Clouds, Precipitation and their Remote Sensing

Size: px
Start display at page:

Download "Clouds, Precipitation and their Remote Sensing"

Transcription

1 Clouds, Precipitation and their Remote Sensing Prof. Susanne Crewell AG Integrated Remote Sensing Institute for Geophysics and Meteorology University of Cologne Susanne Crewell, Kompaktkurs, Jülich September Intergovernmental Panel on Climate Change (IPCC) Nobel price IPCC Fourth Assessment Report (FAR), 2007: "Warming of the climate system is unequivocal", and "Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations". Aerosols, clouds and their interaction with climate is still the most uncertain area of climate change and require multidisciplinary coordinated research efforts. Susanne Crewell, ell l, Kompaktkurs, kurs, Jülich 25 September

2 Why are clouds so complex? Cloud microphysical processes occur on small spatial scales and need to be parametrized in atmospheric models Cloud microphysics is strongly connected to other sub-grid scale processes (turbulence, radiation) Cloud droplets 0.01 mm diameter per cm 3 Drizzle droplets 0.1 mm diameter 1 per cm 3 Condensation nuclei mm diameter 1000 per cm 3 Rain drops ca. 1 mm diameter, 1 drops per liter From hydrometeors Why are clouds so complex? to single clouds to Einzelwolken and cloud fields to the global system 2

3 What are important cloud parameter? Macro-physical Parameter cloud fraction cloud height cloud contours 3D-structure Radiative Quantities extinction coefficient ε [m -1 ] optical thickness τ τ λ = z= z=0 ε λ (z') dz' transmission t = exp(-τ) Micro-physical Parameter number concentration N effective radius r eff liquid water content LWC radar reflectivity Z moments of the droplet spectrum Ice- and mixed phase clouds phase shape density Droplet spectra observations modelling Hawaii orographic Hawaii stratus Passat Australia continental moments of drop spectra cloud liquid water density [kg m -3 ] m(n) = r n N(r)dr 0 0 LWC = 4π 3 ρ r 3 w N(r)dr 3

4 Ice and mixed phase clouds Bergeron-Findeisen While everywhere sufficient cloud condensation nuclei for forming water droplets are available, much fewer ice nuclei exist From small to large particles μm 1.0 μm 10 μm aerosols cloud droplets ice crystals 100 μm 1.0 mm 10 mm rain drops snow turbulence microphysical models ~100 m numerical weather prediction (NWP) models ~10 km climate Susanne models Crewell, ~100 Kompaktkurs, km Jülich 25 September

5 Jülich ObservatorY for Cloud Evolution JOYCE aims at investigating the processes of cloud formation and cloud evolution (precipitation) Various instruments set up at the Research Centre Jülich continuously monitor winds, temperature, water vapor, clouds, and precipitation over many years geomet.uni-koeln.de/joyce JOYCE: Scientific goals Goals to disentangle water vapor variations due to advection and to local surface influence validate coupled models to better understand the development of boundary layer clouds including cloud radiation interaction to observe precipitation formation and improve parametrization schemes 5

6 JOYCE: Instrumente (24/7) Scanning cloud radar MIRA-36s Micro Rain Radar Lidar Ceilometer Scanning MWR HATPRO Doppler Sodar Pulsed Doppler Lidar Infrared spectrometer AERI Total sky imager Sun photometer Radiation sensors Auxilliary instruments: 120-m meteorological mast, MAX-DOAS, GPS, polarimetric weather radar How to remotely sense cloud parameters? Active and passive techniques in different spectral regions use extinktion, absorption and scattering of electromagnetic radiation to indirectly sense cloud properties Clouds are best visible in atmospheric windows Microwaves (radiometry, radar & GNSS) Thermal infrared (satellite radiometry and spectrometry) Visible (reflected sun light, lidar, sun photometer) 6

7 How to determine cloud occurrence? Total Sky Imager (Yes Inc.) Specifications: Camera looks from above on spherical mirror Sun is blocked by black tape on mirror Temporal resolution 20 s Products & retrievals: Cloud classification based on RGB components for each pixel (in-house algorithm): sky, thin- and opaque clouds (blue, light blue and white) Cloud fraction Total Sky Imager Advantages: very reliable, intuitive, spatio-temporal structure Disadvantage: difficult to interprete due to geometry effects 18 UTC 12 UTC 06 UTC 10 June 2011 N E S W 7

