Stratospheric influences on subseasonal predictability of European energy-industry-relevant parameters

Size: px
Start display at page:

Download "Stratospheric influences on subseasonal predictability of European energy-industry-relevant parameters"

Transcription

1 S2S / TIGGE Workshop ECMWF April 219 Stratospheric influences on subseasonal predictability of European energy-industry-relevant parameters Dominik Büeler 1,2 / Remo Beerli 3,2, Heini Wernli 2, Christian M. Grams 1,2 1) Institute of Meteorology and Climate Research, Department Troposphere Research, KIT, Germany 2) Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland 3) AXPO Solutions AG, Switzerland e t i b o t ast fails 9 E e h 21 h c t r a M m 8 o st fr arket Analyst, 1 a e B e Th as M roley, G Alex F KIT The Research University in the Helmholtz Association

2 Motivation Polar vortex weather regimes wind power REPORTS A Northern Annular Mode.3 Weak Vortex Regimes e.g., Baldwin & Dunkerton, 21, SCI; Tripathi et al., 215, ERL; Charlton-Perez et al., 218, QJRMS 1 5 hpa 4 km Nov Dec Jan Feb Mar A 2 - Apr Fig. 1. Time-height development of the northern annular mode during the winter of The indices have daily resolution and are nondimensional. Blue corresponds to positive values (strong polar vortex), and red corresponds to negative values (weak polar vortex). The contour interval is.5, with values between!.5 and.5 unshaded. The thin horizontal line indicates the approximate boundary between the troposphere and the stratosphere. -1 B Strong Vortex Regimes Composite of 18 Weak Vortex Events hpa Between ERAI NAO and ERAI m wind speed Between ERAI NAO and ERAI 1.5m air temperature Between G5 NAO and G5 m wind speed (48 samples) Between G5 NAO and G5 1.5m air temperature (48 samples) Between G5 EM NAO and G5 EM m wind speed (2 samples) Between G5 EM NAO and G5 EM 1.5m air temperature (2 samples) km -9-6 B - Lag (Days) Composite of Strong Vortex Events hpa 2-1 km Lag (Days) 6 9 Fig. 2. Composites of time-height development of the northern annular mode for (A) 18 weak vortex events and (B) strong vortex events. The events are determined by the dates on which the -hpa annular mode values cross 3. and "1.5, respectively. The indices are nondimensional; the contour interval for the color shading is.25, and.5 for the white contours. Values between!.25 and.25 are unshaded. The thin horizontal lines indicate the approximate boundary between the troposphere and the stratosphere. Stratospheric and tropospheric annular mode variations are sometimes independent of each other, but (on average) strong anomalies just above the tropopause appear to favor tropospheric anomalies of the same sign. Opposing anomalies as in December 1998 (Fig. 1) are possible, but anomalies of the same sign dominate the average (Fig. 2). To examine the tropospheric circulation after these extreme events, we define weak and strong vortex regimes as the 6-day periods after the dates on which the!3. and "1.5 thresholds were crossed. Our results are not sensitive to the exact range of days used and do not depend on the first few days after the events. We focus on the average behavior during these weak vortex regimes and Oct.6 e.g., Clark et al., 217, ERL; Brayshaw et al., 211, RE.5 Figure 1. Correlation between GloSea5 ensemble mean and ERA Interim sea level pressure for DJF compiled from 2 yea simulation. Mask (white areas) applied to correlations not significantly greater than zero at % level. 2.4 strong vortex regimes, as characterized by the normalized AO index (22). The average value (8 days) during weak vortex regimes is!.44, and ".35 for strong vortex regimes (18 days). The large sample sizes contribute to the high statistical significance of these averages (23). During the weak and strong vortex regimes the average surface pressure anomalies (Fig. 3) are markedly like opposite phases of the AO (11) or NAO (14), with the largest effect on pressure gradients in the North Atlantic and Northern Europe. The probability density functions (PDFs) of the daily normalized AO and NAO indices (24) during weak and strong vortex regimes are compared in Fig. 4. More pronounced than the shift in means are differences in the shapes of Fig. 3. Average sea-level pressure anomalies (hpa) for (A) the 8 days during weak vortex regimes and (B) the 18 days during strong vortex regimes. the PDFs, especially between the tails of the curves. Values of AO or NAO index greater than 1. are three to four times as likely during strong vortex regimes than weak vortex regimes. Similarly, index values less than!1. are three to four times as likely during weak vortex regimes than strong vortex regimes. Values of the daily AO index greater than 1. and less than!1. are associated with statistically significant changes in the probabilities of weather extremes such as cold air outbreaks, snow, and high winds across Europe, Asia, and North America (25). The observed circulation changes during weak and strong vortex regimes are substantial from a meteorological viewpoint and can be anticipated by observing the stratosphere. These results imply a measure of predictability, up to 2 months in advance, for AO/ NAO variations in northern winter, particularly for extreme values that are associated with unusual weather events having the greatest impact on society. Since the NAO and AO are known to modulate the position of surface cyclones across the Atlantic and Europe, we examine the tracks of surface cyclones with central pressure less than 19 OCTOBER 21 VOL 294 SCIENCE NOAA NOAA EnergyWay State of the stratospheric polar vortex (SPV) as a direct source of subseasonal predictability for European energy industry? Figure 2. Correlations between NAO on winter near-surface wind speed (left column) and temperature (right column). Ob (ERA Interim) relationships are shown in the top row. Middle row shows ensemble member relationships in hindcasts. Botto shows ensemble mean relationships in hindcasts. Mask (white areas) applied to correlations not significant at % level. 2 2 April 219 ECMWF the wind speed at m (in m s!1), following the Seasonal means of power density were produ Meteorology Climate Research (IMK-TRO) gridpoint by averaging over power d approach of Manwell et alinstitute (2) inof which wind powerandeach is primarily a function of the volume throughput of air computed using the daily-mean output fr driving the blades of a turbine. r is the air density, GloSea5 hindcasts and 6-hourly means from

