THE EFFECT OF SOLAR RADIATION DATA TYPES ON CALCULATION OF TILTED AND SUNTRACKING SOLAR RADIATION

Size: px
Start display at page:

Download "THE EFFECT OF SOLAR RADIATION DATA TYPES ON CALCULATION OF TILTED AND SUNTRACKING SOLAR RADIATION"

Transcription

1 THE EFFECT OF SOLAR RADIATION DATA TYPES ON CALCULATION OF TILTED AND SUNTRACKING SOLAR RADIATION Tomáš Cebecauer, Artur Skoczek, Marcel Šúri GeoModel Solar s.r.o., Pionierska 15, Bratislava, Slovakia, Tel: , fax: ; corresponding author: tomas.cebecauer@geomodel.eu ABSTRACT: Energy yield assessment of photovoltaic systems is inherently non-linear. The calculation chain starts with simulation of solar radiation, where many factors are considered: sun s position, terrain, properties of the atmosphere and cloudiness to determine the absolute value of global irradiance and the ratio of diffuse and direct components. The ratio of direct and diffuse components influences the global irradiance received by the inclined surface of PV modules, it changes during a day and also during seasons and it is highly dependent on the geographical location. Therefore, optimally multiyear time series should be used for proper modeling of energy performance of a PV generator. However, for historical reasons, several solar radiation data products with different level of simplification are used in PV simulation tools long-term monthly-averaged daily profiles, synthetic time series, and typical meteorological years (TMYs). A new simplified approach is based on the statistical aggregation of solar radiation into relevant groups (bins) according to distribution of irradiance values. This paper seeks to provide a benchmark for four solar radiation data products used in the contemporary software packages for performance assessment of photovoltaic systems. The results of calculation the in-plane irradiation show different performance of data products, when compared to full time series, with error amplitude up to ±3%. 1. APPROACH Photovoltaic systems perform have non-linear response to weather parameters, especially global irradiance and air temperature. The calculation chain starts with simulation of solar radiation, which is determined by sun position, properties of the atmosphere and cloudiness, which in turn control the ratio of the diffuse and direct components. This ratio changes dynamically during a day, type of weather and during the year, and it is highly dependent on a geographical location. In PV simulation, the best results can be achieved using high-resolution multiyear time series (e.g. several years of 15-minute data) of solar radiation with subsequent timeintegration of the calculated PV instantaneous values. However, for historical reasons, PV simulation packages use only simplified climate data products on the input: (i) typical (average) daily profiles for each month, (ii) synthetic time series derived from 12 monthly averages by a stochastic weather generator, or (iii) Typical Meteorological Year (TMY). The reduction of full time series to any of the above mentioned data products has an effect on the data accuracy, due to distorted ratio of diffuse/global irradiance and probability distribution of air temperature and solar radiation data pairs. Thus, simplified data products may not describe appropriately the regional climate, which in turn affects PV performance simulation results. This paper compares impact of four solar radiation data products (including global horizontal irradiance and diffuse horizontal irradiance) used in the contemporary software packages for the assessment of tilted and suntracking global radiation and evaluates the results for different climates. For calculation of irradiance impinging on a tilted or suntracking receiver, diffuse and direct components have to be known. These components can be directly measured on a site; they can be calculated by clear-sky models (e.g. SOLIS [1]) or most typically they are derived from global irradiance by empirical or more advanced models, e.g. [2, 3]. Further, the models transposing diffuse horizontal to diffuse tilted irradiance are needed to calculate irradiance received by tilted or suntracking surfaces (e.g., the model by Perez [4]. In this paper, we analyze three items: 1. We compare global horizontal irradiation as calculated from the 6-years data and 17-years data. 2. We compare simulation results of annual global tilted radiation as received from using different global horizontal (GHI) and direct normal (DNI) radiation data products (full time series, aggregated statistics, TMY, monthly averaged daily profiles and synthetic time series generated in PVSYST). As reference, time series covering period of 1994 to 2010 of 15-minute and 30-minute GHI and DNI irradiance data are used from the SolarGIS database [5]. The in-plane global irradiation is calculated for each data product using Perez tilted model and compared to the result of using the full time series. 3. Next, the simulation in selected software packages was carried out for three configurations: south-oriented tilted surface at 30, for one-axis tracker, and for two-axis tracker. The gain of annual Global In-plane Irradiation (GII) compared to Global Horizontal Irradiation (GHI) is presented for eight different combinations of data and models. 2. COMPARISON OF IRRADIATION DATA FROM THE LAST 6 YEARS AND 17 YEARS For the selected test sites, the comparison is shown between Global Horizontal Irradiation calculated from the recent 6 years (irradiance derived from Meteosat Second Generation satellite) and the recent 17 years (combination 1

2 of irradiance derived from Meteosat First and Second Generation satellites). The percentual difference of annual sums of Global Horizontal Irradiance is shown in Fig. 4. The negative values represent sites where 6-years sum is higher than 17-years sum. It can be observed that the majority of 6-years annual sums are higher than the average of 17 years (last 6 years were sunnier), and the difference is usually below 2%. Only 5 sites, out of 35 tested have higher value of the 17-year sum, but there is no obvious geographical dependence in the distribution of the results. Average daily profiles based on long-term monthly averaged values (e.g., ESRA, PVGIS, RETScreen); Synthetic time series (e.g., Meteonorm, PVSYST) Typical Meteorological Year (e.g., PVWATTS, PVSYST, SAM); Aggregated probability statistics (SolarGIS pvplanner) Full multiyear series (e.g. SolarGIS offline version). To obtain the most accurate simulations, the full multiyear time series have to be used, typically as 15-, 30-minute or hourly data. However, full time series are not used in most of the available software packages for historical reasons, and also due to higher demand on computational resources. Calculation of in-plane solar radiation for tilted and suntracking surfaces assumes availability of diffuse and direct irradiance; but the resulting global in-plane irradiance reacts non-linearly to these components. Therefore data sets that provide good compromise between the needs for computing power and accuracy are still desirable. The characteristics of solar radiation data products are presented below. Fig 1. The difference between GHI calculated from the last 6 and from the last 17 years of data. The negative values represents sites where 6-years average is higher than the average of 17 years. 3. USE OF SOLAR DATA PRODUCTS IN THE SIMULATION PROGRAMS The engineering software packages use various data products to generate solar radiation for tilted and suntracking surfaces. Some of those used in photovoltaics are: Fig. 2: Distribution of daily sums of global horizontal irradiation within months does not follow Gaussian (normal) distribution. Monthly averages most often do not represent a typical weather (data for Payerne (CH) and Seville (ES). 2