8 At which height do clouds occur? Lidar Ceilometer CT25K Specifications: pulses at 905 nm temporal resolution 15 s range resolution ~15m, range 0-7 km Products & retrievals: senitive to small particles cloud base height optical extinction assuming constant lidar ratio (in-house algorithm) aerosol layer height Lidar ceilometer Advantages: very reliable, vertical structure Disadvantage: does not penetrate liquid water (cloud!) Altitude (m above ground) Aerosol Rising PBL Ice clouds Rain Fog 8

9 Remote sensing and sensor synergy Lidar - backscatter coefficient prop. r 2 - depolarisation information (phase!) - strong extinktion by water clouds Cloud radar - radar reflectivity factor Radar Lidar Z = D 6 N(D) dd Lidar Radar - Doppler-spectrum - linear depolarisation ratio LDR - influence by insects and drizzle Height LWC -liquid water content Cloud radar Cloud JOYCE Sends (active!) out pulses of microwave radiation Measures backscattered radiation 35 GHz) Time between emitted and received pulse information on the distance to backscatterer Sensitive towards cloud droplets, ice particles & precipitation Doppler radar radial velocity component can be measured Doppler spectrum can help to distinguish different targets Polarized receiver target discrimination constraint information on particle shape 9

10 Cloud radar radar reflectivity factor :30-14:30 Doppler velocity 95 GHz GKSS cloud radar MIRACLE Lineare depolarisation ratio backscatter proportional r 6 Doppler Cloud Radar MIRA-36 Elevation scan from 90 to 15 10

11 Sensor Synergy: target categorization Bit0: small liquid cloud drops (SCD) Bit1: falling hydrometeors Bit2: wet-bulb temperature < 0 C Bit3: melting ice Bit4: aerosol Bit5: insects Only mean to derive complex vertical structure of multi-level, multi-phase clouds Provides assumptions for radiative transfer and retrieval algorithms Why is cloud liquid water so important? Liquid water path (LWP) observations Jiang et al,

12 MicroWave Radiometer (MWR) HATPRO TOPHAT: Measures thermal emission of atmospheric gases and liquid water Brightness temperatures (TB) in 14 channels measurements Azimuth and elevation scanning Complete hemispheric scans during 7 min Products: Temperature and humidity profiles Integrated Water Vapor (IWV) Liquid Water Path (LWP) Microwave radiometry Standard atmosphere temperature profile water vapour profile liquid water path liquid water path LWP=250 gm -2 scattering at cloud droplets is negligle in microwave spectral region extinction l absorption α T B = T Bcos exp( τ )+ T( s) α(s) exp( α(s')ds') ds 0 s 0 12

13 Cloud radar and microwave Interruption for scanning radar reflectivity factor doppler velocity But how to get the liquid water content profile? spectral width The inverse problem Remote sensing instruments measure indirect information, e.g. the measurement vector y includes radiances TB at different frequencies Forward problem (radiative transfer) for a given atmospheric state x (temperature, humidity, cloud parameter) is well constrained y = F(x) Microwave spectrum Atmosperic profile Inverse problem (retrieval algorithm), i.e. the determination of the atmospheric state is often ill-conditioned and requires the inclusion of empirical information 13

14 Integrated Profiling Technique measurement 1 + error a variational approach towards multiinstrument retrieval measurement 2 + error measurement 3 + error a priori information + error Inversion OPTIMAL ESTIMATION Löhnert et al., 2004 and 2008 atmospheric state: temperature, humidity, hydrometeors + errors Liqud Water Content (LWC) Application of LWC retrieved by IPT for evaluating regional climate models Models show different liquid water paths and different peak altitudes 14

15 Further developments in synergy Combination of ground-based and satellite information spatial representation of supersites Development of a quasi-real-time variational algorithm based on optimal estimation theory Meteosat Seviri Z R SW TB IR TB MW TB IR I IR Integration & minimization of cost function Profiles of T, q, LWC, r eff Cloud radar MRW IRR AERI Challenges in sensor synergy Goall: synchroneous scans radar microwave radiometer 15

16 Summary and conclusions Clouds clouds have a strong effect on the Earths energy and water budget cloud processes are rather complex and involve scales from nm to km cloud feedbacks related to aerosols and changes in temperature and humidty are not well understood Observations better observations of clouds are urgently required sensor synergy observations and modelling need to be linked closely for further progress How to sense the various cloud parameters? Macro-physical Parameter cloud fraction cloud height cloud contours 3D-structure Radiative Quantities extinction coefficient ε [m -1 ] optical thickness τ z= τ λ = ε λ ( z') d z' z= 0 transmission t = exp(-τ) Micro-physical Parameter number concentration N effective radius r eff liquid water content LWC radar reflectivity Z Ice- and mixed phase clouds phase shape density 16