3 Data Statistical forecast Strength of SPV (Δ 6-9 N from ERA-Interim Daily, DJF, Wind power generation for every European country Renewables.ninja dataset (Staffel & Pfenninger, 216, ENE; Daily month-ahead average, DJF, Beerli et al., 217, QJRMS 3 2 April 219 ECMWF

4 Beerli Results et al. Simple 3-categorical statistical forecast Stratos days ahead Weaker Stronger Figure 8. (a) The RPSS of three-categorical statistical fo SPV SPV value in the bins indicated on the x-axis. (b) Same as (a), et al.,of217, QJRMS Figure 7. Beerli The RPSS three-categorical statistical forecasts of month-aheadconfidence interval for the RPSS values derived by the boo average wind electricity generation as a function of lead time for eight European countries. The lead time on the x-axis indicates the start of the forecast day period. For instance, the RPSS at a lead time of 15 days shows the skill of forecasts for wind electricity generation averaged over days ahead. The(their figure 7) for month-ahead temperature fo shaded colours show the confidence interval for the RPSS values derived by the cities ofinstitute Europe. For instance, our (IMK-TRO) RPSS for m 4 2 April 219 ECMWFdescribed Dominikin Büeler dominik.bueeler@kit.edu of Meteorology and Climate Research bootstrapping approach the text for Sweden (blue), Germany (red) electricity generation in Sweden is about.4 and Spain (yellow). How does this mechanism influence the skill of subseasonal numerical weather models?

5 Data Numerical forecast Subseasonal ECMWF model ( 2 reforecasts / week, DJF, ensemble members Fields calculated for each reforecast Strength of SPV = (Δ Z@hPa) 6-9 N At forecast initial time (Δ m wind) European Countries (Δ 2m temperature) European Countries (Δ precipitation) European Countries Average over 1 month lead time 5 2 April 219 ECMWF

6 Results Regional model skill pattern m wind 2m temperature Precipitation Anomalies after % strongest SPV states anomalies after % weakest SPV states 6 2 April 219 ECMWF

7 Results Model skill for m wind Anomalies after 2% strongest SPV states Anomalies after 2% weakest SPV states S2S ERA S2S ERA 7 2 April 219 ECMWF

8 Results Model skill for 2m temperature Anomalies after 2% strongest SPV states Anomalies after 2% weakest SPV states S2S ERA S2S ERA 8 2 April 219 ECMWF

9 Results Model skill for 2m temperature Anomalies after 2% strongest SPV states Anomalies after 2% weakest SPV states S2S ERA S2S ERA 9 2 April 219 ECMWF

10 Conclusions R. Beerli et al. ronger than normal polar event, but there are no n of a stratospheric signal e findings of Limpasuvan contrast, for weak polar the composite mean φpc en stratospheric warmings 21; Limpasuvan et al., 5 days prior to the events bit a surface signal that is The positive φpc in the re the weak polar-vortex heric precursor of SSWs, ous previous studies (e.g. suvan et al., 24). Given tential height anomalies of the SSWs documented in hese weakest polar-vortex SSWs. r stratospheric circulation electricity generation in C15 is far from its climahe lower stratosphere and on is a result of long-lived ions, which occur due to and the stratosphere. We hese results for the precity generation in Europe. city forecasts based on the n estigate the predictive skill p between the state of the wind electricity generation is used as a predictor for s of "CF 31d. We predict gical terciles of "CF 31d served "CF 31d ) using the ue of φpc15, we determine distribution (Pinit ). φpc15 ll within +/ % of this the basis to determine the "CF 31d from all pairs of The following example for ates this approach. On 19 ch is the 18.2th percentile Pinit = P18.2 = 8.8 m). d "CF 31d in the dataset P8.2 = m) to the = 53.7 m) to derive the me season are left out to 5 "CF 31d pairs between % of the "CF 31d values are e tercile and 66.3% in the head forecast for "CF 31d 1%/66.3% probability of er tercile. If φpc15 < P, or φpc15 < Pinit+ (and untry, these forecasts are day from 1985 to 214 in "CF 31d i.e. only φpc15 m the current season are ally skilful forecasts. or each winter (DJF) day countries with the highest many, Spain, UK, France, or lagged 31 day windows for wind-power forecasts RPSS for 1 31 days ahead Figure 7. The RPSS of three-categorical statistical forecasts of month-ahead average wind electricity generation as a function of lead time for eight European countries. The lead time on the x-axis indicates the start of the forecast day period. For instance, the RPSS at a lead time of 15 days shows the skill of forecasts for wind electricity generation averaged over days ahead. The shaded colours show the confidence interval for the RPSS values derived by the bootstrapping approach described in the text for Sweden (blue), Germany (red) and Spain (yellow). and so on). Additionally, we apply a bootstrapping approach in order to test the sampling sensitivity of the skill scores of these forecasts. In 2 repetitions, we randomly sample 8% of the winters and calculate the RPSS of each repetition. The % and 9% percentiles among these 2 RPSS values are the confidence intervals displayed in shaded colours in Figures 7 and 8. Comparing the RPSS for the eight countries mentioned above (Figure 7) reveals three groups of countries with similar levels of predictability. (1) High predictability of "CF 31d : Sweden and Denmark (in blue in Figure 7), RPSS.2 for lead time. (2) Moderate predictability of "CF 31d : Germany, UK and Poland (in red in Figure 7), RPSS.1 for lead time. (3) No predictability of "CF 31d : Spain, France and Italy (in yellow in Figure 7), RPSS < for lead time. These groups are in line with the findings derived from Figures 2 and 3. Sweden and Denmark are located in the centre of the high (low) wind corridor when φpc15 is strongly negative (positive), which makes it very likely that these countries will indeed experience above (below) normal CF in the following days. The countries with moderate predictability (Germany, UK and Poland) are situated at the southern edge of these high (low) wind corridors, which again makes it likely for them to experience above (below) normal CF, but this is less certain than for the Nordic countries just a subtle change in the synoptic set-up (which is not constrained by φpc15 ) may change the CF outcome. Hence the skill of the statistical forecast for these countries is notably lower than for the Nordic countries. For the Southern European countries (Spain, Italy and France), the RPSS is even negative, which means that the predictions based on the state of the lower stratosphere are worse than simply forecasting the climatological distribution of "CF 31d. These countries are situated well outside the areas with significantly positive or negative wind-speed anomalies shown in Figures 2 and 3. Therefore, there is no sufficiently strong signal related to the stratospheric circulation, which could be exploited to issue skilful forecasts. If the lead time for the forecasts of "CF 31d is increased, the skill levels get gradually lower but, for both high and moderate predictability countries, the statistical forecasts days ahead are also better than the climatological reference forecast. The skill that we find here for month-ahead wind electricity generation is slightly higher than the skill levels found by Karpechko (215) Q. J. R. Meteorol. Soc. 143 : (217) ological Society Strong spatial variability of statistical and numerical model skill for month-ahead prediction of wind power generation / surface weather in Europe Reason: anomalous SPV states at forecast initial time lead to persistent NAO-like anomaly patterns à model skill for countries located in affected regions tends to be enhanced However, model skill increase much more significant and robust after strongest SPV states than after weakest SPV states (~ SSWs), which even lead to significant skill reduction for certain countries (particularly T@2m) Implications Energy meteorology cannot rely on enhanced predictability after weakest (~ SSWs) but more after strongest SPV states Regional SSW response in S2S models needs to be improved 2 April 219 ECMWF