3 1. Monthly averages of daily profiles For fast estimate of solar potential of a site, monthly averages of daily profiles are used. These are represented by hourly or even 15-minute values. It is to be noted that most often average value do not represent weather patterns in a particular month. Fig. 2 shows distribution of daily values of GHI for two different sites (Seville in Spain and Payerne in Switzerland). It can be observed that daily values within a month are not distributed normally, usually there is strong asymmetry and monthly averages do not represent the most typical days. In Payerne, for example, the distribution of days in summer is very flat with wide scatter of days, while for Seville the probability distribution has clear peaks but it is notably asymmetric. In the majority of cases, the value of median (the most probable day) is higher than the average value. This leads to an important statement that average day occurs very rarely and aggregated statistics (median and percentiles) better characterize climate of a site. In some older software (e.g., RETScreen, ESRA, PVGIS), algorithms are implemented, based on the assumption of monthly-averaged sky conditions [6, 7, 8]) and the use of the average daily profiles. This approach was developed in times of limited data availability and computing options, though they are still popular and widely used. 2. Synthetic hourly time series A method for generating synthetic hourly time series from long-term monthly averages by Aguiar and Collares- Pereira [9] is another widely used approach. Synthetic time series are practical as they generate hourly time series from just 12 monthly values. The implementation of the mathematical models for generating synthetic time series may be of different complexity and performance in various climates. The method used in this paper is implemented in PVSYST. 3. Typical Meteorological Year Typical Meteorological Year (TMY) constitutes another approach to real climate characterization, and a number of data set has been developed for several countries of Europe and America. For decades, TMYs have been used by engineers to simulate building energy performance or solar systems. TMYs replace many years of data with a single typical year, and they are used in applications such as PVWATTS or PVSYST. TMYs are generally built by assembling the most representative months from the long-term time series into a typical composite year. Weighting factors are applied to provide selective emphasis on the meteorological parameters of interest (including, but not limited to irradiance components). TMYs can be constructed by many methods, optimally in a way to represent real time climate as close as possible to the needed applications - PV in our case. Most often, TMY includes 12 fragments of real data that describe a climate most realistically based on the given selection criteria. The typical year is constructed on the monthly basis, comparing months of individual years with longterm monthly characteristics: cumulative distribution function and mean. The selection of the most representative month takes into account different weights of individual weather parameters (e.g., GHI, DNI, air temperature, humidity, wind speed, and wind direction) and completeness of time series. The representative months are concatenated into a typical year. In the selection criteria, the higher weight is given to solar radiation parameters, thus the RMY can be tuned for a required solar energy application (PV, CPV or CSP). 4. Multi year time series Times series will very likely dominate in future solar energy simulations. These can be on-site measured or satellite-derived data, or their combination. Satellitederived solar radiation data offer unsurpassed performance in terms of availability, high-quality, completeness, and timeliness of delivery. Nowadays satellite-based solar time series can be calculated for almost any location on the Earth, at high spatial and temporal resolution, and they have a potential to represent weather patterns for 13 up to 25 years. Compared to any other data product, the strength of multiyear time series resides in their ability to describe the probability of occurrence of extreme and typical events for tuning the design of solar energy systems and risk analysis of the investment. 5. Aggregated statistics For PV simulations, high resolution solar and air temperature data pairs can be organized into percentiles and statistical bins according to their probability of occurrence. Organizing data this way aims to use more effectively storage space for fast access and online calculation for any selected site - enabling to consider non-linearity in simulations and preserving speed and accuracy of computation. The simulation is realized for each bin separately, thus approximating different types of weather (defined by the combination of GHI, DNI and air temperature). This approach [10] allows significant reduction of data volume while preserving information about occurrence of different weather situations individually for each month. This is especially important for designing high-speed web-based calculators, interactive maps and analytical tools. 4. INCLINED IRRADIATION CALCULATED FROM THE STUDIED PRIMARY DATA PRODUCTS To better understand the possible impact of a particular data product in different climatic zones a number of sites have been selected in Europe and Africa. The distribution of the sites is shown in Fig. 3. For each site a series of global inclined irradiances has been calculated, with inclination varying from 0 to 90, with a step of 15. The reference data are time series of satellite derived GHI and DNI irradiance comprising of 17 years data. The original time step of data is 30 minutes for years (Meteosat First Generation) and 15 minutes for years (Meteosat Second Generation). The data was linearly interpolated to work with the homogenous set of 15-minute irradiance data. 3

4 Fig 3. The distribution of the test sites. The inclined radiation was calculated using: Monthly average profiles (15 minute resolution) - AVERAGE, Monthly percentile distribution (15-minute resolution) - PERCENTILE, Typical Meteorological Year (hourly resolution) TMY, Synthetically generated one year of data using monthly averages of GHI and diffuse radiation (hourly resolution) using PVSYST method SYNTHETIC TS. The inclined irradiation was calculated for each data product using Perez tilted model. The sum of inclined radiation was compared to corresponding sum of inclined radiation calculated form primary full time 15-minute time series data as a reference. The results show that energy yield assessment is sensitive to the selection of solar radiation data product. The data representation and choice of the model significantly influence the calculated in-plane irradiation output. The differences between the approaches are not systematic, but vary between the sites. If full time series are considered as a reference, as they represent the most detailed description of the site climate conditions, then both the TMY and aggregated statistics give results very similar to the reference. The differences are below 1% in most cases for all configurations and sites, and only in the extreme situations this threshold is exceeded. The aggregated statistics in the form of percentiles shows clear geographical pattern with increasing latitude the inclined radiation becomes slightly overestimated. But the difference from time series is small and maximum of 1.5% is found only for vertical surfaces. For the surfaces close to optimum angle the difference is below 1%. Fig 4. Deviation of simulated inclined irradiation of different data products compared to inclined irradiance calculated from full time series. Tilt angles: 0, 15, 30, 45, 60, 75, 90. 4

5 The TMY data product performs slightly worse than aggregated statistics. The deviation reaches the level of the 1.5% more, but similarly to the previous product this occurs for vertical position. No geographical pattern was found and both overestimation and underestimation of inclined irradiation is present. These TMY results are probably linked to the way of data product creation, where assimilation of months (that mostly resemble the average and frequency distribution of full time series) from various years may lead to slightly different characteristics of the resulting data products. When monthly-averaged daily profiles are used, the inplane irradiation becomes overestimated in all locations. The deviation in extreme cases surpasses the 2.5%, the highest overestimation is found in European sites and Central Africa. The synthetic data series reach highest differences (over 3.0%), especially in extreme cases of vertical surfaces. The difference to the use of multiple time series is relatively high with both positive and negative amplitude (no geographical pattern). The monthly averages of global and diffuse irradiation provide too simplified solar characterization of a site and the results confirm that synthetic data generator has been tuned for the climate of Central, West Europe and for Mediterranean Europe. The generator fails to produce higher errors in climate regions in North Europe and South of the Mediterranean region. It is possible that more complex methods of synthetic data generation may provide better results. Four sites are analyzed with different climate conditions. Fig. 5 shows that the data representation and the choice of the model determine the calculated of the in-plane radiation. 5. SIMULATION USING DIFFERENT MODELS Simulation shows the results when using different data products: full time series, TMY, aggregated statistics, long-term averaged daily profiles, synthetic time series and different implementations of in-plane solar radiation models (SolarGIS, PVGIS and PVSYST) for three configurations: South oriented tilted at 30, one-axis tracking and for two axis tracking system. The gain of Global In-plane Irradiation compared to Global Horizontal Irradiation is presented for eight different combinations of data products and numerical models. All data are derived from the SolarGIS satellitebased database: A. Time series of 15-minute data for 6 years, SolarGIS [10] in-plane model. This simulation is considered as a reference B. Typical Meteorological Year, hourly data, SolarGIS in-plane model C. Aggregated statistics, 15-minute data, SolarGIS in-plane model D. Average monthly profiles, 15-minute data, SolarGIS in-plane model E. Synthetic hourly data, PVSYST in-plane model synthetic data are derived from monthly averages of global and diffuse and irradiation in PVSYST F. PVGIS CM-SAF satellite-based data, 12 monthly averages, PVGIS in-plane model G. PVGIS-3 interpolated ground station data, 12 monthly averages, PVGIS in-plane model [7, 11] Fig. 5: Comparison of different data aggregations and inplain models. Irradiance gain in comparison to horizontal plane (GHI) for 2 axis tracker, 1 axis tracker with rotation axis oriented north-south and inclined at an angle of 30 and a fix plane inclined at angle of 30. The simulation of in-plane global irradiation using various packages with different implementation of the inclined radiation calculation shows even higher difference (Fig. 5) when compared to the Fig. 4. It is interesting to note that horizontal-to-inclined surface gains for trackers obtained from synthetic dataset generated by PVSYST are higher than for the reference data input. On the other hand, these gains are lower for a fixed inclined surface. This may be a result of distorted statistics of ratio DIF/GHI when using synthetically-generated data. The difference of in-plane radiation from synthetic data calculated by SolarGIS and PVSYST models points to possible differences in the applied tilted irradiance model. 5