New observational techniques for a better understanding of clouds

New observational techniques for a better understanding of clouds New observational techniques for a better understanding of clouds Ulrich Löhnert, Kerstin Ebell, Stefan Kneifel, Jan Schween, Gerrit Maschwitz... Prof. Susanne Crewell AG Integrated Remote Sensing Institute

More information

Tr a n s r e g i o n a l C o l l a b o r a t i v e Re s e a r c h C e n t r e TR 172

Tr a n s r e g i o n a l C o l l a b o r a t i v e Re s e a r c h C e n t r e TR 172 Tr a n s r e g i o n a l C o l l a b o r a t i v e Re s e a r c h C e n t r e TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC) 3 Towards a better

More information

Remote Sensing of Precipitation

Remote Sensing of Precipitation Lecture Notes Prepared by Prof. J. Francis Spring 2003 Remote Sensing of Precipitation Primary reference: Chapter 9 of KVH I. Motivation -- why do we need to measure precipitation with remote sensing instruments?

More information

Towards simultaneous retrieval of water cloud and drizzle using ground-based radar, lidar, and microwave radiometer

Towards simultaneous retrieval of water cloud and drizzle using ground-based radar, lidar, and microwave radiometer Towards simultaneous retrieval of water cloud and drizzle using ground-based radar, lidar, and microwave radiometer Stephanie Rusli David P. Donovan Herman Russchenberg Introduction microphysical structure

More information

PARCWAPT Passive Radiometry Cloud Water Profiling Technique

PARCWAPT Passive Radiometry Cloud Water Profiling Technique PARCWAPT Passive Radiometry Cloud Water Profiling Technique By: H. Czekala, T. Rose, Radiometer Physics GmbH, Germany A new cloud liquid water profiling technique by Radiometer Physics GmbH (patent pending)

More information

An Annual Cycle of Arctic Cloud Microphysics

An Annual Cycle of Arctic Cloud Microphysics An Annual Cycle of Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

Observational Needs for Polar Atmospheric Science

Observational Needs for Polar Atmospheric Science Observational Needs for Polar Atmospheric Science John J. Cassano University of Colorado with contributions from: Ed Eloranta, Matthew Lazzara, Julien Nicolas, Ola Persson, Matthew Shupe, and Von Walden

More information

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT - Principles of Radiative Transfer Principles of Remote Sensing Marianne König EUMETSAT marianne.koenig@eumetsat.int Remote Sensing All measurement processes which perform observations/measurements of

More information

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Dave Turner University of Wisconsin-Madison Pacific Northwest National Laboratory 8 May 2003

More information

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT FRANÇOIS BECKER International Space University and University Louis Pasteur, Strasbourg, France; E-mail: becker@isu.isunet.edu Abstract. Remote sensing

More information

Parametrizing cloud and precipitation in today s NWP and climate models. Richard Forbes

Parametrizing cloud and precipitation in today s NWP and climate models. Richard Forbes Parametrizing cloud and precipitation in today s NWP and climate models Richard Forbes (ECMWF) with thanks to Peter Bechtold and Martin Köhler RMetS National Meeting on Clouds and Precipitation, 16 Nov

More information

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2 JP1.10 On the Satellite Determination of Multilayered Multiphase Cloud Properties Fu-Lung Chang 1 *, Patrick Minnis 2, Sunny Sun-Mack 1, Louis Nguyen 1, Yan Chen 2 1 Science Systems and Applications, Inc.,

More information

LAUNCH Concept. Lindenberg Observatory

LAUNCH Concept. Lindenberg Observatory Concept Lindenberg Observatory LAUNCH-2005 International Lindenberg Campaign for Assessment of Humidity- and Cloud- Profiling Systems and its Impact on High-Resolution Modelling Objectives Basic Techniques

More information

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ. Meteorological Satellite Image Interpretations, Part III Acknowledgement: Dr. S. Kidder at Colorado State Univ. Dates EAS417 Topics Jan 30 Introduction & Matlab tutorial Feb 1 Satellite orbits & navigation

More information

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure.