Does the stratosphere provide predictability for month-ahead wind power in Europe?

Does the stratosphere provide predictability for month-ahead wind power in Europe? ICEM 2017 Bari 27 June 2017 Does the stratosphere provide predictability for month-ahead wind power in Europe? Remo Beerli, Heini Wernli and Christian Grams Remo.Beerli@env.ethz.ch Institute for Atmospheric

More information

GPC Exeter forecast for winter Crown copyright Met Office

GPC Exeter forecast for winter Crown copyright Met Office GPC Exeter forecast for winter 2015-2016 Global Seasonal Forecast System version 5 (GloSea5) ensemble prediction system the source for Met Office monthly and seasonal forecasts uses a coupled model (atmosphere

More information

Balancing Europe s wind power output through spatial deployment informed by weather regimes

Balancing Europe s wind power output through spatial deployment informed by weather regimes photo: Bernhard Mühr, www.wolkenatlas.de Balancing Europe s wind power output through spatial deployment informed by weather regimes Christian M. Grams 1,*, Remo Beerli 1**, Stefan Pfenninger 2, Iain Staffell

More information

Skilful seasonal predictions for the European Energy Industry

Skilful seasonal predictions for the European Energy Industry Skilful seasonal predictions for the European Energy Industry Hazel Thornton, Philip Bett, Robin Clark, Adam Scaife, Brian Hoskins, David Brayshaw WGSIP, 10/10/2017 Outline Energy industry and climate

More information

Predictability of Sudden Stratospheric Warmings in sub-seasonal forecast models

Predictability of Sudden Stratospheric Warmings in sub-seasonal forecast models Predictability of Sudden Stratospheric Warmings in sub-seasonal forecast models Alexey Karpechko Finnish Meteorological Institute with contributions from A. Charlton-Perez, N. Tyrrell, M. Balmaseda, F.

More information

The ECMWF Extended range forecasts

The ECMWF Extended range forecasts The ECMWF Extended range forecasts Laura.Ferranti@ecmwf.int ECMWF, Reading, U.K. Slide 1 TC January 2014 Slide 1 The operational forecasting system l High resolution forecast: twice per day 16 km 91-level,

More information

S e a s o n a l F o r e c a s t i n g f o r t h e E u r o p e a n e n e r g y s e c t o r

S e a s o n a l F o r e c a s t i n g f o r t h e E u r o p e a n e n e r g y s e c t o r S e a s o n a l F o r e c a s t i n g f o r t h e E u r o p e a n e n e r g y s e c t o r C3S European Climatic Energy Mixes (ECEM) Webinar 18 th Oct 2017 Philip Bett, Met Office Hadley Centre S e a s

More information

How far in advance can we forecast cold/heat spells?

How far in advance can we forecast cold/heat spells? Sub-seasonal time scales: a user-oriented verification approach How far in advance can we forecast cold/heat spells? Laura Ferranti, L. Magnusson, F. Vitart, D. Richardson, M. Rodwell Danube, Feb 2012

More information

Some Observed Features of Stratosphere-Troposphere Coupling

Some Observed Features of Stratosphere-Troposphere Coupling Some Observed Features of Stratosphere-Troposphere Coupling Mark P. Baldwin, David B. Stephenson, David W.J. Thompson, Timothy J. Dunkerton, Andrew J. Charlton, Alan O Neill 1 May, 2003 1000 hpa (Arctic

More information

Monitoring and Prediction of Climate Extremes

Monitoring and Prediction of Climate Extremes Monitoring and Prediction of Climate Extremes Stephen Baxter Meteorologist, Climate Prediction Center NOAA/NWS/NCEP Deicing and Stormwater Management Conference ACI-NA/A4A Arlington, VA May 19, 2017 What

More information

Developing Operational MME Forecasts for Subseasonal Timescales

Developing Operational MME Forecasts for Subseasonal Timescales Developing Operational MME Forecasts for Subseasonal Timescales Dan C. Collins NOAA Climate Prediction Center (CPC) Acknowledgements: Stephen Baxter and Augustin Vintzileos (CPC and UMD) 1 Outline I. Operational

More information

Does increasing model stratospheric resolution improve. extended-range forecast skill?