6 6. CONCLUSIONS This contribution confirms some of the previous partial findings and by the more detailed analysis aims to trigger discussion about the impacts on the data models on the accuracy of simulation of the PV systems performance. Three key findings have been observed: GHI calculated from the last 6 years of data overestimates the long-term average calculated from the last 17 years of data, typically by 2%; In the next step, we compared a calculation of inplane global irradiation for South-facing PV array, fixed-mounted at an angle from 0 to 90 degrees using different data products. It is considered that the reference calculation is based on the use of full time series. The analysis of four data sources has shown that the closest to the full time series is aggregated statistics, followed by TMY. TMY data may be generated using various approaches and therefore the results are method-dependent. The long-term monthly-averaged daily profiles and synthetic time series show higher deviation with changing geographic pattern (up to ±3%). Monthly averaged daily profiles have tendency to generate systematic error. In case of synthetic data generation, the results may depend on the method used (in this study the method implemented in PVSYST). Comparison of 8 combinations of data products, data types, representation period, and software implementation shows that deviations when comparing various tracking system and model implementation can result in deviations of the annual global in-pane irradiation. This is valid especially for older data formats, such as synthetic time series and long-term monthly-averaged long-term daily profiles. The best performance has been found with the statistically aggregated solar radiation, and this data representation has a good potential for fast calculations at marginal compromises in the quality (error is less than ±0.5). The above-mentioned differences in annual value of global irradiation affect energy simulation in PV models, which can contribute by another 2% of uncertainty or more. [5.] Cebecauer T., Šúri M., Perez R., High performance MSG satellite model for operational solar energy applications, ASES National Solar Conference, Phoenix, USA. [6.] ESRA, Greif J., Scharmer K., Eds., European Solar Radiation Atlas, 4th edition. Scientific advisors: Dogniaux R., and Page J.; Authors: Wald L., Albuisson M., Czeplak G., Bourges B., Aguiar R., Lund H., Joukoff A., Terzenbach U., Beyer H.- G., Borisenko E. P., Paris: Presses de l'ecole des Mines de Paris [7.] Šúri M., Huld T., Cebecauer T., Dunlop E.D., Geographic Aspects of Photovoltaics in Europe: Contribution of the PVGIS Web Site. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1, [8.] RETScreen, Clean Energy Project Analysis Software, [9.] Aguiar R., Collares-Pereira M., TAG: a timedependent, autoregressive, Gaussian model for generating synthetic hourly radiation. Solar Energy, 49, [10.] Šúri M., Cebecauer T., Skoczek A., SolarGIS: solar data and online applications for PV planning and performance assessment. Proceeding of the EUPVSEC 2011 Conference, Hamburg, Germany, Sept [11.] Muneer, T., 1990, Solar radiation model for Europe. Building services Engineering Research and Technology, 11, References [1.] Ineichen P., A broadband simplified version of the Solis clear sky model. Solar Energy, 82, 8, [2.] Perez R., Ineichen P., Maxwell E., Seals R. and Zelenka A., Dynamic Global-to-Direct Irradiance Conversion Models. ASHRAE Transactions-Research Series, pp [3.] Skartveit A., Olseth J.A., Tuft M.A., 1998, An hourly diffuse fraction model with correction for variability and surface albedo, Solar Energy, 63, [4.] Perez R., Seals R., Ineichen P., Stewart R., Menicucci D., 1987, A new simplified version of the Perez diffuse irradiance model for tilted surfaces, Solar Energy, 39,

Bankable Solar Resource Data for Energy Projects. Riaan Meyer, GeoSUN Africa, South Africa Marcel Suri, GeoModel Solar, Slovakia

Bankable Solar Resource Data for Energy Projects. Riaan Meyer, GeoSUN Africa, South Africa Marcel Suri, GeoModel Solar, Slovakia Bankable Solar Resource Data for Energy Projects Riaan Meyer, GeoSUN Africa, South Africa Marcel Suri, GeoModel Solar, Slovakia Solar resource: fuel for solar technologies Photovoltaics (PV) Concentrated

More information

First Steps in the Cross-Comparison of Solar Resource Spatial Products in Europe

First Steps in the Cross-Comparison of Solar Resource Spatial Products in Europe First Steps in the Cross-Comparison of Solar Resource Spatial Products in Europe Marcel Suri, Jan Remund, Tomas Cebecauer, Dominique Dumortier, Lucien Wald, Thomas Huld, Philippe Blanc To cite this version:

More information

Uncertainty of satellite-based solar resource data

Uncertainty of satellite-based solar resource data Uncertainty of satellite-based solar resource data Marcel Suri and Tomas Cebecauer GeoModel Solar, Slovakia 4th PV Performance Modelling and Monitoring Workshop, Köln, Germany 22-23 October 2015 About

More information

HIGH PERFORMANCE MSG SATELLITE MODEL FOR OPERATIONAL SOLAR ENERGY APPLICATIONS

HIGH PERFORMANCE MSG SATELLITE MODEL FOR OPERATIONAL SOLAR ENERGY APPLICATIONS HIGH PERFORMANCE MSG SATELLITE MODEL FOR OPERATIONAL SOLAR ENERGY APPLICATIONS Tomáš Cebecauer GeoModel, s.r.o. Pionierska 15 841 07 Bratislava, Slovakia tomas.cebecauer@geomodel.eu Marcel Šúri GeoModel,

More information

HIGH PERFORMANCE MSG SATELLITE MODEL FOR OPERATIONAL SOLAR ENERGY APPLICATIONS

HIGH PERFORMANCE MSG SATELLITE MODEL FOR OPERATIONAL SOLAR ENERGY APPLICATIONS HIGH PERFORMANCE MSG SATELLITE MODEL FOR OPERATIONAL SOLAR ENERGY APPLICATIONS Tomáš Cebecauer GeoModel, s.r.o. Pionierska 15 841 07 Bratislava, Slovakia tomas.cebecauer@geomodel.eu Marcel Šúri GeoModel,

More information

SolarGIS: Online Access to High-Resolution Global Database of Direct Normal Irradiance

SolarGIS: Online Access to High-Resolution Global Database of Direct Normal Irradiance SolarGIS: Online Access to High-Resolution Global Database of Direct Normal Irradiance Marcel Suri PhD Tomas Cebecauer, PhD GeoModel Solar Bratislava, Slovakia Conference Conference SolarPACES 2012, 13

More information

COMPARING PERFORMANCE OF SOLARGIS AND SUNY SATELLITE MODELS USING MONTHLY AND DAILY AEROSOL DATA

COMPARING PERFORMANCE OF SOLARGIS AND SUNY SATELLITE MODELS USING MONTHLY AND DAILY AEROSOL DATA COMPARING PERFORMANCE OF SOLARGIS AND SUNY SATELLITE MODELS USING MONTHLY AND DAILY AEROSOL DATA Tomas Cebecauer 1, Richard Perez 2 and Marcel Suri 1 1 GeoModel Solar, Bratislava (Slovakia) 2 State University