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure. Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

LAUNCH Concept. Lindenberg Observatory

LAUNCH Concept. Lindenberg Observatory Concept Lindenberg Observatory LAUNCH-2005 International Lindenberg Campaign for Assessment of Humidity- and Cloud- Profiling Systems and its Impact on High-Resolution Modelling Objectives Basic Techniques

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

Cloud Observations at UFS Schneefernerhaus Towards the Evaluation of Satellite Observations and Numerical Weather Prediction

Cloud Observations at UFS Schneefernerhaus Towards the Evaluation of Satellite Observations and Numerical Weather Prediction Cloud Observations at UFS Schneefernerhaus Towards the Evaluation of Satellite Observations and Numerical Weather Prediction Martin Hagen 1, Tobias Zinner 2, Bernhard Mayer 2, Axel Häring 1,2 1 Institut

More information

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003 Christian Sutton Microwave Water Radiometer measurements of tropospheric moisture ATOC 5235 Remote Sensing Spring 23 ABSTRACT The Microwave Water Radiometer (MWR) is a two channel microwave receiver used

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA. James Liljegren

Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA. James Liljegren Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA James Liljegren Ames Laboratory Ames, IA 515.294.8428 liljegren@ameslab.gov Introduction In the Arctic water vapor and clouds influence

More information

Arctic Clouds and Radiation Part 2

Arctic Clouds and Radiation Part 2 Arctic Clouds and Radiation Part 2 Glen Lesins Department of Physics and Atmospheric Science Dalhousie University Create Summer School, Alliston, July 2013 No sun Arctic Winter Energy Balance 160 W m -2

More information

Ground-based temperature and humidity profiling using microwave radiometer retrievals at Sydney Airport.

Ground-based temperature and humidity profiling using microwave radiometer retrievals at Sydney Airport. Ground-based temperature and humidity profiling using microwave radiometer retrievals at Sydney Airport. Peter Ryan Bureau of Meteorology, Melbourne, Australia Peter.J.Ryan@bom.gov.au ABSTRACT The aim

More information

Course outline, objectives, workload, projects, expectations

Course outline, objectives, workload, projects, expectations Course outline, objectives, workload, projects, expectations Introductions Remote Sensing Overview Elements of a remote sensing observing system 1. platform (satellite, surface, etc) 2. experimental design

More information

F O U N D A T I O N A L C O U R S E

F O U N D A T I O N A L C O U R S E F O U N D A T I O N A L C O U R S E December 6, 2018 Satellite Foundational Course for JPSS (SatFC-J) F O U N D A T I O N A L C O U R S E Introduction to Microwave Remote Sensing (with a focus on passive

More information

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences.

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences. The Climatology of Clouds using surface observations S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences Gill-Ran Jeong Cloud Climatology The time-averaged geographical distribution of cloud

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Projeto Temático FAPESP 2013/ Climate Ecosystems Atmospheric Composition

Projeto Temático FAPESP 2013/ Climate Ecosystems Atmospheric Composition Projeto Temático FAPESP 2013/05014-0 Climate Ecosystems Atmospheric Composition GoAmazon2014/15 Experiment Manaus is a city of 2 million people surrounded by just forest in a radius of 1.500 Km. UNIQUE

More information

Abstract 1 INTRODUCTION OF WATER CLOUD PARAMETERS 1R.4 RADAR-LIDAR SYNERGY FOR SPACE-BASED RETRIEVAL

Abstract 1 INTRODUCTION OF WATER CLOUD PARAMETERS 1R.4 RADAR-LIDAR SYNERGY FOR SPACE-BASED RETRIEVAL 1R.4 RADAR-LIDAR SYNERGY FOR SPACE-BASED RETRIEVAL OF WATER CLOUD PARAMETERS Gregory May Herman Russchenberg Oleg Krasnov Delft University of Technology, IRCTR, Delft, The Netherlands Abstract Knowledge

More information

WMO OSCAR. Observing Systems Capability Analysis and Review Tool A building block of Rolling Requirements Review

WMO OSCAR.   Observing Systems Capability Analysis and Review Tool A building block of Rolling Requirements Review WMO OSCAR Observing Systems Capability Analysis and Review Tool A building block of Rolling Requirements Review Quantitative user-defined requirements for observation of physical variables in application

More information

A Time Lag Model to Estimate Rainfall Rate Based on GOES Data

A Time Lag Model to Estimate Rainfall Rate Based on GOES Data A Time Lag Model to Estimate Rainfall Rate Based on GOES Data Nazario D. Ramirez, Robert J. Kuligowski, and Joan M. Castro Octava Reunión Nacional de Percepción Remota y Sistemas Geográficos de Información

More information

Prospects for radar and lidar cloud assimilation

Prospects for radar and lidar cloud assimilation Prospects for radar and lidar cloud assimilation Marta Janisková, ECMWF Thanks to: S. Di Michele, E. Martins, A. Beljaars, S. English, P. Lopez, P. Bauer ECMWF Seminar on the Use of Satellite Observations

More information

Climate change. understanding, and the need for observations Herman Russchenberg Remote Sensing of the Environment.

