ISAR (Infrared Sea Surface Temperature Autonomous Radiometer)

Size: px
Start display at page:

Download "ISAR (Infrared Sea Surface Temperature Autonomous Radiometer)"

Transcription

1 ISAR (Infrared Sea Surface Temperature Autonomous Radiometer) (1) Personnel R. Michael Reynolds (RMRCO) Principal Investigator Jeremiah Reynolds (RMRCO) Instrument Technician (2) Objective a. To provide high-quality sea surface skin temperature measurements, Tskin, with the ISAR (Infrared Sea Surface Temperature Autonomous Radiometer), for the MISMO cruise. b. To work with Mirai staff to assemble a quality meteorological data set and apply these to the COARE-3 flux algorithms. c. To work with and train Mirai staff on special data processing software. (3) Method The ISAR instrument was mounted on the ship foremast top on the starboard side and facing downward at 45 degrees from the horizontal (Figure 1). It sampled sea surface, sky, and tow internal black body temperatures with a narrow field-of-view IR radiometer. Individual samples were taken every 2-3 seconds and an entire sweep required about three minutes. Individual samples were processed to a standard 10-min averaging time. For quality assurance temperatures from the JAMSTEC seasnake and the Mirai intake port were compared (Figure 2). Meteorological data were produced by the SOJ system (2-sec samples), ZMET system (10- sec), PRP (2-min averages), Seasnake (5-sec), and ISAR (10-min averages). These data were all averaged, quality checked, and merged into a single best data set (Figure 3). This data set was used as input to the COARE-3 bulk flux software package to compute net ocean heat flux on a 10-min, daily, and full cruise averages (Figure 4). A special set of processing software to accomplish the above meteorological processing was developed. The software was demonstrated to Mirai staff. Then, it was applied to current and past data sets. Any software problems or operation questions were corrected over the remainder of the cruise. (4) Results Figure 1 shows (panel 1) the ISAR mounted on the foremast and (panel 2) the data acquisition system that was located in the meteorological data room. Figure 2 shows an example of temperature measured by various instruments. Air temperature at 25-m height (approx) was measured by the Zeno data logger, Water temperature was measured at the Mirai intake port at 5-m depth and was recorded on the SOJ data files. Tskin was measured by ISAR and recorded on its data acquisition. Finally two Seasnake probes recorded water temperature just a few cm below the water surface.

2 Figure 3 is a plot of the meteorological measurements and computed sea surface energy fluxes for one day during the cruise. Figure 4 shows the energy (heat) fluxes computed for one day. (5) Data Archive Data are stored on the Mac computer mike in the meteorological workroom. The computer is under the care and supervision of the Mirai technical staff. A data processing manual (draft) is available as part of the installation. Figure 1. The ISAR (Infrared Sea Surface Temperature Autonomous Radiometer) was mounted on the foremast, starboard side with a 45º view to the ocean.

3 Figure 2a. The cool skin (blue) is compared with the ship intake temperature at a depth of 5 m (red) and the two seasnake probes (green). On days with high insolation the seasnake and skin temperatures rise above the deeper water temperature. At night the skin and seasnake temperatures are cooler than the 5-m temperature. Figure 2b. This blowup of the water temperature results for one sunny day is an excellent example of the warm layer and cool skin temperature behavior.

4 Figure 3. Summary of meteorological observations during the intensive observation period. The SOJ (green) and Zeno (red) meteorological data are compared. All the data from all sources were pooled and a best data set was developed for application to the heat flux algorithm.

5 Figure 4. An example of energy flux computations for one day in the intensive observation period. Graphs on the left show the best data set and graphs on the right are the computed fluxes: radiation, latent, sensible, rain and the net flux into the ocean. The net flux is high during the day but is negative at night. On this day the daily mean was W/ m^2, strong heating.