Does increasing model stratospheric resolution improve. extended-range forecast skill? Does increasing model stratospheric resolution improve extended-range forecast skill? 0 Greg Roff, David W. J. Thompson and Harry Hendon (email: G.Roff@bom.gov.au) Centre for Australian Weather and Climate

More information

What kind of stratospheric sudden warming propagates to the troposphere?

What kind of stratospheric sudden warming propagates to the troposphere? What kind of stratospheric sudden warming propagates to the troposphere? Ken I. Nakagawa 1, and Koji Yamazaki 2 1 Sapporo District Meteorological Observatory, Japan Meteorological Agency Kita-2, Nishi-18,

More information

particular regional weather extremes

particular regional weather extremes SUPPLEMENTARY INFORMATION DOI: 1.138/NCLIMATE2271 Amplified mid-latitude planetary waves favour particular regional weather extremes particular regional weather extremes James A Screen and Ian Simmonds

More information

Linkages between Arctic sea ice loss and midlatitude

Linkages between Arctic sea ice loss and midlatitude Linkages between Arctic sea ice loss and midlatitude weather patterns Response of the wintertime atmospheric circulation to current and projected Arctic sea ice decline Gudrun Magnusdottir and Yannick

More information

Long range predictability of winter circulation

Long range predictability of winter circulation Long range predictability of winter circulation Tim Stockdale, Franco Molteni and Laura Ferranti ECMWF Outline ECMWF System 4 Predicting the Arctic Oscillation and other modes Atmospheric initial conditions

More information

Diagnostics of the prediction and maintenance of Euro-Atlantic blocking

Diagnostics of the prediction and maintenance of Euro-Atlantic blocking Diagnostics of the prediction and maintenance of Euro-Atlantic blocking Mark Rodwell, Laura Ferranti, Linus Magnusson Workshop on Atmospheric Blocking 6-8 April 2016, University of Reading European Centre

More information

Evolution of ECMWF sub-seasonal forecast skill scores

Evolution of ECMWF sub-seasonal forecast skill scores Quarterly Journalof the RoyalMeteorologicalSociety Q. J. R. Meteorol. Soc. 140: 1889 1899, July 2014 B DOI:10.1002/qj.2256 Evolution of ECMWF sub-seasonal forecast skill scores Frédéric Vitart* European

More information

Activities of NOAA s NWS Climate Prediction Center (CPC)

Activities of NOAA s NWS Climate Prediction Center (CPC) Activities of NOAA s NWS Climate Prediction Center (CPC) Jon Gottschalck and Dave DeWitt Improving Sub-Seasonal and Seasonal Precipitation Forecasting for Drought Preparedness May 27-29, 2015 San Diego,

More information

Special blog on winter 2016/2017 retrospective can be found here -

Special blog on winter 2016/2017 retrospective can be found here - March 4, 2019 Special blog on winter 2016/2017 retrospective can be found here - http://www.aer.com/winter2017 Special blog on winter 2015/2016 retrospective can be found here - http://www.aer.com/winter2016

More information

Seasonal Climate Watch July to November 2018

Seasonal Climate Watch July to November 2018 Seasonal Climate Watch July to November 2018 Date issued: Jun 25, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) is now in a neutral phase and is expected to rise towards an El Niño phase through

More information

Winter Forecast. Allan Huffman RaleighWx

Winter Forecast. Allan Huffman RaleighWx Winter 2014-15 Forecast Allan Huffman RaleighWx Winter 2014-15 Combination of weak/moderate El Nino/+PDO/-QBO and well above average snow cover and snow cover increase this Fall in Siberia point to a winter

More information

Update of the JMA s One-month Ensemble Prediction System

Update of the JMA s One-month Ensemble Prediction System Update of the JMA s One-month Ensemble Prediction System Japan Meteorological Agency, Climate Prediction Division Atsushi Minami, Masayuki Hirai, Akihiko Shimpo, Yuhei Takaya, Kengo Miyaoka, Hitoshi Sato,

More information

High-latitude influence on mid-latitude weather and climate

High-latitude influence on mid-latitude weather and climate High-latitude influence on mid-latitude weather and climate Thomas Jung, Marta Anna Kasper, Tido Semmler, Soumia Serrar and Lukrecia Stulic Alfred Wegener Institute, Helmholtz Centre for Polar and Marine

More information

Characteristics of the QBO- Stratospheric Polar Vortex Connection on Multi-decadal Time Scales?

Characteristics of the QBO- Stratospheric Polar Vortex Connection on Multi-decadal Time Scales? Characteristics of the QBO- Stratospheric Polar Vortex Connection on Multi-decadal Time Scales? Judith Perlwitz, Lantao Sun and John Albers NOAA ESRL Physical Sciences Division and CIRES/CU Yaga Richter

More information

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044119, 2010 High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming Yuhji Kuroda 1 Received 27 May

More information

An extended re-forecast set for ECMWF system 4. in the context of EUROSIP

An extended re-forecast set for ECMWF system 4. in the context of EUROSIP An extended re-forecast set for ECMWF system 4 in the context of EUROSIP Tim Stockdale Acknowledgements: Magdalena Balmaseda, Susanna Corti, Laura Ferranti, Kristian Mogensen, Franco Molteni, Frederic

More information

Seasonal Climate Watch April to August 2018

Seasonal Climate Watch April to August 2018 Seasonal Climate Watch April to August 2018 Date issued: Mar 23, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) is expected to weaken from a moderate La Niña phase to a neutral phase through

More information

Sub-seasonal predictions at ECMWF and links with international programmes

Sub-seasonal predictions at ECMWF and links with international programmes Sub-seasonal predictions at ECMWF and links with international programmes Frederic Vitart and Franco Molteni ECMWF, Reading, U.K. 1 Outline 30 years ago: the start of ensemble, extended-range predictions

More information

Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere Coupling and Their Potential Use in Seasonal to Decadal Climate Predictions

Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere Coupling and Their Potential Use in Seasonal to Decadal Climate Predictions US National Oceanic and Atmospheric Administration Climate Test Bed Joint Seminar Series NCEP, Camp Springs, Maryland, 22 June 2011 Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere

More information

Seasonal Climate Watch June to October 2018

Seasonal Climate Watch June to October 2018 Seasonal Climate Watch June to October 2018 Date issued: May 28, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) has now moved into the neutral phase and is expected to rise towards an El Niño

More information

The role of individual synoptic-scale weather systems in the life cycle of European weather regimes

The role of individual synoptic-scale weather systems in the life cycle of European weather regimes The role of individual synoptic-scale weather systems in the life cycle of European weather regimes Christian M. Grams Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland funded by thanks

More information

Seasonal forecast from System 4

Seasonal forecast from System 4 Seasonal forecast from System 4 European Centre for Medium-Range Weather Forecasts Outline Overview of System 4 System 4 forecasts for DJF 2015/2016 Plans for System 5 System 4 - Overview System 4 seasonal

More information

Seasonal forecasting activities at ECMWF

Seasonal forecasting activities at ECMWF Seasonal forecasting activities at ECMWF An upgraded ECMWF seasonal forecast system: Tim Stockdale, Stephanie Johnson, Magdalena Balmaseda, and Laura Ferranti Progress with C3S: Anca Brookshaw ECMWF June

More information

Global climate predictions: forecast drift and bias adjustment issues

Global climate predictions: forecast drift and bias adjustment issues www.bsc.es Ispra, 23 May 2017 Global climate predictions: forecast drift and bias adjustment issues Francisco J. Doblas-Reyes BSC Earth Sciences Department and ICREA Many of the ideas in this presentation

More information

Verification of the Seasonal Forecast for the 2005/06 Winter

Verification of the Seasonal Forecast for the 2005/06 Winter Verification of the Seasonal Forecast for the 2005/06 Winter Shingo Yamada Tokyo Climate Center Japan Meteorological Agency 2006/11/02 7 th Joint Meeting on EAWM Contents 1. Verification of the Seasonal

More information

Sub-seasonal predictions at ECMWF and links with international programmes

Sub-seasonal predictions at ECMWF and links with international programmes Sub-seasonal predictions at ECMWF and links with international programmes Frederic Vitart and Franco Molteni ECMWF, Reading, U.K. Using ECMWF forecasts, 4-6 June 2014 1 Outline Recent progress and plans

More information

Winter Forecast for GPC Tokyo. Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA)

Winter Forecast for GPC Tokyo. Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA) Winter Forecast for 2013 2014 GPC Tokyo Shotaro TANAKA Tokyo Climate Center (TCC) Japan Meteorological Agency (JMA) NEACOF 5, October 29 November 1, 2013 1 Outline 1. Numerical prediction 2. Interannual

More information

Seasonal Climate Watch September 2018 to January 2019

Seasonal Climate Watch September 2018 to January 2019 Seasonal Climate Watch September 2018 to January 2019 Date issued: Aug 31, 2018 1. Overview The El Niño-Southern Oscillation (ENSO) is still in a neutral phase and is still expected to rise towards an

More information

Reanalyses use in operational weather forecasting

Reanalyses use in operational weather forecasting Reanalyses use in operational weather forecasting Roberto Buizza ECMWF, Shinfield Park, RG2 9AX, Reading, UK 1 2017: the ECMWF IFS includes many components Model components Initial conditions Forecasts

More information

The North Atlantic Oscillation: Climatic Significance and Environmental Impact

The North Atlantic Oscillation: Climatic Significance and Environmental Impact 1 The North Atlantic Oscillation: Climatic Significance and Environmental Impact James W. Hurrell National Center for Atmospheric Research Climate and Global Dynamics Division, Climate Analysis Section

More information

Special blog on winter 2016/2017 retrospective can be found here -

Special blog on winter 2016/2017 retrospective can be found here - January 28, 2019 Special blog on winter 2016/2017 retrospective can be found here - http://www.aer.com/winter2017 Special blog on winter 2015/2016 retrospective can be found here - http://www.aer.com/winter2016

More information

Stratospheric Processes: Influence on Storm Tracks and the NAO. Mark P. Baldwin

Stratospheric Processes: Influence on Storm Tracks and the NAO. Mark P. Baldwin Stratospheric Processes: Influence on Storm Tracks and the NAO Mark P. Baldwin Mark P. Baldwin, University of Exeter Imperial College 12 December 2012 (From Baldwin and Dunkerton, Science 2001) 60 Days

More information

Downward propagation and statistical forecast of the near-surface weather

Downward propagation and statistical forecast of the near-surface weather JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jd005431, 2005 Downward propagation and statistical forecast of the near-surface weather Bo Christiansen Danish Meteorological Institute, Copenhagen,

More information

Application and verification of the ECMWF products Report 2007

Application and verification of the ECMWF products Report 2007 Application and verification of the ECMWF products Report 2007 National Meteorological Administration Romania 1. Summary of major highlights The medium range forecast activity within the National Meteorological

More information

Clustering Techniques and their applications at ECMWF

Clustering Techniques and their applications at ECMWF Clustering Techniques and their applications at ECMWF Laura Ferranti European Centre for Medium-Range Weather Forecasts Training Course NWP-PR: Clustering techniques and their applications at ECMWF 1/32

More information

Predicting climate extreme events in a user-driven context

Predicting climate extreme events in a user-driven context www.bsc.es Oslo, 6 October 2015 Predicting climate extreme events in a user-driven context Francisco J. Doblas-Reyes BSC Earth Sciences Department BSC Earth Sciences Department What Environmental forecasting

More information

Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere?

Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere? Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere? By A.J.Charlton 1, A.O Neill 2, D.B.Stephenson 1,W.A.Lahoz 2,M.P.Baldwin 3 1 Department of Meteorology,

More information

Investigating Regional Climate Model - RCM Added-Value in simulating Northern America Storm activity

Investigating Regional Climate Model - RCM Added-Value in simulating Northern America Storm activity Investigating Regional Climate Model - RCM Added-Value in simulating Northern America Storm activity E. D. Poan 1, P. Gachon 1, R. Laprise 1, R. Aider 1,2, G. Dueymes 1 1 Centre d Etude et la Simulation

More information

The role of stratospheric processes in large-scale teleconnections

The role of stratospheric processes in large-scale teleconnections The role of stratospheric processes in large-scale teleconnections Judith Perlwitz NOAA/Earth System Research Laboratory and CIRES/University of Colorado Outline Introduction Comparison of features of

More information

Does increasing model stratospheric resolution improve. extended-range forecast skill? (

Does increasing model stratospheric resolution improve. extended-range forecast skill? ( 1 Does increasing model stratospheric resolution improve extended-range forecast skill? Greg Roff 1, David W. J. Thompson 2 and Harry Hendon 1 (email: G.Roff@bom.gov.au) 1 Centre for Australian Weather

More information

The benefits and developments in ensemble wind forecasting

The benefits and developments in ensemble wind forecasting The benefits and developments in ensemble wind forecasting Erik Andersson Slide 1 ECMWF European Centre for Medium-Range Weather Forecasts Slide 1 ECMWF s global forecasting system High resolution forecast

More information

Forecasting Extreme Events

Forecasting Extreme Events Forecasting Extreme Events Ivan Tsonevsky, ivan.tsonevsky@ecmwf.int Slide 1 Outline Introduction How can we define what is extreme? - Model climate (M-climate); The Extreme Forecast Index (EFI) Use and

More information

Seasonal prediction of extreme events

Seasonal prediction of extreme events Seasonal prediction of extreme events C. Prodhomme, F. Doblas-Reyes MedCOF training, 29 October 2015, Madrid Climate Forecasting Unit Outline: Why focusing on extreme events? Extremeness metric Soil influence

More information

The Stratospheric Link Between the Sun and Climate

The Stratospheric Link Between the Sun and Climate The Stratospheric Link Between the Sun and Climate The Stratospheric Link Between the Sun and Climate Mark P. Baldwin Northwest Research Associates, USA SORCE, 27 October 2004 Overview Climatology of the

More information

Atmospheric circulation analysis for seasonal forecasting

Atmospheric circulation analysis for seasonal forecasting Training Seminar on Application of Seasonal Forecast GPV Data to Seasonal Forecast Products 18 21 January 2011 Tokyo, Japan Atmospheric circulation analysis for seasonal forecasting Shotaro Tanaka Climate

More information

MJO prediction Intercomparison using the S2S Database Frédéric Vitart (ECMWF)

MJO prediction Intercomparison using the S2S Database Frédéric Vitart (ECMWF) MJO prediction Intercomparison using the S2S Database Frédéric Vitart (ECMWF) Slide 1 WGNE Meeting 29 April 2016 1 INDEX The S2S project and S2S Database MJO prediction in S2S models MJO teleconnections

More information

Supplementary Information Dynamical proxies of North Atlantic predictability and extremes

Supplementary Information Dynamical proxies of North Atlantic predictability and extremes Supplementary Information Dynamical proxies of North Atlantic predictability and extremes Davide Faranda, Gabriele Messori 2 & Pascal Yiou Laboratoire des Sciences du Climat et de l Environnement, LSCE/IPSL,

More information

ECMWF products to represent, quantify and communicate forecast uncertainty

ECMWF products to represent, quantify and communicate forecast uncertainty ECMWF products to represent, quantify and communicate forecast uncertainty Using ECMWF s Forecasts, 2015 David Richardson Head of Evaluation, Forecast Department David.Richardson@ecmwf.int ECMWF June 12,

More information

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK June 2014 - RMS Event Response 2014 SEASON OUTLOOK The 2013 North Atlantic hurricane season saw the fewest hurricanes in the Atlantic Basin

More information

The feature of atmospheric circulation in the extremely warm winter 2006/2007

The feature of atmospheric circulation in the extremely warm winter 2006/2007 The feature of atmospheric circulation in the extremely warm winter 2006/2007 Hiroshi Hasegawa 1, Yayoi Harada 1, Hiroshi Nakamigawa 1, Atsushi Goto 1 1 Climate Prediction Division, Japan Meteorological

More information

Delayed Response of the Extratropical Northern Atmosphere to ENSO: A Revisit *

Delayed Response of the Extratropical Northern Atmosphere to ENSO: A Revisit * Delayed Response of the Extratropical Northern Atmosphere to ENSO: A Revisit * Ruping Mo Pacific Storm Prediction Centre, Environment Canada, Vancouver, BC, Canada Corresponding author s address: Ruping

More information

Environment and Climate Change Canada / GPC Montreal

Environment and Climate Change Canada / GPC Montreal Environment and Climate Change Canada / GPC Montreal Assessment, research and development Bill Merryfield Canadian Centre for Climate Modelling and Analysis (CCCma) with contributions from colleagues at

More information

Use of extended range and seasonal forecasts at MeteoSwiss

Use of extended range and seasonal forecasts at MeteoSwiss Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Use of extended range and seasonal forecasts at MeteoSwiss Current use and ongoing developments Christoph

More information

CORRIGENDUM. Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

CORRIGENDUM. Atmospheric and Environmental Research, Inc., Lexington, Massachusetts 1MARCH 2012 C O R R I G E N D U M 1779 CORRIGENDUM JUDAH COHEN AND JUSTIN JONES Atmospheric and Environmental Research, Inc., Lexington, Massachusetts (Manuscript received 14 December 2011, in final form

More information

The U. S. Winter Outlook

The U. S. Winter Outlook The 2018-2019 U. S. Winter Outlook Michael Halpert Deputy Director Climate Prediction Center Mike.Halpert@noaa.gov http://www.cpc.ncep.noaa.gov Outline About the Seasonal Outlook Review of 2017-18 U. S.