Climate change. understanding, and the need for observations Herman Russchenberg Remote Sensing of the Environment. Climate change understanding, and the need for observations Herman Russchenberg Remote Sensing of the Environment 19-11-2011 h.w.j.russchenberg@tudelft.nl Delft University of Technology Challenge the future

More information

Satellite data assimilation for Numerical Weather Prediction II

Satellite data assimilation for Numerical Weather Prediction II Satellite data assimilation for Numerical Weather Prediction II Niels Bormann European Centre for Medium-range Weather Forecasts (ECMWF) (with contributions from Tony McNally, Jean-Noël Thépaut, Slide

More information

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Fuzhong Weng Environmental Model and Data Optima Inc., Laurel, MD 21 st International TOV

More information

New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations

New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations M.N. Deeter and J. Vivekanandan Research Applications Library National Center for Atmospheric Research Boulder,

More information

The EarthCARE mission: An active view on aerosols, clouds and radiation

The EarthCARE mission: An active view on aerosols, clouds and radiation The EarthCARE mission: An active view on aerosols, clouds and radiation T. Wehr, P. Ingmann, T. Fehr Heraklion, Crete, Greece 08/06/2015 EarthCARE is ESA s sixths Earth Explorer Mission and will be implemented

More information

Retrieval of tropospheric and middle atmospheric water vapour profiles from ground based microwave radiometry

Retrieval of tropospheric and middle atmospheric water vapour profiles from ground based microwave radiometry Retrieval of tropospheric and middle atmospheric water vapour profiles from ground based microwave radiometry René Bleisch Institute of Applied Physics 26..212 1 / 45 Outline 1 Introduction Measuring water

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

On the Limitations of Satellite Passive Measurements for Climate Process Studies

On the Limitations of Satellite Passive Measurements for Climate Process Studies On the Limitations of Satellite Passive Measurements for Climate Process Studies Steve Cooper 1, Jay Mace 1, Tristan L Ecuyer 2, Matthew Lebsock 3 1 University of Utah, Atmospheric Sciences 2 University

More information

Monitoring Climate Change from Space

Monitoring Climate Change from Space Monitoring Climate Change from Space Richard Allan (email: r.p.allan@reading.ac.uk twitter: @rpallanuk) Department of Meteorology, University of Reading Why Monitor Earth s Climate from Space? Global Spectrum

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations

Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations P-1 Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations Nobuhiro Kikuchi, Hiroshi Kumagai and Hiroshi Kuroiwa

More information

Remote sensing of ice clouds

Remote sensing of ice clouds Remote sensing of ice clouds Carlos Jimenez LERMA, Observatoire de Paris, France GDR microondes, Paris, 09/09/2008 Outline : ice clouds and the climate system : VIS-NIR, IR, mm/sub-mm, active 3. Observing

More information

EUMETSAT STATUS AND PLANS

EUMETSAT STATUS AND PLANS 1 EUM/TSS/VWG/15/826793 07/10/2015 EUMETSAT STATUS AND PLANS François Montagner, Marine Applications Manager, EUMETSAT WMO Polar Space Task Group 5 5-7 October 2015, DLR, Oberpfaffenhofen PSTG Strategic

More information

APPLICATIONS WITH METEOROLOGICAL SATELLITES. W. Paul Menzel. Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI

APPLICATIONS WITH METEOROLOGICAL SATELLITES. W. Paul Menzel. Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI APPLICATIONS WITH METEOROLOGICAL SATELLITES by W. Paul Menzel Office of Research and Applications NOAA/NESDIS University of Wisconsin Madison, WI July 2004 Unpublished Work Copyright Pending TABLE OF CONTENTS

More information

Cross-validation of two liquid water path retrieval algorithms applied to ground-based microwave radiation measurements by RPG-HATPRO instrument

Cross-validation of two liquid water path retrieval algorithms applied to ground-based microwave radiation measurements by RPG-HATPRO instrument Cross-validation of two liquid water path retrieval algorithms applied to ground-based microwave radiation measurements by RPG-HATPRO instrument V.S.Kostsov*, D.V.Ionov, E.Yu.Biryukov, N.A.Zaitsev St.