Correcting Global Shortwave Irradiance Measurements for Platform Tilt

Correcting Global Shortwave Irradiance Measurements for Platform Tilt Correcting Global Shortwave Irradiance Measurements for Platform Tilt R. Michael Reynolds RMR Company, Brookhaven NY 11719 USA January 11, 2007 Abstract This technical memo describes an algorithm for correcting

More information

ON RADIATION MEASUREMENTS AT SEA

ON RADIATION MEASUREMENTS AT SEA ON RADIATION MEASUREMENTS AT SEA A discussion of the importance of accurate radiation measurements in achieving a usable energy budgets over the sea and the practical problems in achieving them. R. Michael

More information

Russ Ingersoll OC 3570 Project Report 16 SEP, Instrument Accuracy Analysis

Russ Ingersoll OC 3570 Project Report 16 SEP, Instrument Accuracy Analysis Russ Ingersoll OC 3570 Project Report 16 SEP, 2009 Instrument Accuracy Analysis Introduction: As discussed in the Instrument Accuracy Analysis brief given in Spanagel 332 on September 9 th, the purpose

More information

Sunlight and Temperature

Sunlight and Temperature Sunlight and Temperature Name Purpose: Study microclimate differences due to sunlight exposure, location, and surface; practice environmental measurements; study natural energy flows; compare measurements;

More information

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5.

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5. HMS-5000 Manual Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K - Manual version: ver 5.01- www.ecopia21.co.kr - Table of contents - 1. Hardware Installation

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean

A New Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research (NCAR) Boulder,

More information

) was measured using net radiometers. Soil heat flux (Q g

) was measured using net radiometers. Soil heat flux (Q g Paper 4 of 18 Determination of Surface Fluxes Using a Bowen Ratio System V. C. K. Kakane* and E. K. Agyei Physics Department, University of Ghana, Legon, Ghana * Corresponding author, Email: vckakane@ug.edu.gh

More information

Subsurface Expressions of Sea Surface Temperature Variability under Low Winds

Subsurface Expressions of Sea Surface Temperature Variability under Low Winds Subsurface Expressions of Sea Surface Temperature Variability under Low Winds J. Tom Farrar and Robert A. Weller Woods Hole Oceanographic Institution Chris Zappa Lamont-Doherty Earth Observatory of Columbia

More information

Lab Exploration #4: Solar Radiation & Temperature Part I: A Simple Computer Model

Lab Exploration #4: Solar Radiation & Temperature Part I: A Simple Computer Model METR 104: Our Dynamic Weather (w/lab) Lab Exploration #4: Solar Radiation & Temperature Part I: A Simple Computer Model Dr. Dave Dempsey, Department of Earth & Climate Sciences, SFSU, Fall 2013 (5 points)

More information

On Surface fluxes and Clouds/Precipitation in the Tropical Eastern Atlantic

On Surface fluxes and Clouds/Precipitation in the Tropical Eastern Atlantic On Surface fluxes and Clouds/Precipitation in the Tropical Eastern Atlantic Chris Fairall, NOAA/ESRL Paquita Zuidema, RSMAS/U Miami with contributions from Peter Minnett & Erica Key AMMA Team Meeting Leeds,

More information

Autonomous Measurements of Sea-Surface Temperature for the Validation of Satellite Retrievals

Autonomous Measurements of Sea-Surface Temperature for the Validation of Satellite Retrievals Autonomous Measurements of Sea-Surface Temperature for the Validation of Satellite Retrievals R. Michael Reynolds, RMRCo, Brookhaven NY Peter J. Minnett, RSMAS, Miami FL Steven F. Browdy, OMS Tech, Inc.,

More information

Ship-based measurements of cloud microphysics and PBL properties in precipitating trade cumulus clouds during RICO

Ship-based measurements of cloud microphysics and PBL properties in precipitating trade cumulus clouds during RICO Ship-based measurements of cloud microphysics and PBL properties in precipitating trade cumulus clouds during RICO Allen White and Jeff Hare, University of Colorado/CIRES Bruce Albrecht and Pavlos Kolias,

More information

Ship-Based UAV Measurements of Air-Sea Interaction in Marine Atmospheric Boundary Layer Processes in the Equatorial Indian Ocean

Ship-Based UAV Measurements of Air-Sea Interaction in Marine Atmospheric Boundary Layer Processes in the Equatorial Indian Ocean DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Ship-Based UAV Measurements of Air-Sea Interaction in Marine Atmospheric Boundary Layer Processes in the Equatorial Indian

More information

DYNAMO/CINDY Sounding Network

DYNAMO/CINDY Sounding Network DYNAMO/CINDY Sounding Network Richard H. Johnson and Paul E. Ciesielski, CSU Masaki Katsumata and Kunio Yoneyama JAMSTEC DYNAMO Workshop, Miami 28 February 2 March 2011 DYNAMO/CINDY Extended Sounding Array

More information

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 1. The Pacific Ocean is approximately 10,000 km wide. Its upper layer (wind-driven gyre*) is approximately 1,000 m deep. Consider a west-to-east

More information

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5.