More information

Verification at JMA on Ensemble Prediction

Verification at JMA on Ensemble Prediction Verification at JMA on Ensemble Prediction - Part Ⅱ : Seasonal prediction - Yukiko Naruse, Hitoshi Sato Climate Prediction Division Japan Meteorological Agency 05/11/08 05/11/08 Training seminar on Forecasting

More information

Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades

Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3136 Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades Jiankai Zhang 1, Wenshou Tian 1 *, Martyn P. Chipperfield

More information

Verification statistics and evaluations of ECMWF forecasts in

Verification statistics and evaluations of ECMWF forecasts in 635 Verification statistics and evaluations of ECMWF forecasts in 29-21 D.S. Richardson, J. Bidlot, L. Ferranti, A. Ghelli, T. Hewson, M. Janousek, F. Prates and F. Vitart Operations Department October

More information

Climate Forecast Applications Network (CFAN)

Climate Forecast Applications Network (CFAN) Forecast of 2018 Atlantic Hurricane Activity April 5, 2018 Summary CFAN s inaugural April seasonal forecast for Atlantic tropical cyclone activity is based on systematic interactions among ENSO, stratospheric

More information

ECMWF: Weather and Climate Dynamical Forecasts

ECMWF: Weather and Climate Dynamical Forecasts ECMWF: Weather and Climate Dynamical Forecasts Medium-Range (0-day) Partial coupling Extended + Monthly Fully coupled Seasonal Forecasts Fully coupled Atmospheric model Atmospheric model Wave model Wave

More information

The U. S. Winter Outlook

The U. S. Winter Outlook The 2017-2018 U. S. Winter Outlook Michael Halpert Deputy Director Climate Prediction Center Mike.Halpert@noaa.gov http://www.cpc.ncep.noaa.gov Outline About the Seasonal Outlook Review of 2016-17 U. S.

More information

ENSO-DRIVEN PREDICTABILITY OF TROPICAL DRY AUTUMNS USING THE SEASONAL ENSEMBLES MULTIMODEL

ENSO-DRIVEN PREDICTABILITY OF TROPICAL DRY AUTUMNS USING THE SEASONAL ENSEMBLES MULTIMODEL 1 ENSO-DRIVEN PREDICTABILITY OF TROPICAL DRY AUTUMNS USING THE SEASONAL ENSEMBLES MULTIMODEL Based on the manuscript ENSO-Driven Skill for precipitation from the ENSEMBLES Seasonal Multimodel Forecasts,

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

The 2010/11 drought in the Horn of Africa: Monitoring and forecasts using ECMWF products

The 2010/11 drought in the Horn of Africa: Monitoring and forecasts using ECMWF products The 2010/11 drought in the Horn of Africa: Monitoring and forecasts using ECMWF products Emanuel Dutra Fredrik Wetterhall Florian Pappenberger Souhail Boussetta Gianpaolo Balsamo Linus Magnusson Slide

More information

Upwelling Wave Activity as Precursor to Extreme Stratospheric Events and Subsequent Anomalous Surface Weather Regimes

Upwelling Wave Activity as Precursor to Extreme Stratospheric Events and Subsequent Anomalous Surface Weather Regimes Upwelling Wave Activity as Precursor to Extreme Stratospheric Events and Subsequent Anomalous Surface Weather Regimes Darryn W. Waugh Department of Earth and Planetary Sciences Johns Hopkins University

More information

Connection between NAO/AO, surface climate over Northern Eurasia: snow cover force - possible mechanism.

Connection between NAO/AO, surface climate over Northern Eurasia: snow cover force - possible mechanism. Connection between NAO/AO, surface climate over Northern Eurasia: snow cover force - possible mechanism. Krupchatnikov V., Yu. Martynova (Pr. Ac. Lavrentieva, 6, Novosibirsk, 630090, Russia; tel: 330 61-51;

More information

Effect of Sudden Stratospheric Warmings on Subseasonal Prediction Skill in the NASA S2S Forecast System

Effect of Sudden Stratospheric Warmings on Subseasonal Prediction Skill in the NASA S2S Forecast System Effect of Sudden Stratospheric Warmings on Subseasonal Prediction Skill in the NASA S2S Forecast System M. Joan Alexander 1, Lawrence Coy 2, Laura Holt 1, Zhao Li 3, Andrea Molod 3, and Steven Pawson 3

More information

NatGasWeather.com Daily Report

NatGasWeather.com Daily Report NatGasWeather.com Daily Report Issue Time: 5:15 pm EST Sunday, February 28 th, 2016 for Monday, Feb 29 th 7-Day Weather Summary (February 28 th March 5 th ): High pressure will dominate much of the US

More information

Global Atmospheric Circulation

Global Atmospheric Circulation Global Atmospheric Circulation Polar Climatology & Climate Variability Lecture 11 Nov. 22, 2010 Global Atmospheric Circulation Global Atmospheric Circulation Global Atmospheric Circulation The Polar Vortex

More information

Sub-seasonal predictions

Sub-seasonal predictions 738 Sub-seasonal predictions F. Vitart, G. Balsamo, R. Buizza, L. Ferranti, S. Keeley, L. Magnusson, F. Molteni and A. Weisheimer Research Department October 204 Special Topic paper on sub-seasonal predictions

More information

Forecast system development: what next?