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

Novel Product Line FMCW Cloud Radars

Novel Product Line FMCW Cloud Radars Novel Product Line RPG Dual Polarization Dual Frequency Scanning Cloud Radar Systems: Configurations and Applications Edited by Dr. Alexander Myagkov and Dr. Thomas Rose 1 2 Benefit from high operation

More information

Recent lidar measurements from AWIPEV

Recent lidar measurements from AWIPEV Recent lidar measurements from AWIPEV By Christoph Ritter AWI Potsdam Aerosol and BL measurements Aims aerosol: (remote sensing sun/star-photometer, Raman lidar) Continue long-term measurements Participate

More information

Satellite Imagery and Virtual Global Cloud Layer Simulation from NWP Model Fields

Satellite Imagery and Virtual Global Cloud Layer Simulation from NWP Model Fields Satellite Imagery and Virtual Global Cloud Layer Simulation from NWP Model Fields John F. Galantowicz John J. Holdzkom Thomas Nehrkorn Robert P. D Entremont Steve Lowe AER Atmospheric and Environmental

More information

Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON)

Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) Project Outline for a HALO Demo Mission Coordinated by M. Wendisch (Uni Leipzig) and U. Pöschl

More information

Future directions for parametrization of cloud and precipitation microphysics

Future directions for parametrization of cloud and precipitation microphysics Future directions for parametrization of cloud and precipitation microphysics Richard Forbes (ECMWF) ECMWF-JCSDA Workshop, 15-17 June 2010 Cloud and Precipitation Microphysics A Complex System! Ice Nucleation

More information

New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel

New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel Slide 19 November 2016, V1.0 New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel Author: Daniel Rosenfeld The Hebrew University of Jerusalem (HUJ) daniel.rosenfeld@huji.ac.il

More information

Assimilation of precipitation-related observations into global NWP models

Assimilation of precipitation-related observations into global NWP models Assimilation of precipitation-related observations into global NWP models Alan Geer, Katrin Lonitz, Philippe Lopez, Fabrizio Baordo, Niels Bormann, Peter Lean, Stephen English Slide 1 H-SAF workshop 4

More information

MSG system over view

MSG system over view MSG system over view 1 Introduction METEOSAT SECOND GENERATION Overview 2 MSG Missions and Services 3 The SEVIRI Instrument 4 The MSG Ground Segment 5 SAF Network 6 Conclusions METEOSAT SECOND GENERATION

More information

Gunnar Elgered, Lubomir Gradinarski, Borys Stoew, Harald Bouma CETP: Laurent Chardenal, Cecille Mallet DWD: Jürgen Güldner, Kathrin Hübner, Peter

Gunnar Elgered, Lubomir Gradinarski, Borys Stoew, Harald Bouma CETP: Laurent Chardenal, Cecille Mallet DWD: Jürgen Güldner, Kathrin Hübner, Peter Chalmers: Gunnar Elgered, Lubomir Gradinarski, Borys Stoew, Harald Bouma CETP: Laurent Chardenal, Cecille Mallet DWD: Jürgen Güldner, Kathrin Hübner, Peter Ulrich GKSS: Henriette Lemke, Markus Quante Oliver

More information

NWP SAF. Quantitative precipitation estimation from satellite data. Satellite Application Facility for Numerical Weather Prediction

NWP SAF. Quantitative precipitation estimation from satellite data. Satellite Application Facility for Numerical Weather Prediction NWP SAF Satellite Application Facility for Numerical Weather Prediction Document NWPSAF-MO-VS-011 Version 1.0 15 April 2006 Quantitative precipitation estimation from satellite data Sante Laviola University

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

IARA - GoAmazon 2014

IARA - GoAmazon 2014 IARA - GoAmazon 2014 Activities related to Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) and CHUVA Project Luiz.Machado@cptec.inpe.br CHUVA

More information

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name:

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name: Remote Sensing C Science Olympiad North Regional Tournament at the University of Florida Rank: Points: Name(s): Team Name: School Name: Team Number: Instructions: DO NOT BEGIN UNTIL GIVEN PERMISSION. DO