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5. HMS-5000 Manual Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K - Manual version: ver 5.01- www.ecopia21.co.kr - Table of contents - 1. Hardware Installation

More information

Lab Exercise #2: Solar Radiation & Temperature Part VI: An Even More Complex Computer Model

Lab Exercise #2: Solar Radiation & Temperature Part VI: An Even More Complex Computer Model METR 104: Our Dynamic Weather (w/lab) Lab Exercise #2: Solar Radiation & Temperature Part VI: An Even More Complex Computer Model Dr. Dave Dempsey Dept. of Geosciences Dr. Oswaldo Garcia, & Denise Balukas

More information

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 13: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Wednesday Quiz #2 Wednesday Mid Term is Wednesday May 6 Practice

More information

OASIS WIRELESS WEATHER STATION

OASIS WIRELESS WEATHER STATION User Manual 3910-B Royal Avenue, Simi Valley, Ca 93063 805-527-4498 RMIS Part No. 500760 TABLE OF CONTENTS INTRODUCTION General Description 3 General Precautions 3 INSTALLATION Base Preparation 6 Tower

More information

SIMBAD RADIOMETER - INSTRUCTIONS

SIMBAD RADIOMETER - INSTRUCTIONS SIMBAD RADIOMETER - INSTRUCTIONS The SIMBAD radiometer measures direct sunlight intensity by viewing the sun, and water-leaving radiance by viewing the ocean surface at 45 degrees from nadir and 135 degrees

More information

Remote Monitoring of Subsurface Flow Conditions in Rivers

Remote Monitoring of Subsurface Flow Conditions in Rivers DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Remote Monitoring of Subsurface Flow Conditions in Rivers Christopher J. Zappa Lamont-Doherty Earth Observatory of Columbia

More information

Closed Book. The time allowed for Part A plus Part B in total is 75 minutes.

Closed Book. The time allowed for Part A plus Part B in total is 75 minutes. 1 -Test 1 Closed Book. The time allowed for Part A plus Part B in total is 75 minutes. Answers are to be written on the answer sheets given (one sheet for Part A and another for Part B). PART A 1. Lake

More information

Seasons and Angle of Insolation

Seasons and Angle of Insolation Computer Seasons and Angle of Insolation 29 (Adapted from Exp 29 Seasons and Angle of Insolation from the Earth Science with Vernier lab manual.) Have you ever wondered why temperatures are cooler in the

More information

Weather Stations. Evaluation copy. 9. Post live weather data on the school s web site for students, faculty and community.

Weather Stations. Evaluation copy. 9. Post live weather data on the school s web site for students, faculty and community. Weather Stations Computer P6 Collecting and analyzing weather data can be an important part of your Earth Science curriculum. It might even be an ongoing part of your entire course. A variety of activities

More information

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1 EAS488/B8800 Climate & Climate Change Homework 2: Atmospheric Radiation and Climate, surface energy balance, and atmospheric general circulation Posted: 3/12/18; due: 3/26/18 Answer keys 1. (10 points)

More information

VALIDATION OF AATSR SSTS WITH SISTeR IN THE SKAGERRAK

VALIDATION OF AATSR SSTS WITH SISTeR IN THE SKAGERRAK VALIDATION OF AATSR SSTS WITH SISTeR IN THE SKAGERRAK T.J. Nightingale Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX,U..K., Email:t.j.nightingale@rl.ac.uk ABSTRACT The SISTeR (Scanning

More information

Global Energy Balance Climate Model. Dr. Robert M. MacKay Clark College Physics & Meteorology

Global Energy Balance Climate Model. Dr. Robert M. MacKay Clark College Physics & Meteorology Global Energy Balance Climate Model Dr. Robert M. MacKay Clark College Physics & Meteorology rmackay@clark.edu (note: the value of 342 W/m 2 given in this figure is the solar constant divided by 4.0 (1368/4.0).

