTIVITY USING ORBITING ROCKET BODIES MONITORING VARIATIONS TO THE NEAR-EARTH SPACE ENVIRONMENT DURING HIGH SOLAR ACTIVITY USING ORBITING ROCKET BODIES Van Romero, William H. Ryan, and Eileen V. Ryan Magdalena Ridge Observatory, New Mexico

More information

Multilayer coating facility for the HEFT hard X-ray telescope

Multilayer coating facility for the HEFT hard X-ray telescope Multilayer coating facility for the HEFT hard X-ray telescope Carsten P. Jensen a, Finn E. Christensen a, Hubert Chen b, Erik B. W.Smitt a, Eric Ziegler c a Danish Space Research Institute (Denmark); b

More information

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes? Chapter 6 Telescopes: Portals of Discovery What are the most important properties of a telescope? 1. Light-collecting area: Telescopes with a larger collecting area can gather a greater amount of light

More information

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror Astro 202 Spring 2008 COMETS and ASTEROIDS Small bodies in the solar system Impacts on Earth and other planets The NEO threat to Earth Lecture 4 Don Campbell How do telescopes work? Typical telescope used

More information

SOLAR WATER HEATER WITH TRACKING SYSTEM

SOLAR WATER HEATER WITH TRACKING SYSTEM SOLAR WATER HEATER WITH TRACKING SYSTEM Jyoti Verma 1, Shweta Tyagi 2, R. B. Dubey 3 1,2,3 Department of Electronics and Communication Engineering Hindu College of Engineering, Sonepat, Haryana, (India)

More information

Space Telescopes Asteroid Mining Space Manufacturing. Wefunder.com/SpaceFab

Space Telescopes Asteroid Mining Space Manufacturing. Wefunder.com/SpaceFab Space Telescopes Asteroid Mining Space Manufacturing Wefunder.com/SpaceFab Business Road Map Cost efficient high value space telescopes Unique business model Deployable optics technology Asteroid mining

More information

SC125MS. Data Sheet and Instruction Manual. ! Warning! Salem Controls Inc. Stepper Motor Driver. Last Updated 12/14/2004

SC125MS. Data Sheet and Instruction Manual. ! Warning! Salem Controls Inc. Stepper Motor Driver.   Last Updated 12/14/2004 SC125MS Stepper Motor Driver Salem Controls Inc. Last Updated 12/14/2004! Warning! Stepper motors and drivers use high current and voltages capable of causing severe injury. Do not operate this product

More information

Development of a probe traversing system for an open test section wind tunnel

Development of a probe traversing system for an open test section wind tunnel Development of a probe traversing system for an open test section wind tunnel Gépészet 2012 Conference 24 th of May, 2012 Section Energy 2. Árpád Varga Mechanical Engineering Modelling MSc, Contractual

More information

Keck Segment Surface Artifacts: Impacts on Segment Phasing and Image Quality

Keck Segment Surface Artifacts: Impacts on Segment Phasing and Image Quality Keck Segment Surface Artifacts: Impacts on Segment Phasing and Image Quality Mitchell Troy, a Gary Chanan, b and Neal Brock c a Jet Propulsion Laboratory, California Institute of Technology, Pasadena,

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

SPACE OBJECT CHARACTERIZATION STUDIES AND THE MAGDALENA RIDGE OBSERVATORY S 2.4-METER TELESCOPE

SPACE OBJECT CHARACTERIZATION STUDIES AND THE MAGDALENA RIDGE OBSERVATORY S 2.4-METER TELESCOPE SPACE OBJECT CHARACTERIZATION STUDIES AND THE MAGDALENA RIDGE OBSERVATORY S 2.4-METER TELESCOPE Eileen V. Ryan and William H. Ryan Magdalena Ridge Observatory, New Mexico Institute of Mining and Technology

More information

OPERATION MANUAL. Acceleration, Velocity RMS measurement, Metric & Imperial unit PEN VIBRATION METER Model : PVB-820

OPERATION MANUAL. Acceleration, Velocity RMS measurement, Metric & Imperial unit PEN VIBRATION METER Model : PVB-820 Acceleration, Velocity RMS measurement, Metric & Imperial unit PEN VIBRATION METER Model : PVB-820 Your purchase of this PEN VIBRATION METER marks a step forward for you into the field of precision measurement.