More information

Satellite-to-Irradiance Modeling A New Version of the SUNY Model

Satellite-to-Irradiance Modeling A New Version of the SUNY Model Satellite-to-Irradiance Modeling A New Version of the SUNY Model Richard Perez 1, James Schlemmer 1, Karl Hemker 1, Sergey Kivalov 1, Adam Kankiewicz 2 and Christian Gueymard 3 1 Atmospheric Sciences Research

More information

Mr Riaan Meyer On behalf of Centre for Renewable and Sustainable Energy Studies University of Stellenbosch

Mr Riaan Meyer On behalf of Centre for Renewable and Sustainable Energy Studies University of Stellenbosch CSP & Solar Resource Assessment CSP Today South Africa 2013 2 nd Concentrated Solar Thermal Power Conference and Expo 4-5 February, Pretoria, Southern Sun Pretoria Hotel Mr Riaan Meyer On behalf of Centre

More information

Solar Resource Mapping in South Africa

Solar Resource Mapping in South Africa Solar Resource Mapping in South Africa Tom Fluri Stellenbosch, 27 March 2009 Outline The Sun and Solar Radiation Datasets for various technologies Tools for Solar Resource Mapping Maps for South Africa

More information

Solar Radiation and Solar Programs. Training Consulting Engineering Publications GSES P/L

Solar Radiation and Solar Programs. Training Consulting Engineering Publications GSES P/L Solar Radiation and Solar Programs Training Consulting Engineering Publications SOLAR RADIATION Purposes of Solar Radiation Software Successful project planning and solar plant implementation starts by

More information

Satellite Derived Irradiance: Clear Sky and All-Weather Models Validation on Skukuza Data

Satellite Derived Irradiance: Clear Sky and All-Weather Models Validation on Skukuza Data SASEC2015 Third Southern African Solar Energy Conference 11 13 May 2015 Kruger National Park, South Africa Satellite Derived Irradiance: Clear Sky and All-Weather Models Validation on Skukuza Data Ineichen

More information

THE ROAD TO BANKABILITY: IMPROVING ASSESSMENTS FOR MORE ACCURATE FINANCIAL PLANNING

THE ROAD TO BANKABILITY: IMPROVING ASSESSMENTS FOR MORE ACCURATE FINANCIAL PLANNING THE ROAD TO BANKABILITY: IMPROVING ASSESSMENTS FOR MORE ACCURATE FINANCIAL PLANNING Gwen Bender Francesca Davidson Scott Eichelberger, PhD 3TIER 2001 6 th Ave, Suite 2100 Seattle WA 98125 gbender@3tier.com,

More information

Global Solar Dataset for PV Prospecting. Gwendalyn Bender Vaisala, Solar Offering Manager for 3TIER Assessment Services

Global Solar Dataset for PV Prospecting. Gwendalyn Bender Vaisala, Solar Offering Manager for 3TIER Assessment Services Global Solar Dataset for PV Prospecting Gwendalyn Bender Vaisala, Solar Offering Manager for 3TIER Assessment Services Vaisala is Your Weather Expert! We have been helping industries manage the impact

More information

AN INTERNATIONAL SOLAR IRRADIANCE DATA INGEST SYSTEM FOR FORECASTING SOLAR POWER AND AGRICULTURAL CROP YIELDS

AN INTERNATIONAL SOLAR IRRADIANCE DATA INGEST SYSTEM FOR FORECASTING SOLAR POWER AND AGRICULTURAL CROP YIELDS AN INTERNATIONAL SOLAR IRRADIANCE DATA INGEST SYSTEM FOR FORECASTING SOLAR POWER AND AGRICULTURAL CROP YIELDS James Hall JHTech PO Box 877 Divide, CO 80814 Email: jameshall@jhtech.com Jeffrey Hall JHTech

More information

Uncertainties in solar electricity yield prediction from fluctuation of solar radiation

Uncertainties in solar electricity yield prediction from fluctuation of solar radiation Uncertainties in solar electricity yield prediction from fluctuation of solar radiation Marcel Suri, Thomas Huld, Ewan Dunlop, Michel Albuisson, Mireille Lefèvre, Lucien Wald To cite this version: Marcel

More information

Conference Presentation

Conference Presentation Conference Presentation Satellite Derived Irradiance: Clear Sky and All-Weather Models Validation on Skukuza Data INEICHEN, Pierre Abstract Downward short wave incoming irradiances play a key role in the

More information

Comparison of Direct Normal Irradiation Maps for Europe

Comparison of Direct Normal Irradiation Maps for Europe Comparison of Direct Normal Irradiation Maps for Europe Marcel Šúri 1,2, Jan Remund 3, Tomáš Cebecauer 1,2, Carsten Hoyer-Klick 4, Dominique Dumortier 5, Thomas Huld 2, Paul W. Stackhouse, Jr. 6, and Pierre

More information

The European Solar Radiation Atlas: a valuable digital tool

The European Solar Radiation Atlas: a valuable digital tool Author manuscript, published in "Solar Energy 71, 1 (2001) 81-83" DOI : 10.1016/S0038-092X(00)00157-2 The European Solar Radiation Atlas 1 Page J., M. Albuisson, L. Wald, 2001. The European solar radiation

More information

Purdue University Meteorological Tool (PUMET)

Purdue University Meteorological Tool (PUMET) Purdue University Meteorological Tool (PUMET) Date: 10/25/2017 Purdue University Meteorological Tool (PUMET) allows users to download and visualize a variety of global meteorological databases, such as

More information

PV 2012/2013. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment

PV 2012/2013. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment SOLAR RESOURCE Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment 1 is immense Human energy use: 4.0x10 14 kwh/year on Earth s surface: 5.5x10 17 kwh/year

More information

Chapter 2 Available Solar Radiation

Chapter 2 Available Solar Radiation Chapter 2 Available Solar Radiation DEFINITIONS Figure shows the primary radiation fluxes on a surface at or near the ground that are important in connection with solar thermal processes. DEFINITIONS It

More information

Solar resource. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment

Solar resource. Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment SOLAR RESOURCE 1 Solar resource Radiation from the Sun Atmospheric effects Insolation maps Tracking the Sun PV in urban environment 2 Solar resource Solar resource is immense Human energy use: 4.0x10 14

More information

Accuracy of Meteonorm ( )

Accuracy of Meteonorm ( ) Accuracy of Meteonorm (7.1.6.14035) A detailed look at the model steps and uncertainties 22.10.2015 Jan Remund Contents The atmosphere is a choatic system, not as exactly describable as many technical

More information

SOLAR RADIATION ESTIMATION AND PREDICTION USING MEASURED AND PREDICTED AEROSOL OPTICAL DEPTH

SOLAR RADIATION ESTIMATION AND PREDICTION USING MEASURED AND PREDICTED AEROSOL OPTICAL DEPTH SOLAR RADIATION ESTIMATION AND PREDICTION USING MEASURED AND PREDICTED AEROSOL OPTICAL DEPTH Carlos M. Fernández-Peruchena, Martín Gastón, Maria V Guisado, Ana Bernardos, Íñigo Pagola, Lourdes Ramírez

More information

Leader in Investment, Management and Engineering in the Renewable Energy Industry. Irradiation data in yield predictions Tokyo 24/6/2015