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3.

Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3. Overview of the Earth s Atmosphere Composition 99% of the atmosphere is within 30km of the Earth s surface. N 2 78% and O 2 21% The percentages represent a constant amount of gas but cycles of destruction

More information

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature Lectures 7 and 8: 14, 16 Oct 2008 Sea Surface Temperature References: Martin, S., 2004, An Introduction to Ocean Remote Sensing, Cambridge University Press, 454 pp. Chapter 7. Robinson, I. S., 2004, Measuring

More information

Lecture 10. Surface Energy Balance (Garratt )

Lecture 10. Surface Energy Balance (Garratt ) Lecture 10. Surface Energy Balance (Garratt 5.1-5.2) The balance of energy at the earth s surface is inextricably linked to the overlying atmospheric boundary layer. In this lecture, we consider the energy

More information

TOPIC # 11 Introduction to Models: UNDERSTANDING SYSTEMS & FEEDBACKS. Class notes pp 57-61

TOPIC # 11 Introduction to Models: UNDERSTANDING SYSTEMS & FEEDBACKS. Class notes pp 57-61 TOPIC # 11 Introduction to Models: UNDERSTANDING SYSTEMS & FEEDBACKS Class notes pp 57-61 When one tugs at a single thing in nature, one finds it attached to the rest of the world. ~ John Muir p 57 Our

More information

Long-term global time series of MODIS and VIIRS SSTs

Long-term global time series of MODIS and VIIRS SSTs Long-term global time series of MODIS and VIIRS SSTs Peter J. Minnett, Katherine Kilpatrick, Guillermo Podestá, Yang Liu, Elizabeth Williams, Susan Walsh, Goshka Szczodrak, and Miguel Angel Izaguirre Ocean

More information

Integrated Ocean Skin and Bulk Temperature Measurements Using the Calibrated Infrared In Situ Measurement System (CIRIMS) and Through-Hull Ports

Integrated Ocean Skin and Bulk Temperature Measurements Using the Calibrated Infrared In Situ Measurement System (CIRIMS) and Through-Hull Ports APRIL 2008 J E S S U P A N D BRANCH 579 Integrated Ocean Skin and Bulk Temperature Measurements Using the Calibrated Infrared In Situ Measurement System (CIRIMS) and Through-Hull Ports A. T. JESSUP AND

More information

Relevant timescales: convective events diurnal intraseasonal. 3 ocean-atmosphere communication methods: freshwater flux flux momentum flux

Relevant timescales: convective events diurnal intraseasonal. 3 ocean-atmosphere communication methods: freshwater flux flux momentum flux Radar Perspective on Air-Sea Interactions during DYNAMO Elizabeth Thompson; July 23 2013 Update Steve Rutledge, Brenda Dolan, Jim Moum, Aurelie Moulin, Chris Fairall, Bob Rilling, Mike Dixon, Scott Ellis,

More information

Chapter 3. Multiple Choice Questions

Chapter 3. Multiple Choice Questions Chapter 3 Multiple Choice Questions 1. In the case of electromagnetic energy, an object that is hot: a. radiates much more energy than a cool object b. radiates much less energy than a cool object c. radiates

More information

LP NET. 1 About LP NET. 2 Working Principle. TEL r.a. FAX

LP NET. 1 About LP NET. 2 Working Principle. TEL r.a. FAX CENTRO DI TARATURA SIT N 124 MEASURING INSTRUMENTS REGULATORS STRUMENTI DI MISURA REGOLATORI TEL. +39.049.8977150 r.a. FAX +39.049.635596 LP NET 1 About LP NET LP NET net radiometer is designed to measure

More information

An Investigation of Turbulent Heat Exchange in the Subtropics

An Investigation of Turbulent Heat Exchange in the Subtropics DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Investigation of Turbulent Heat Exchange in the Subtropics James B. Edson University of Connecticut, Avery Point 1080