Forecast system development: what next? Forecast system development: what next? Doug Smith, Adam Scaife, Nick Dunstone, Leon Hermanson, Rosie Eade, Vikki Thompson, Martin Andrews, Jeff Knight, Craig MacLachlan, and many others Improved models

More information

ENSO and U.S. severe convective storm activity

ENSO and U.S. severe convective storm activity ENSO and U.S. severe convective storm activity Michael K. Tippett Columbia University Willis Research Network Autumn meeting Nov 1, 2017 Summary What is ENSO? Unusual warming or cooling of tropical Pacific

More information

JRC MARS Bulletin Crop monitoring in Europe January 2019

JRC MARS Bulletin Crop monitoring in Europe January 2019 Online version Issued: 21 January 2019 r JRC MARS Bulletin Vol. 27 No 1 JRC MARS Bulletin Crop monitoring in Europe January 2019 Continued mild winter Improved hardening of winter cereals in central and

More information

Sub-seasonal to seasonal forecast Verification. Frédéric Vitart and Laura Ferranti. European Centre for Medium-Range Weather Forecasts

Sub-seasonal to seasonal forecast Verification. Frédéric Vitart and Laura Ferranti. European Centre for Medium-Range Weather Forecasts Sub-seasonal to seasonal forecast Verification Frédéric Vitart and Laura Ferranti European Centre for Medium-Range Weather Forecasts Slide 1 Verification Workshop Berlin 11 May 2017 INDEX 1. Context: S2S

More information

The role of sea-ice in extended range prediction of atmosphere and ocean

The role of sea-ice in extended range prediction of atmosphere and ocean The role of sea-ice in extended range prediction of atmosphere and ocean Virginie Guemas with contributions from Matthieu Chevallier, Neven Fučkar, Agathe Germe, Torben Koenigk, Steffen Tietsche Workshop

More information

Recent anomalously cold Central Eurasian winters forced by Arctic sea ice retreat in an atmospheric model

Recent anomalously cold Central Eurasian winters forced by Arctic sea ice retreat in an atmospheric model Recent anomalously cold Central Eurasian winters forced by Arctic sea ice retreat in an atmospheric model Vladimir A. Semenov A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia and Helmholtz

More information

Figure ES1 demonstrates that along the sledging

Figure ES1 demonstrates that along the sledging UPPLEMENT AN EXCEPTIONAL SUMMER DURING THE SOUTH POLE RACE OF 1911/12 Ryan L. Fogt, Megan E. Jones, Susan Solomon, Julie M. Jones, and Chad A. Goergens This document is a supplement to An Exceptional Summer

More information

J1.7 SOIL MOISTURE ATMOSPHERE INTERACTIONS DURING THE 2003 EUROPEAN SUMMER HEATWAVE

J1.7 SOIL MOISTURE ATMOSPHERE INTERACTIONS DURING THE 2003 EUROPEAN SUMMER HEATWAVE J1.7 SOIL MOISTURE ATMOSPHERE INTERACTIONS DURING THE 2003 EUROPEAN SUMMER HEATWAVE E Fischer* (1), SI Seneviratne (1), D Lüthi (1), PL Vidale (2), and C Schär (1) 1 Institute for Atmospheric and Climate

More information

How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo

How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo How does stratospheric polar vortex variability affect surface weather? Mark Baldwin and Tom Clemo Mark P. Baldwin, University of Exeter Imperial College 12 December 2012 a Observed Average Surface Pressure

More information

Challenges for Climate Science in the Arctic. Ralf Döscher Rossby Centre, SMHI, Sweden

Challenges for Climate Science in the Arctic. Ralf Döscher Rossby Centre, SMHI, Sweden Challenges for Climate Science in the Arctic Ralf Döscher Rossby Centre, SMHI, Sweden The Arctic is changing 1) Why is Arctic sea ice disappearing so rapidly? 2) What are the local and remote consequences?

More information

NOTES AND CORRESPONDENCE. Improving Week-2 Forecasts with Multimodel Reforecast Ensembles

NOTES AND CORRESPONDENCE. Improving Week-2 Forecasts with Multimodel Reforecast Ensembles AUGUST 2006 N O T E S A N D C O R R E S P O N D E N C E 2279 NOTES AND CORRESPONDENCE Improving Week-2 Forecasts with Multimodel Reforecast Ensembles JEFFREY S. WHITAKER AND XUE WEI NOAA CIRES Climate

More information

Predictability of the coupled troposphere-stratosphere system

Predictability of the coupled troposphere-stratosphere system Predictability of the coupled troposphere-stratosphere system Heiner Körnich Department of Meteorology, Stockholm University Stockholm, Sweden heiner@misu.su.se Abstract Tropospheric predictability is

More information

IAP Dynamical Seasonal Prediction System and its applications

IAP Dynamical Seasonal Prediction System and its applications WCRP Workshop on Seasonal Prediction 4-7 June 2007, Barcelona, Spain IAP Dynamical Seasonal Prediction System and its applications Zhaohui LIN Zhou Guangqing Chen Hong Qin Zhengkun Zeng Qingcun Institute

More information

Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP

Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP September 2012 Outline Mission Extended Range Outlooks (6-10/8-14)

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

EPP contribution to (stratospheric and) tropospheric variations. Annika Seppälä Finnish Meteorological Institute Academy of Finland

EPP contribution to (stratospheric and) tropospheric variations. Annika Seppälä Finnish Meteorological Institute Academy of Finland EPP contribution to (stratospheric and) tropospheric variations Annika Seppälä Finnish Meteorological Institute Academy of Finland A. Seppälä, HEPPA-SOLARIS Workshop, Boulder, Oct 0 So far... Energetic

More information

Recent ECMWF Developments

Recent ECMWF Developments Recent ECMWF Developments Tim Hewson (with contributions from many ECMWF colleagues!) tim.hewson@ecmwf.int ECMWF November 2, 2017 Outline Last Year IFS upgrade highlights 43r1 and 43r3 Standard web Chart

More information

Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere?

Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere? Q. J. R. Meteorol. Soc. (2003), 129, pp. 3205 3224 doi: 10.1256/qj.02.232 Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere? By A. J. CHARLTON 1,

More information

Characteristic blocking events over Ural-Siberia in Boreal Winter under Present and Future Climate Conditions

Characteristic blocking events over Ural-Siberia in Boreal Winter under Present and Future Climate Conditions Characteristic blocking events over Ural-Siberia in Boreal Winter under Present and Future Climate Conditions Wen Zhou & Hoffman Cheung Guy Carpenter Asia-Pacific Climate Impact Center School of Energy

More information