Leader in Investment, Management and Engineering in the Renewable Energy Industry. Irradiation data in yield predictions Tokyo 24/6/2015 Leader in Investment, Management and Engineering in the Renewable Energy Industry Irradiation data in yield predictions Tokyo 24/6/2015 1 Index of contents 1. Introduction 2. Comparison of Data Sources

More information

Characterization of the solar irradiation field for the Trentino region in the Alps

Characterization of the solar irradiation field for the Trentino region in the Alps Characterization of the solar irradiation field for the Trentino region in the Alps L. Laiti*, L. Giovannini and D. Zardi Atmospheric Physics Group University of Trento - Italy outline of the talk Introduction

More information

SOLAR MODELLING REPORT

SOLAR MODELLING REPORT Public Disclosure Authorized Public Disclosure Authorized Solar Resource Mapping in Zambia SOLAR MODELLING REPORT NOVEMBER 2014 Public Disclosure Authorized Public Disclosure Authorized This report was

More information

Solar Radiation Measurements and Model Calculations at Inclined Surfaces

Solar Radiation Measurements and Model Calculations at Inclined Surfaces Solar Radiation Measurements and Model Calculations at Inclined Surfaces Kazadzis S. 1*, Raptis I.P. 1, V. Psiloglou 1, Kazantzidis A. 2, Bais A. 3 1 Institute for Environmental Research and Sustainable

More information

HelioClim: a long-term database on solar radiation for Europe and Africa

HelioClim: a long-term database on solar radiation for Europe and Africa HelioClim: a long-term database on solar radiation for Europe and Africa Sylvain Cros, Michel Albuisson, Mireille Lefèvre, Christelle Rigollier, Lucien Wald To cite this version: Sylvain Cros, Michel Albuisson,

More information

Table 1-2. TMY3 data header (line 2) 1-68 Data field name and units (abbreviation or mnemonic)

Table 1-2. TMY3 data header (line 2) 1-68 Data field name and units (abbreviation or mnemonic) 1.4 TMY3 Data Format The format for the TMY3 data is radically different from the TMY and TMY2 data.. The older TMY data sets used columnar or positional formats, presumably as a method of optimizing data

More information

Online data and tools for estimation of solar electricity in Africa: the PVGIS approach

Online data and tools for estimation of solar electricity in Africa: the PVGIS approach Online data and tools for estimation of solar electricity in Africa: the PVGIS approach Marcel Suri, Thomas Huld, Ewan Dunlop, Michel Albuisson, Lucien Wald To cite this version: Marcel Suri, Thomas Huld,

More information

ACCURACY-ENHANCED SOLAR RESOURCE MAPS OF SOUTH AFRICA

ACCURACY-ENHANCED SOLAR RESOURCE MAPS OF SOUTH AFRICA SASEC2015 Third Southern African Solar Energy Conference 11 13 May 2015 Kruger National Park, South Africa ACCURACY-ENHANCED SOLAR RESOURCE MAPS OF SOUTH AFRICA Suri M.* 1, Cebecauer T. 1, Meyer A.J. 2

More information

Short term forecasting of solar radiation based on satellite data

Short term forecasting of solar radiation based on satellite data Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer, Detlev Heinemann Energy and Semiconductor Research Laboratory, Institute of Physics Carl von Ossietzky University,

More information

Site-adaptation of satellite-based DNI and GHI time series: overview and SolarGIS approach

Site-adaptation of satellite-based DNI and GHI time series: overview and SolarGIS approach Site-adaptation of satellite-based DNI and GHI time series: overview and SolarGIS approach Tomas Cebecauer 1, a) 1, b) and Marcel Suri 1 GeoModel Solar, Pionierska 15, 83102 Bratislava, Slovakia a) Corresponding

More information

THE SOLAR RESOURCE: PART II MINES ParisTech Center Observation, Impacts, Energy (Tel.: +33 (0) )

THE SOLAR RESOURCE: PART II MINES ParisTech Center Observation, Impacts, Energy (Tel.: +33 (0) ) MASTER REST Solar Resource Part II THE SOLAR RESOURCE: PART II MINES ParisTech Center Observation, Impacts, Energy philippe.blanc@mines-paristech.fr (Tel.: +33 (0)4 93 95 74 04) MASTER REST Solar Resource

More information

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES

OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES OPTIMISING THE TEMPORAL AVERAGING PERIOD OF POINT SURFACE SOLAR RESOURCE MEASUREMENTS FOR CORRELATION WITH AREAL SATELLITE ESTIMATES Ian Grant Anja Schubert Australian Bureau of Meteorology GPO Box 1289

More information

CSP vs PV Developing From a Solar Resource Perspective. Riaan Meyer MD, GeoSUN Africa

CSP vs PV Developing From a Solar Resource Perspective. Riaan Meyer MD, GeoSUN Africa CSP vs PV Developing From a Solar Resource Perspective Riaan Meyer MD, GeoSUN Africa 1 Contents Solar Resource 101 PV Developers CSP Developers Comparison 2 GeoSUN Africa Stellenbosch University spin-off,

More information

SOLAR MODELING REPORT

SOLAR MODELING REPORT Public Disclosure Authorized Public Disclosure Authorized Solar Resource Mapping in the Maldives SOLAR MODELING REPORT FEBRUARY 2015 Public Disclosure Authorized Public Disclosure Authorized This report

More information

Energy Yield Assessment of the Photovoltaic Power Plant

Energy Yield Assessment of the Photovoltaic Power Plant Energy Yield Assessment of the Photovoltaic Power Plant ******** Municipality of ********, *********(Country) Nominal power ******** kwp DC Reference No. 200-01/2013 Date: 18 August 2016 Customer Supplier

More information

SUNY Satellite-to-Solar Irradiance Model Improvements

SUNY Satellite-to-Solar Irradiance Model Improvements SUNY Satellite-to-Solar Irradiance Model Improvements Higher-accuracy in snow and high-albedo conditions with SolarAnywhere Data v3 SolarAnywhere Juan L Bosch, Adam Kankiewicz and John Dise Clean Power

More information

Developing a Guide for Non-experts to Determine the Most Appropriate Use of Solar Energy Resource Information

Developing a Guide for Non-experts to Determine the Most Appropriate Use of Solar Energy Resource Information Developing a Guide for Non-experts to Determine the Most Appropriate Use of Solar Energy Resource Information Carsten Hoyer-Klick 1*, Jennifer McIntosh 2, Magda Moner-Girona 3, David Renné 4, Richard Perez

More information

Dependence of one-minute global irradiance probability density distributions on hourly irradiation

Dependence of one-minute global irradiance probability density distributions on hourly irradiation Energy 26 (21) 659 668 www.elsevier.com/locate/energy Dependence of one-minute global irradiance probability density distributions on hourly irradiation J. Tovar a, F.J. Olmo b, F.J. Batlles c, L. Alados-Arboledas

More information

A New Predictive Solar Radiation Numerical Model

A New Predictive Solar Radiation Numerical Model A New Predictive Solar Radiation Numerical Model F. Díaz, G. Montero, J.M. Escobar, E. Rodríguez, R. Montenegro University Institute for Intelligent Systems and Numerical Applications in Engineering, University