More information

Estimating Air-Sea Energy Fluxes with the TOGA-COARE Algorithm

Estimating Air-Sea Energy Fluxes with the TOGA-COARE Algorithm Remote Measurements & Research Company, RMR Co., LLC December 9, 011 14 Euclid Av. Seattle WA 981 Tel: 06-466-6078 michaelrmrco.com Memorandum: M1108-draft Estimating Air-Sea Energy Fluxes with the TOGA-COARE

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out

More information

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 2: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Luminosity (L) the constant flux of energy put out

More information

Topic # 11 HOW CLIMATE WORKS continued (Part II) pp in Class Notes

Topic # 11 HOW CLIMATE WORKS continued (Part II) pp in Class Notes Topic # 11 HOW CLIMATE WORKS continued (Part II) pp 61-67 in Class Notes To drive the circulation, the initial source of energy is from the Sun: Not to scale! EARTH- SUN Relationships 4 Things to Know

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 About Water on the Earth: The Hydrological Cycle Review 3-states of water, phase change and Latent Heat Indices of Water Vapor Content in the

More information

A Live Report from Pre-YMC Campaign in Sumatra

A Live Report from Pre-YMC Campaign in Sumatra A Live Report from Pre-YMC Campaign in Sumatra Kunio Yoneyama and Japan & Indonesia Pre-YMC campaign Team - An Update on Japanese Activities since Singapore Workshop - Outline 1) Boreal winter of 2017/18

More information

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 14: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 14: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Today, HW#5 is posted Quiz Today on Chapter 3, too. Mid Term

More information

Topic # 12 How Climate Works

Topic # 12 How Climate Works Topic # 12 How Climate Works A Primer on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes pp 63-68 in Class Notes How do we get energy from this........ to drive

More information

Lab Exploration #4: Solar Radiation & Temperature Part II: A More Complex Computer Model

Lab Exploration #4: Solar Radiation & Temperature Part II: A More Complex Computer Model METR 104: Our Dynamic Weather (w/lab) Lab Exploration #4: Solar Radiation & Temperature Part II: A More Complex Computer Model Dr. Dave Dempsey, Department of Earth & Climate Sciences, SFSU, Spring 2014

More information

SU solar resource measurement station: Sonbesie metadata

SU solar resource measurement station: Sonbesie metadata SU solar resource measurement station: Sonbesie metadata Date: 30 July 2013 Introduction A solar resource measurement station, known as Sonbesie, has been installed at Stellenbosch University. The system

More information

Underway Data Management via the SAMOS Initiative

Underway Data Management via the SAMOS Initiative Underway Data Management via the SAMOS Initiative Shawn R. Smith 1, Jeremy Rolph 1, Kristen Briggs 1, Mark A. Bourassa 1,2, Daniel Wolfe 3, and Chris Fairall 4 1 COAPS, Florida State University, Tallahassee,

More information

Discussion document: Near-surface oceanic temperature gradients Authors: Peter Minnett and Andrea Kaiser-Weiss. Page 1 of 7 Version 12 Jan 2012

Discussion document: Near-surface oceanic temperature gradients Authors: Peter Minnett and Andrea Kaiser-Weiss. Page 1 of 7 Version 12 Jan 2012 Page 1 of 7 This discussion document is to provide an explanation of the cartoon of near-surface temperature gradients that is on the GHRSST web pages (Figure 1), and which receives frequent attention,

More information

REPORT ON SEA LEVEL MEASUREMENT FOR GHANA

REPORT ON SEA LEVEL MEASUREMENT FOR GHANA 20TH SEPTEMBER 2006 REPORT ON SEA LEVEL MEASUREMENT FOR GHANA Emmanuel K. Nkebi 1 1 Survey Department of Ghana, P. O. Box CT903, Accra Tel: 233 21 777 334 Fax : 233 21 765687 E-mail: survey@ghana.com E-mail:eknkebi@yahoo.com

More information

Air Sea Process in the IndianI. Ocean and the Intraseasonal Oscillation. J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F.

Air Sea Process in the IndianI. Ocean and the Intraseasonal Oscillation. J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F. Air Sea Process in the IndianI Ocean and the Intraseasonal Oscillation J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F. Doblas Reyes Origin of the intraseasonal variability (ISV) of the convection?