More information

Cloud statistics and cloud radiative effect for a lowmountain

Cloud statistics and cloud radiative effect for a lowmountain University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 211 Cloud statistics and

More information

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1)

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1) PhD Environmental Fluid Mechanics Physics of the Atmosphere University of Trieste International Center for Theoretical Physics Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio

More information

Microwave Remote Sensing of Sea Ice

Microwave Remote Sensing of Sea Ice Microwave Remote Sensing of Sea Ice What is Sea Ice? Passive Microwave Remote Sensing of Sea Ice Basics Sea Ice Concentration Active Microwave Remote Sensing of Sea Ice Basics Sea Ice Type Sea Ice Motion

More information

The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences EVALUATION OF A DUAL-FREQUENCY RADAR CLOUD

The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences EVALUATION OF A DUAL-FREQUENCY RADAR CLOUD The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences EVALUATION OF A DUAL-FREQUENCY RADAR CLOUD LIQUID WATER CONTENT RETRIEVAL ALGORITHM A Thesis in Meteorology by

More information

An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water

An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water 1295 An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water ULRICH LÖHNERT, SUSANNE CREWELL, AND CLEMENS SIMMER Meteorological Institute,

More information

Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds.

Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds. Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds. 1. Optical interactions of relevance to lasers. 2. General principles of lidars. 3. Lidar equation.

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA Huan Meng 1, Ralph Ferraro 1, Banghua Yan 2 1 NOAA/NESDIS/STAR, 5200 Auth Road Room 701, Camp Spring, MD, USA 20746 2 Perot Systems Government

More information

MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES

MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES Laura López (1), José Prieto (2), J.L. Sánchez (1), E. García-Ortega (1), Rafael Posada (1) (1) Group for Atmospheric Physics,

More information

Physical Basics of Remote-Sensing with Satellites

Physical Basics of Remote-Sensing with Satellites - Physical Basics of Remote-Sensing with Satellites Dr. K. Dieter Klaes EUMETSAT Meteorological Division Am Kavalleriesand 31 D-64295 Darmstadt dieter.klaes@eumetsat.int Slide: 1 EUM/MET/VWG/09/0162 MET/DK

More information

Introduction to Electromagnetic Radiation and Radiative Transfer

Introduction to Electromagnetic Radiation and Radiative Transfer Introduction to Electromagnetic Radiation and Radiative Transfer Temperature Dice Results Visible light, infrared (IR), ultraviolet (UV), X-rays, γ-rays, microwaves, and radio are all forms of electromagnetic

More information

Satellite data assimilation for NWP: II

Satellite data assimilation for NWP: II Satellite data assimilation for NWP: II Jean-Noël Thépaut European Centre for Medium-range Weather Forecasts (ECMWF) with contributions from many ECMWF colleagues Slide 1 Special thanks to: Tony McNally,

More information

Climatologies of ultra-low clouds over the southern West African monsoon region

Climatologies of ultra-low clouds over the southern West African monsoon region Climatologies of ultra-low clouds over the southern West African monsoon region Andreas H. Fink 1, R. Schuster 1, R. van der Linden 1, J. M. Schrage 2, C. K. Akpanya 2, and C. Yorke 3 1 Institute of Geophysics

More information

Applications of the SEVIRI window channels in the infrared.

Applications of the SEVIRI window channels in the infrared. Applications of the SEVIRI window channels in the infrared jose.prieto@eumetsat.int SEVIRI CHANNELS Properties Channel Cloud Gases Application HRV 0.7 Absorption Scattering

More information

ATMOSPHERIC SCIENCE-ATS (ATS)

ATMOSPHERIC SCIENCE-ATS (ATS) Atmospheric Science-ATS (ATS) 1 ATMOSPHERIC SCIENCE-ATS (ATS) Courses ATS 150 Science of Global Climate Change Credits: 3 (3-0-0) Physical basis of climate change. Energy budget of the earth, the greenhouse

More information

Clouds, Haze, and Climate Change

Clouds, Haze, and Climate Change Clouds, Haze, and Climate Change Jim Coakley College of Oceanic and Atmospheric Sciences Earth s Energy Budget and Global Temperature Incident Sunlight 340 Wm -2 Reflected Sunlight 100 Wm -2 Emitted Terrestrial

More information

Radiation and the atmosphere

Radiation and the atmosphere Radiation and the atmosphere Of great importance is the difference between how the atmosphere transmits, absorbs, and scatters solar and terrestrial radiation streams. The most important statement that