More information

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017 ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems Prof. Peter Bermel April 12, 2017 Ideal Selective Solar Absorber Efficiency Limits Ideal cut-off wavelength for a selective

More information

arxiv: v1 [astro-ph.im] 3 Sep 2015

arxiv: v1 [astro-ph.im] 3 Sep 2015 arxiv:1509.01044v1 [astro-ph.im] 3 Sep 2015 First results of the two square meters multilayer glass composite mirror design proposed for the Cherenkov Telescope Array developed at INFN C. Schultz a, M.

More information

Where s the Blur? By Eric Chesak

Where s the Blur? By Eric Chesak Where s the Blur? By Eric Chesak www.ericchesak.com echesak@flash.net As an avid astrophotographer, improvement is always the word of the day (or night, as the case may be). As can be imagined, getting

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

Vacuum Kelvin Force Probe Research Richard Williams August 1st 2008

Vacuum Kelvin Force Probe Research Richard Williams August 1st 2008 Vacuum Kelvin Force Probe Research Richard Williams August 1st 2008 Introduction Kelvin Force Probe Microscopy is an analytical method to measure the contact potential difference between a reference material

More information

Notes: Reference: Merline, W. J. and S. B. Howell (1995). "A Realistic Model for Point-sources Imaged on Array Detectors: The Model and Initial

Notes: Reference: Merline, W. J. and S. B. Howell (1995). A Realistic Model for Point-sources Imaged on Array Detectors: The Model and Initial Notes: Notes: Notes: Reference: Merline, W. J. and S. B. Howell (1995). "A Realistic Model for Point-sources Imaged on Array Detectors: The Model and Initial Results." Experimental Astronomy 6: 163-210.

More information

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

More information

Assembly Instructions for the 1-Wire Weather Station V2.0/V3.0

Assembly Instructions for the 1-Wire Weather Station V2.0/V3.0 Assembly Instructions for the 1-Wire Weather Station V2.0/V3.0 Tools and Supplies Required (not included): Phillips screwdriver 3/8" wrench Drill with 5/32" bit "U" type mounting bracket (i.e., part number

More information

EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES

EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES CISBAT 2005, Proceedings, EPFL 2005, p. 441-446 EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES R. Steiner, P. Oelhafen, G. Reber and A. Romanyuk Institute

More information

Our astronomical filters have been supplied or installed in the followings.

Our astronomical filters have been supplied or installed in the followings. Astronomical Filters Asahi Spectra has supplied astronomical filters with science-grade to world famous observatories, institutes or universities for over 15 years. Unlike cheap astronomical filters for

More information

iweathar EDGE V Installation Guide Copyright 2012 iweathar. All rights reserved.

iweathar EDGE V Installation Guide Copyright 2012 iweathar. All rights reserved. iweathar EDGE V Installation Guide Copyright 2012 iweathar. All rights reserved. Table of contents: 1 Introduction...3 2 Station Components...4 3 STATION INSTALLATION PROCEDURE...5 4 Specifications...11

More information

Structure Monitoring Technology. Features. Ordering Information. Trigger Tape. A2 Pulse Counter (Optional) Solar Radiation Sensor

Structure Monitoring Technology. Features. Ordering Information. Trigger Tape. A2 Pulse Counter (Optional) Solar Radiation Sensor Rain detection sensor General Description Driving rain and its effective management are critical factors in determining the durability of building enclosures. An accurate measurement of driving rain can

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6384565021* PHYSICS 0625/33 Paper 3 Extended October/November 2013 1 hour 15 minutes Candidates

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *1137125136* PHYSICS 0625/33 Paper 3 Theory (Core) May/June 2016 1 hour 15 minutes Candidates answer

More information

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light. Telescopes Portals of Discovery Chapter 6 Lecture The Cosmic Perspective 6.1 Eyes and Cameras: Everyday Light Sensors How do eyes and cameras work? Seventh Edition Telescopes Portals of Discovery The Eye

More information