More information

Potential Fields Pool Equipment (PFPE) Focus Group. James Kinsey Randy Herr Dan Fornari

Potential Fields Pool Equipment (PFPE) Focus Group. James Kinsey Randy Herr Dan Fornari Potential Fields Pool Equipment (PFPE) Focus Group James Kinsey jkinsey@whoi.edu Randy Herr Randyherr@aol.com Dan Fornari dfornari@whoi.edu Outline Review status and discuss future actions for: Spares

More information

PRP2 CAL-VAL BOULDER CO 4/12-5/3 2013

PRP2 CAL-VAL BOULDER CO 4/12-5/3 2013 PRP2 CAL-VAL BOULDER CO 4/12-5/3 213 Lat: 39.9916 Lon: -15.2669 THIS IS AN INFORMAL LOG OF THE EXPERIMENT AND THE FOLLOW DATA ANALYSIS UTC JD LOG 4/1 1 Early flight from Seattle. System was deployed and

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

1. CLIMATOLOGY: 2. ATMOSPHERIC CHEMISTRY:

1. CLIMATOLOGY: 2. ATMOSPHERIC CHEMISTRY: What is meteorology? A. METEOROLOGY: an atmospheric science that studies the day to day changes in the atmosphere 1. ATMOSPHERE: the blanket of gas that surrounds the surface of Earth; the air 2. WEATHER:

More information

9/1/14. Chapter 2: Heating Earth s Surface and Atmosphere. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck

9/1/14. Chapter 2: Heating Earth s Surface and Atmosphere. The Atmosphere: An Introduction to Meteorology, 12 th. Lutgens Tarbuck Chapter 2: Heating Earth s Surface and Atmosphere The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University! Earth s two principal

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

PHYSICS 289 Experiment 3 Fall Heat transfer and the Greenhouse Effect

PHYSICS 289 Experiment 3 Fall Heat transfer and the Greenhouse Effect PHYSICS 289 Experiment 3 Fall 2006 Heat transfer and the Greenhouse Effect Only a short report is required: worksheets, graphs and answers to the questions. Introduction In this experiment we study the

More information

Unit 3 Review Guide: Atmosphere

Unit 3 Review Guide: Atmosphere Unit 3 Review Guide: Atmosphere Atmosphere: A thin layer of gases that forms a protective covering around the Earth. Photosynthesis: Process where plants take in carbon dioxide and release oxygen. Trace

More information

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College Canimals borrowed, with thanks, from Malaspina University College/Kwantlen University College http://commons.wikimedia.org/wiki/file:ursus_maritimus_steve_amstrup.jpg Purpose Investigate the rate heat

More information

Albedo and Heat Absorption

Albedo and Heat Absorption In this experiment, we will be delving into the world of reflection and absorption. As light energy hits different surfaces, some of the light energy is reflected, while most of the rest of the light is

More information

Retrieval of the Skin Sea Surface Temperature Using Hyperspectral Measurements From the Marine-Atmospheric Emitted Radiance Interferometer

Retrieval of the Skin Sea Surface Temperature Using Hyperspectral Measurements From the Marine-Atmospheric Emitted Radiance Interferometer University of Miami Scholarly Repository Open Access Theses Electronic Theses and Dissertations 213-7-23 Retrieval of the Skin Sea Surface Temperature Using Hyperspectral Measurements From the Marine-Atmospheric

More information

An Improvement of Parametrization of Short-Wave Radiation at the Sea Surface on the Basis of Direct Measurements in the Atlantic

An Improvement of Parametrization of Short-Wave Radiation at the Sea Surface on the Basis of Direct Measurements in the Atlantic ISSN 0-, Russian Meteorology and Hydrology, 00, Vol., No., pp.. Allerton Press, Inc., 00. Original Russian Text M.P. Aleksandrova, S.K. Gulev, A.V. Sinitsyn, 00, published in Meteorologiya i Gidrologiya,

More information

Ice Surface temperatures, status and utility. Jacob Høyer, Gorm Dybkjær, Rasmus Tonboe and Eva Howe Center for Ocean and Ice, DMI