More information

VALIDATION OF MSG DERIVED SURFACE INCOMING GLOBAL SHORT-WAVE RADIATION PRODUCTS OVER BELGIUM

VALIDATION OF MSG DERIVED SURFACE INCOMING GLOBAL SHORT-WAVE RADIATION PRODUCTS OVER BELGIUM VALIDATION OF MSG DERIVED SURFACE INCOMING GLOBAL SHORT-WAVE RADIATION PRODUCTS OVER BELGIUM C. Bertrand 1, R. Stöckli 2, M. Journée 1 1 Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium

More information

SOLAR POWER FORECASTING BASED ON NUMERICAL WEATHER PREDICTION, SATELLITE DATA, AND POWER MEASUREMENTS

SOLAR POWER FORECASTING BASED ON NUMERICAL WEATHER PREDICTION, SATELLITE DATA, AND POWER MEASUREMENTS BASED ON NUMERICAL WEATHER PREDICTION, SATELLITE DATA, AND POWER MEASUREMENTS Detlev Heinemann, Elke Lorenz Energy Meteorology Group, Institute of Physics, Oldenburg University Workshop on Forecasting,

More information

3TIER Global Solar Dataset: Methodology and Validation

3TIER Global Solar Dataset: Methodology and Validation 3TIER Global Solar Dataset: Methodology and Validation October 2013 www.3tier.com Global Horizontal Irradiance 70 180 330 INTRODUCTION Solar energy production is directly correlated to the amount of radiation

More information

VARIABILITY OF SOLAR RADIATION OVER SHORT TIME INTERVALS

VARIABILITY OF SOLAR RADIATION OVER SHORT TIME INTERVALS VARIABILITY OF SOLAR RADIATION OVER SHORT TIME INTERVALS Frank Vignola Department of Physics 1274-University of Oregon Eugene, OR 9743-1274 fev@darkwing.uoregon.edu ABSTRACT In order to evaluate satellite

More information

Creation of a 30 years-long high resolution homogenized solar radiation data set over the

Creation of a 30 years-long high resolution homogenized solar radiation data set over the Creation of a 30 years-long high resolution homogenized solar radiation data set over the Benelux C. Bertrand in collaboration with M. Urbainand M. Journée Operational Directorate: Weather forecasting

More information

Review of satellite-based surface solar irradiation databases for the engineering, the financing and the operating of photovoltaic systems

Review of satellite-based surface solar irradiation databases for the engineering, the financing and the operating of photovoltaic systems Review of satellite-based surface solar irradiation databases for the engineering, the financing and the operating of photovoltaic systems Christophe Vernay, Sébastien Pitaval, Philippe Blanc To cite this

More information

HOW TYPICAL IS SOLAR ENERGY? A 6 YEAR EVALUATION OF TYPICAL METEOROLOGICAL DATA (TMY3)

HOW TYPICAL IS SOLAR ENERGY? A 6 YEAR EVALUATION OF TYPICAL METEOROLOGICAL DATA (TMY3) HOW TYPICAL IS SOLAR ENERGY? A 6 YEAR EVALUATION OF TYPICAL METEOROLOGICAL DATA (TMY3) Matthew K. Williams Shawn L. Kerrigan Locus Energy 657 Mission Street, Suite 401 San Francisco, CA 94105 matthew.williams@locusenergy.com

More information

Introducing NREL s Gridded National Solar Radiation Data Base (NSRDB)

Introducing NREL s Gridded National Solar Radiation Data Base (NSRDB) Introducing NREL s Gridded National Solar Radiation Data Base (NSRDB) Manajit Sengupta Aron Habte, Anthony Lopez, Yu Xi and Andrew Weekley, NREL Christine Molling CIMMS Andrew Heidinger, NOAA International

More information

(1) AEMET (Spanish State Meteorological Agency), Demóstenes 4, Málaga, Spain ABSTRACT

(1) AEMET (Spanish State Meteorological Agency), Demóstenes 4, Málaga, Spain ABSTRACT COMPARISON OF GROUND BASED GLOBAL RADIATION MEASUREMENTS FROM AEMET RADIATION NETWORK WITH SIS (SURFACE INCOMING SHORTWAVE RADIATION) FROM CLIMATE MONITORING-SAF Juanma Sancho1, M. Carmen Sánchez de Cos1,

More information

SoDa: a Web service on solar radiation

SoDa: a Web service on solar radiation SoDa: a Web service on solar radiation Lucien Wald, Michel Albuisson, Clive Best, Catherine Delamare, Dominique Dumortier, Elena Gaboardi, Anette Hammer, Detlev Heinnemann, Richard Kift, Stefan Kunz, et

More information

IMPROVING MODELED SOLAR IRRADIANCE HISTORICAL TIME SERIES: WHAT IS THE APPROPRIATE MONTHLY STATISTIC FOR AEROSOL OPTICAL DEPTH?

IMPROVING MODELED SOLAR IRRADIANCE HISTORICAL TIME SERIES: WHAT IS THE APPROPRIATE MONTHLY STATISTIC FOR AEROSOL OPTICAL DEPTH? IMPROVING MODELED SOLAR IRRADIANCE HISTORICAL TIME SERIES: WHAT IS THE APPROPRIATE MONTHLY STATISTIC FOR AEROSOL OPTICAL DEPTH? Christian A. Gueymard Solar Consulting Services P.O. Box 392 Colebrook, NH

More information

Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels

Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels Experimental and Theoretical Study on the Optimal Tilt Angle of Photovoltaic Panels Naihong Shu* 1, Nobuhiro Kameda 2, Yasumitsu Kishida 2 and Hirotora Sonoda 3 1 Graduate School, Kyushu Kyoritsu University,

More information

AN ARTIFICIAL NEURAL NETWORK BASED APPROACH FOR ESTIMATING DIRECT NORMAL, DIFFUSE HORIZONTAL AND GLOBAL HORIZONTAL IRRADIANCES USING SATELLITE IMAGES

AN ARTIFICIAL NEURAL NETWORK BASED APPROACH FOR ESTIMATING DIRECT NORMAL, DIFFUSE HORIZONTAL AND GLOBAL HORIZONTAL IRRADIANCES USING SATELLITE IMAGES AN ARTIFICIAL NEURAL NETWORK BASED APPROACH FOR ESTIMATING DIRECT NORMAL, DIFFUSE HORIZONTAL AND GLOBAL HORIZONTAL IRRADIANCES USING SATELLITE IMAGES Yehia Eissa Prashanth R. Marpu Hosni Ghedira Taha B.M.J.

More information

PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN

PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN Richard Perez ASRC, the University at Albany 251 Fuller Rd. Albany, NY 12203 perez@asrc.cestm.albany.edu Pierre Ineichen, CUEPE, University

More information

Importance of Input Data and Uncertainty Associated with Tuning Satellite to Ground Solar Irradiation

Importance of Input Data and Uncertainty Associated with Tuning Satellite to Ground Solar Irradiation Importance of Input Data and Uncertainty Associated with Tuning Satellite to Ground Solar Irradiation James Alfi 1, Alex Kubiniec 2, Ganesh Mani 1, James Christopherson 1, Yiping He 1, Juan Bosch 3 1 EDF

More information

ANNEX IV: SOLAR RESOURCE MAP OF LIBERIA: ASSUMPTIONS, ANALYSIS AND OUTPUTS

ANNEX IV: SOLAR RESOURCE MAP OF LIBERIA: ASSUMPTIONS, ANALYSIS AND OUTPUTS ANNEX IV: SOLAR RESOURCE MAP OF LIBERIA: ASSUMPTIONS, ANALYSIS AND OUTPUTS TABLE OF CONTENTS 1 INTRODUCTION... 2 2 DATA GATHERING AND ANALYSIS... 2 3 SOLAR RESOURCE ASSESSMENT... 8 3.1 METHODOLOGY... 8