More information

Extinction. Aerosols

Extinction. Aerosols Extinction Extinction is the loss of energy out of a beam of radiation as it propagates. Extinction = absorption + scattering Extinction cross section analogous to the cross-sectional area of absorbers

More information

Understanding and monitoring Arctic weather using Iqaluit Supersite meteorological observations

Understanding and monitoring Arctic weather using Iqaluit Supersite meteorological observations Understanding and monitoring Arctic weather using Iqaluit Supersite meteorological observations Gabrielle Gascon 1, Zen Mariani 2, Armin Dehghan 2, Paul Joe 2, William Burrows 2, and Stella Melo 2 1 Meteorological

More information

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius A. S. Frisch and G. Feingold Cooperative Institute for Research in the Atmosphere National Oceanic and Atmospheric

More information

INTRODUCTION TO MICROWAVE REMOTE SENSING. Dr. A. Bhattacharya

INTRODUCTION TO MICROWAVE REMOTE SENSING. Dr. A. Bhattacharya 1 INTRODUCTION TO MICROWAVE REMOTE SENSING Dr. A. Bhattacharya Why Microwaves? More difficult than with optical imaging because the technology is more complicated and the image data recorded is more varied.

More information

Modelling aerosol-cloud interations in GCMs

Modelling aerosol-cloud interations in GCMs Modelling aerosol-cloud interations in GCMs Ulrike Lohmann ETH Zurich Institute for Atmospheric and Climate Science Reading, 13.11.2006 Acknowledgements: Sylvaine Ferrachat, Corinna Hoose, Erich Roeckner,

More information

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff Skills Worksheet Directed Reading B Section: Water in the Air 1. What do we call the condition of the atmosphere at a certain time and place? a. the water cycle b. weather c. climate d. precipitation THE

More information

ECMWF Workshop on "Parametrization of clouds and precipitation across model resolutions

ECMWF Workshop on Parametrization of clouds and precipitation across model resolutions ECMWF Workshop on "Parametrization of clouds and precipitation across model resolutions Themes: 1. Parametrization of microphysics 2. Representing sub-grid cloud variability 3. Constraining cloud and precipitation

More information

Climate 1: The Climate System

Climate 1: The Climate System Climate 1: The Climate System Prof. Franco Prodi Institute of Atmospheric Sciences and Climate National Research Council Via P. Gobetti, 101 40129 BOLOGNA SIF, School of Energy, Varenna, July 2014 CLIMATE

More information

Comparison of cloud statistics from Meteosat with regional climate model data

Comparison of cloud statistics from Meteosat with regional climate model data Comparison of cloud statistics from Meteosat with regional climate model data R. Huckle, F. Olesen, G. Schädler Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany (roger.huckle@imk.fzk.de

More information

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system Li Bi James Jung John Le Marshall 16 April 2008 Outline WindSat overview and working

More information

MESO-NH cloud forecast verification with satellite observation

MESO-NH cloud forecast verification with satellite observation MESO-NH cloud forecast verification with satellite observation Jean-Pierre CHABOUREAU Laboratoire d Aérologie, University of Toulouse and CNRS, France http://mesonh.aero.obs-mip.fr/chaboureau/ DTC Verification

More information

Reviewing water vapour observations using microwave radiometry for meteorological applications

Reviewing water vapour observations using microwave radiometry for meteorological applications Reviewing water vapour observations using microwave radiometry for meteorological applications Susanne Crewell Institut für Geophysik und Meteorologie Universität zu Köln Content water vapor information

More information

Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop

Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop George Ohring and Fuzhong Weng Joint Center for Satellite Data Assimilation Ron Errico NASA/GSFC Global

More information

Facilitating cloud radar and lidar algorithms: the Cloudnet Instrument Synergy/Target Categorization product

Facilitating cloud radar and lidar algorithms: the Cloudnet Instrument Synergy/Target Categorization product Facilitating cloud radar and lidar algorithms: the Cloudnet Instrument Synergy/Target Categorization product Robin J. Hogan and Ewan J. O Connor August 17, 2004 1 Introduction There is a growing recognition

More information

Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City

Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City Observation of Smoke and Dust Plume Transport and Impact on the Air Quality Remote Sensing in New York City Yonghua Wu*, Chowdhury Nazmi, Cuiya Li, Daniel Hoyos, Barry Gross, Fred Moshary NOAA-CREST and

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information