Ice Surface temperatures, status and utility. Jacob Høyer, Gorm Dybkjær, Rasmus Tonboe and Eva Howe Center for Ocean and Ice, DMI Ice Surface temperatures, status and utility Jacob Høyer, Gorm Dybkjær, Rasmus Tonboe and Eva Howe Center for Ocean and Ice, DMI Outline Motivation for IST data production IST from satellite Infrared Passive

More information

Topic # 12 Natural Climate Processes

Topic # 12 Natural Climate Processes Topic # 12 Natural Climate Processes A Primer on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes pp 63-68 in Class Notes RADIATION / ENERGY BALANCE Radiation

More information

Infrared ship signature prediction, model validation and sky radiance

Infrared ship signature prediction, model validation and sky radiance Infrared ship signature prediction, model validation and sky radiance Filip Neele * TNO Defence, Security and Safety, The Hague, The Netherlands ABSTRACT The increased interest during the last decade in

More information

Snow II: Snowmelt and energy balance

Snow II: Snowmelt and energy balance Snow II: Snowmelt and energy balance The are three basic snowmelt phases 1) Warming phase: Absorbed energy raises the average snowpack temperature to a point at which the snowpack is isothermal (no vertical

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Greenhouse Steady State Energy Balance Model

Greenhouse Steady State Energy Balance Model Greenhouse Steady State Energy Balance Model The energy balance for the greenhouse was obtained by applying energy conservation to the greenhouse system as a control volume and identifying the energy terms.

More information

The Ocean-Atmosphere System II: Oceanic Heat Budget

The Ocean-Atmosphere System II: Oceanic Heat Budget The Ocean-Atmosphere System II: Oceanic Heat Budget C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth MAR 555 Lecture 2: The Oceanic Heat Budget Q

More information

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems The Atmosphere 1 How big is the atmosphere? Why is it cold in Geneva? Why do mountaineers need oxygen on Everest? 2 A relatively thin layer of gas over the Earths surface Earth s radius ~ 6400km Atmospheric

More information

1. Introduction/Goals and expected outcomes

1. Introduction/Goals and expected outcomes Request for use of the NSF Facilities for Education at the University of Colorado Boulder CABL: Characterizing the Atmospheric Boundary Layer Julie K. Lundquist Dept. of Atmospheric and Oceanic Sciences

More information

The Heat Budget for Mt. Hope Bay

The Heat Budget for Mt. Hope Bay The School for Marine Science and Technology The Heat Budget for Mt. Hope Bay Y. Fan and W. Brown SMAST, UMassD SMAST Technical Report No. SMAST-03-0801 The School for Marine Science and Technology University

More information

SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions

SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions Our Place in Space Cosmic Rays AUTHOR: Jamie Repasky GRADE LEVEL(S): 3-5 SUBJECT AREA(S): science, math, solar power, visible light, ultraviolet (UV), infrared (IR), energy, Watt, atmospheric conditions

More information

Strategic planning of meteorological and snow monitoring stations Case of the Mayo watershed

Strategic planning of meteorological and snow monitoring stations Case of the Mayo watershed Strategic planning of meteorological and snow monitoring stations Case of the Mayo watershed Technical Note to : Yukon Energy Corporation #2 Miles Canyon Road Box 5920 Whitehorse YT Y1A 6S7 Alain N. Rousseau,

More information

Weather Cloud Detection. Measuring infrared temperature from the environment to characterize the current weather

Weather Cloud Detection. Measuring infrared temperature from the environment to characterize the current weather Weather Cloud Detection Measuring infrared temperature from the environment to Objective The purpose of this activity is to study everyday weather via IRtemperature detection from the environment, creating

More information

MODIS Sea Surface Temperature Algorithm Refinement and Validation through Ship-Based Infrared Spectroradiometry. NASA Award Number NNX11AF26G

MODIS Sea Surface Temperature Algorithm Refinement and Validation through Ship-Based Infrared Spectroradiometry. NASA Award Number NNX11AF26G ROSES 2009 Physical Oceanography MODIS Sea Surface Temperature Algorithm Refinement and Validation through Ship-Based Infrared Spectroradiometry. NASA Award Number NNX11AF26G First Year Report P. J. Minnett

More information

Chapter 3- Energy Balance and Temperature

Chapter 3- Energy Balance and Temperature Chapter 3- Energy Balance and Temperature Understanding Weather and Climate Aguado and Burt Influences on Insolation Absorption Reflection/Scattering Transmission 1 Absorption An absorber gains energy