More information

TABLE OF CONTENTS TOPICS. Copyright First Solar, Inc. 22 May 2018

TABLE OF CONTENTS TOPICS. Copyright First Solar, Inc. 22 May 2018 TABLE OF CONTENTS This document provides insight on the key elements required to perform accurate energy predictions using First Solar modules with PlantPredict or PVsyst. TOPICS General Parameter Guidance:

More information

IMPROVED MODEL FOR FORECASTING GLOBAL SOLAR IRRADIANCE DURING SUNNY AND CLOUDY DAYS. Bogdan-Gabriel Burduhos, Mircea Neagoe *

IMPROVED MODEL FOR FORECASTING GLOBAL SOLAR IRRADIANCE DURING SUNNY AND CLOUDY DAYS. Bogdan-Gabriel Burduhos, Mircea Neagoe * DOI: 10.2478/awutp-2018-0002 ANNALS OF WEST UNIVERSITY OF TIMISOARA PHYSICS Vol. LX, 2018 IMPROVED MODEL FOR FORECASTING GLOBAL SOLAR IRRADIANCE DURING SUNNY AND CLOUDY DAYS Bogdan-Gabriel Burduhos, Mircea

More information

Climate Variables for Energy: WP2

Climate Variables for Energy: WP2 Climate Variables for Energy: WP2 Phil Jones CRU, UEA, Norwich, UK Within ECEM, WP2 provides climate data for numerous variables to feed into WP3, where ESCIIs will be used to produce energy-relevant series

More information

Speedwell High Resolution WRF Forecasts. Application

Speedwell High Resolution WRF Forecasts. Application Speedwell High Resolution WRF Forecasts Speedwell weather are providers of high quality weather data and forecasts for many markets. Historically we have provided forecasts which use a statistical bias

More information

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # *Cooperative Institute for Meteorological Satellite Studies, University of

More information

Conference Proceedings

Conference Proceedings Conference Proceedings Solar World Congress 215 Daegu, Korea, 8 12 November 215 VALIDATION OF GHI AND DNI PEDICTIONS FOM GFS AND MACC MODEL IN THE MIDDLE EAST Luis Martin-Pomares 1, Jesus Polo 2, Daniel

More information

Satellite-based climate data records. in support to Climate Services. Steffen Kothe and CM SAF Team

Satellite-based climate data records. in support to Climate Services. Steffen Kothe and CM SAF Team Satellite-based Climate Data Records in support to Climate Services Steffen Kothe and CM SAF Team Satellite-based climate data records in support to Climate Services Steffen Kothe and CM SAF Team Climate

More information

Direct Normal Radiation from Global Radiation for Indian Stations

Direct Normal Radiation from Global Radiation for Indian Stations RESEARCH ARTICLE OPEN ACCESS Direct Normal Radiation from Global Radiation for Indian Stations Jaideep Rohilla 1, Amit Kumar 2, Amit Tiwari 3 1(Department of Mechanical Engineering, Somany Institute of

More information

HORIZONTAL AND VERTICAL ILLUMINANCE/IRRADIANCE FROM THE IDMP STATION IN GENEVA

HORIZONTAL AND VERTICAL ILLUMINANCE/IRRADIANCE FROM THE IDMP STATION IN GENEVA Third SATELLIGHT meeting, Les Marecottes January 16/17 1997 HORIZONTAL AND VERTICAL ILLUMINANCE/IRRADIANCE FROM THE IDMP STATION IN GENEVA by Arvid Skartveit and Jan Asle Olseth SATELLIGHT Programme JOR3-CT9541

More information

Evaluation of cloudiness/haziness factor for composite climate

Evaluation of cloudiness/haziness factor for composite climate Evaluation of cloudiness/haziness factor for composite climate H.N. Singh, G.N. Tiwari * Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India Abstract In this communication,

More information

Spatiotemporal Analysis of Solar Radiation for Sustainable Research in the Presence of Uncertain Measurements

Spatiotemporal Analysis of Solar Radiation for Sustainable Research in the Presence of Uncertain Measurements Spatiotemporal Analysis of Solar Radiation for Sustainable Research in the Presence of Uncertain Measurements Alexander Kolovos SAS Institute, Inc. alexander.kolovos@sas.com Abstract. The study of incoming

More information

A methodology for DNI forecasting using NWP models and aerosol load forecasts

A methodology for DNI forecasting using NWP models and aerosol load forecasts 4 th INTERNATIONAL CONFERENCE ON ENERGY & METEOROLOGY A methodology for DNI forecasting using NWP models and aerosol load forecasts AEMET National Meteorological Service of Spain Arantxa Revuelta José

More information

Conference Proceedings

Conference Proceedings Conference Proceedings EuroSun 14 Aix-les-Bains (France), 16 19 September 14 Solar Resource Assessment over Kuwait: Validation of Satellite-derived Data and Reanalysis Modeling Majed AL-Rasheedi 1, Christian

More information

MeteoSwiss Spatial Climate Analyses: Documentation of Datasets for Users

MeteoSwiss Spatial Climate Analyses: Documentation of Datasets for Users Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss MeteoSwiss Spatial Climate Analyses: Documentation of Datasets for Users Figure 1: Distribution of the 48-hour

More information

Handbook part II: Theory

Handbook part II: Theory Handbook part II: Theory Version 7.0.0 / May 2012 Contents meteonorm Contents PART II: THEORY 6 RADIATION... 1 6.1 Reference time in meteonorm... 1 6.2 Worldwide interpolation of meteorological data...

More information

Evaluation of long-term global radiation measurements in Denmark and Sweden

Evaluation of long-term global radiation measurements in Denmark and Sweden Downloaded from orbit.dtu.dk on: Oct 18, 2018 Evaluation of long-term global radiation measurements in Denmark and Sweden Skalík, Lukáš ; Lulkoviová, Otília; Furbo, Simon; Perers, Bengt; Dragsted, Janne;

More information

Solargis Solar Resource Database

Solargis Solar Resource Database Solargis Solar Resource Database Description and Accuracy Last updated: 13 October 2016 Contact Solargis s.r.o. Pionierska 15, 831 02 Bratislava Slovak Republic Tel: +421 2 4319 1708 Email: contact@ URL:

More information

HIGH TURBIDITY CLEAR SKY MODEL: VALIDATION ON DATA FROM SOUTH AFRICA

HIGH TURBIDITY CLEAR SKY MODEL: VALIDATION ON DATA FROM SOUTH AFRICA HIGH TURBIDITY CLEAR SKY MODEL: VALIDATION ON DATA FROM SOUTH AFRICA Pierre Ineichen 1 1 University of Geneva, Energy Systems Group ISE/Forel, 66 bd Carl-Vogt, CH 1211 Geneva 4, pierre.ineichen@unige.ch

More information

INVESTIGATIONS ON SOLAR THERMAL PROCESS HEAT INTEGRATION WITH PARABOLIC TROUGH COLLECTORS

INVESTIGATIONS ON SOLAR THERMAL PROCESS HEAT INTEGRATION WITH PARABOLIC TROUGH COLLECTORS INVESTIGATIO ON SOLAR THERMAL PROCESS HEAT INTEGRATION WITH PARABOLIC TROUGH COLLECTORS Heinz Marty and Elimar Frank HSR University of Applied Science of Rapperswil, Institut fuer Solartechnik SPF, 8640