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery Directed Reading for Content Mastery Overview Atmosphere Directions: Complete the concept map using the terms in the list below. weather exosphere coldest air temperature ionosphere stratosphere 1. which

More information

UV RADIATION IN THE SOUTHERN SEAS IN SUMMER 2000 Gerd Wendler and Brian Hartmann Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775

UV RADIATION IN THE SOUTHERN SEAS IN SUMMER 2000 Gerd Wendler and Brian Hartmann Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775 P3.2 UV RADIATION IN THE SOUTHERN SEAS IN SUMMER 2000 Gerd Wendler and Brian Hartmann Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775 Abstract During a cruise on the USCGC POLAR SEA

More information

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature Heat Transfer Conduction, Convection, and Radiation Review: Temperature! Temperature is:! The quantity that tells how hot or cold something is compared with a standard! A measure of the average kinetic

More information

1 Introduction. Station Type No. Synoptic/GTS 17 Principal 172 Ordinary 546 Precipitation

1 Introduction. Station Type No. Synoptic/GTS 17 Principal 172 Ordinary 546 Precipitation Use of Automatic Weather Stations in Ethiopia Dula Shanko National Meteorological Agency(NMA), Addis Ababa, Ethiopia Phone: +251116639662, Mob +251911208024 Fax +251116625292, Email: Du_shanko@yahoo.com

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Earth Science: Second Quarter Grading Rubric Kindergarten

Earth Science: Second Quarter Grading Rubric Kindergarten Earth Science: Second Quarter Grading Rubric Kindergarten of their senses Observation skills are used to note characteristics of our environment on a daily basis. The weather may be sunny one day and cloudy

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

RV Investigator Scientific Highlights

RV Investigator Scientific Highlights RV Investigator Scientific Highlights Voyage #: IN2016_V02 Voyage title: SOTS+CAPRICORN+Eddy Mobilisation: Hobart, Friday-Sun, 11-13 March 2016 Depart: Hobart, 1000 Monday, 14 March 2016 Return: Hobart,

More information

Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C

Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C 1 2 3 4 Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C plus 273.15 0 K is absolute zero, the minimum

More information

C-130 and instrumentation for RICO

C-130 and instrumentation for RICO C-130 and instrumentation for RICO Flight schedule and staff limitations Hardpoint allocation and cabin layout Time synchronization Flight issues expectation around convection Sensor groups and expected

More information

A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes

A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. C4, 3108, doi:10.1029/2002jc001418, 2003 A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes S. A. Josey

More information

40P (2 x 60 x 60) = 2.5 x 10 6 (4200)(5) P = 1.82 x 10 5 W

40P (2 x 60 x 60) = 2.5 x 10 6 (4200)(5) P = 1.82 x 10 5 W NAME : F.3C ( ) Marks: /50 Form 3 Physics Assessment on Heat Time allowed: 45 minutes Section A (34 marks) 1. An indoor swimming pool containing 2.5 x 10 6 kg of water uses 40 identical heaters to maintain

More information

Assimilation Impact of Physical Data on the California Coastal Ocean Circulation and Biogeochemistry

Assimilation Impact of Physical Data on the California Coastal Ocean Circulation and Biogeochemistry Assimilation Impact of Physical Data on the California Coastal Ocean Circulation and Biogeochemistry Yi Chao, Remote Sensing Solutions (RSS)/UCLA; John D. Farrara, RSS; Fei Chai, University of Maine; Hongchun

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

SCOTIA WEATHER SERVICES INC.

SCOTIA WEATHER SERVICES INC. SCOTIA WEATHER SERVICES INC. Mission To provide high quality, reliable valued-added environmental information services based on measured and modeled atmospheric, land and/or oceanographic physical parameters

More information

Charles Magori. Status Report of GLOSS Tide Gauges in Kenya

Charles Magori. Status Report of GLOSS Tide Gauges in Kenya GLOSS Group of Experts Meeting February 2005 Charles Magori Introduction Status Report of GLOSS Tide Gauges in Kenya There is growing concern about the rise in mean sea level around the globe. To address

More information