More information

TherMap Thermal Maps. Use of Topographic Radar Scans to Identify Thermal Hotspots in Alpine Areas

TherMap Thermal Maps. Use of Topographic Radar Scans to Identify Thermal Hotspots in Alpine Areas TherMap Thermal Maps Use of Topographic Radar Scans to Identify Thermal Hotspots in Alpine Areas Contents History and present state of thermal maps The TherMap approach Topography Irradiance Temperature

More information

FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS

FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann*, Hashini Wickramarathne*, Hans Georg Beyer +, Stefan Bofinger * University of Oldenburg, Institute of

More information

not for commercial-scale installations. Thus, there is a need to study the effects of snow on

not for commercial-scale installations. Thus, there is a need to study the effects of snow on 1. Problem Statement There is a great deal of uncertainty regarding the effects of snow depth on energy production from large-scale photovoltaic (PV) solar installations. The solar energy industry claims

More information

8-km Historical Datasets for FPA

8-km Historical Datasets for FPA Program for Climate, Ecosystem and Fire Applications 8-km Historical Datasets for FPA Project Report John T. Abatzoglou Timothy J. Brown Division of Atmospheric Sciences. CEFA Report 09-04 June 2009 8-km

More information

Perez All-Weather Sky Model Analysis

Perez All-Weather Sky Model Analysis Perez All-Weather Sky Model Analysis Author: Ian Ashdown, byheart Consultants Limited Date: March 8 th, 29 The Radiance extension utility gendaylit implements the Perez All-Weather Sky model. There are

More information

A PARTICLE FILTER APPROACH FOR SOLAR RADIATION ESTIMATE USING SATELLITE IMAGE AND IN SITU DATA

A PARTICLE FILTER APPROACH FOR SOLAR RADIATION ESTIMATE USING SATELLITE IMAGE AND IN SITU DATA 1 st EARSeL Workshop on Temporal Analysis of Satellite Images 28 A PARTICLE FILTER APPROACH FOR SOLAR RADIATION ESTIMATE USING SATELLITE IMAGE AND IN SITU DATA Laurent Linguet 1, Jamal Atif 2 1. University

More information

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan Ruslan Botpaev¹*, Alaibek Obozov¹, Janybek Orozaliev², Christian Budig², Klaus Vajen², 1 Kyrgyz State Technical University,

More information

TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM

TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM 1979-200 Laura Riihimaki Frank Vignola Department of Physics University of Oregon Eugene, OR 970 lriihim1@uoregon.edu fev@uoregon.edu ABSTRACT To

More information

EVALUATING SOLAR RESOURCE VARIABILITY FROM SATELLITE AND GROUND-BASED OBSERVATIONS

EVALUATING SOLAR RESOURCE VARIABILITY FROM SATELLITE AND GROUND-BASED OBSERVATIONS EVALUATING SOLAR RESOURCE VARIABILITY FROM SATELLITE AND GROUND-BASED OBSERVATIONS Mary Anderberg, Dave Renné, Thomas Stoffel, and Manajit Sengupta National Renewable Energy Laboratory 1617 Cole Blvd.

More information

On the clear sky model of the ESRA - European Solar Radiation Atlas with respect to the Heliosat method

On the clear sky model of the ESRA - European Solar Radiation Atlas with respect to the Heliosat method On the clear sky model of the ESRA - European Solar Radiation Atlas with respect to the Heliosat method Christelle Rigollier, Olivier Bauer, Lucien Wald To cite this version: Christelle Rigollier, Olivier

More information

Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation

Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation ENERGY 3TIER Services Global Solar Dataset / Methodology and Validation Global Horizontal Irradiance 70 80 330 W/m Introduction Solar energy production is directly correlated to the amount of radiation

More information

Management and Exploitation of Solar Resource Knowledge

Management and Exploitation of Solar Resource Knowledge Management and Exploitation of Solar Resource Knowledge C. Hoyer-Klick 1*, H.G. Beyer 2, D. Dumortier 3, M. Schroedter-Homscheidt 4, L. Wald 5, M. Martinoli 6, C. Schillings 1, B. Gschwind 5, L. Menard

More information

SU solar resource measurement station: Sonbesie metadata

SU solar resource measurement station: Sonbesie metadata SU solar resource measurement station: Sonbesie metadata Date: 30 July 2013 Introduction A solar resource measurement station, known as Sonbesie, has been installed at Stellenbosch University. The system

More information

A fusion method for creating sub-hourly DNI-based TMY from long-term satellite-based and short-term ground-based irradiation data

A fusion method for creating sub-hourly DNI-based TMY from long-term satellite-based and short-term ground-based irradiation data A fusion method for creating sub-hourly DNI-based TMY from long-term satellite-based and short-term ground-based irradiation data Etienne Wey, Claire Thomas, Philippe Blanc, Bella Espinar, Mustapha Mouadine,

More information

XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS

XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS XI. DIFFUSE GLOBAL CORRELATIONS: SEASONAL VARIATIONS Estimating the performance of a solar system requires an accurate assessment of incident solar radiation. Ordinarily, solar radiation is measured on

More information

Long term irradiance clear sky and all-weather model validation. INEICHEN, Pierre. Abstract

Long term irradiance clear sky and all-weather model validation. INEICHEN, Pierre. Abstract Proceedings Chapter Long term irradiance clear sky and all-weather model validation INEICHEN, Pierre Abstract The optimal utilization of solar energy requires a thorough characterization of the solar resource.

More information

Recommendations from COST 713 UVB Forecasting

Recommendations from COST 713 UVB Forecasting Recommendations from COST 713 UVB Forecasting UV observations UV observations can be used for comparison with models to get a better understanding of the processes influencing the UV levels reaching the

More information

COST action 718 METEOROLOGICAL APPLICATIONS FOR AGRICULTURE. Spatialisation of Solar Radiation - draft report on possibilities and limitations

COST action 718 METEOROLOGICAL APPLICATIONS FOR AGRICULTURE. Spatialisation of Solar Radiation - draft report on possibilities and limitations COST action 718 METEOROLOGICAL APPLICATIONS FOR AGRICULTURE Spatialisation of Solar Radiation - draft report on possibilities and limitations Piotr Struzik WG1.1. 3-rd Management Committee and Working

More information

Assessment of Heliosat-4 surface solar irradiance derived on the basis of SEVIRI-APOLLO cloud products

Assessment of Heliosat-4 surface solar irradiance derived on the basis of SEVIRI-APOLLO cloud products Assessment of Heliosat-4 surface solar irradiance derived on the basis of SEVIRI-APOLLO cloud products Zhipeng Qu, Armel Oumbe, Philippe Blanc, Mireille Lefèvre, Lucien Wald MINES ParisTech, Centre for

More information

A Typical Meteorological Year for Energy Simulations in Hamilton, New Zealand

A Typical Meteorological Year for Energy Simulations in Hamilton, New Zealand Anderson T N, Duke M & Carson J K 26, A Typical Meteorological Year for Energy Simulations in Hamilton, New Zealand IPENZ engineering trenz 27-3 A Typical Meteorological Year for Energy Simulations in

More information

Validation of Direct Normal Irradiance from Meteosat Second Generation. DNICast

Validation of Direct Normal Irradiance from Meteosat Second Generation. DNICast Validation of Direct Normal Irradiance from Meteosat Second Generation DNICast A. Meyer 1), L. Vuilleumier 1), R. Stöckli 1), S. Wilbert 2), and L. F. Zarzalejo 3) 1) Federal Office of Meteorology and

More information