Back to basics: From Sputnik to Envisat, and beyond: The use of satellite measurements in weather forecasting and research: Part 1 A history

Size: px
Start display at page:

Download "Back to basics: From Sputnik to Envisat, and beyond: The use of satellite measurements in weather forecasting and research: Part 1 A history"

Transcription

1 Back to basics: From Sputnik to Envisat, and beyond: The use of satellite measurements in weather forecasting and research: Part 1 A history Roger Brugge 1 and Matthew Stuttard 2 1 NERC Data Assimilation Research Centre, University of Reading 2 Logica UK Ltd On 28 February 2002 the European Space Agency (ESA) launched Envisat, a research satellite designed to monitor the earth s environment on a global scale. Data from Envisat will support earth science research and allow the monitoring of the evolution of environmental and climatic changes, providing a continuity that will continue the measurements of previous research satellites. Furthermore, they will facilitate the development of operational and commercial applications. The current operational Meteosat series is nearing the end of its expected life, and a replacement satellite series, the Meteosat Second Generation (MSG), is due to commence operating soon. MSG-1 was launched in August 2002, with a second satellite, MSG-2, due to follow in 18 months. Each satellite will have a nominal 7-year lifetime. During 2005, ESA will be launching METOP, an operational meteorological satellite capable of high-resolution measurements for use in weather forecast models. It seems timely, therefore, to assess the role of satellites in meteorology and to examine some of the information that is, and will become, available to forecasters and researchers from meteorological satellites. In this first article, we will describe some of the history of meteorological satellites and the current practical use of operational satellites. Subsequent articles will describe some of the data that can be obtained currently from research satellites, and also the instrumentation on board Envisat. On 4 October 1957 Russia launched the world s first satellite, Sputnik 1. Apart from achieving the aim of being a world `first, Sputnik 1 was launched with the aim of studying the ionosphere, and was the first in a long line of satellites that have had, as part of their mission, the objective of monitoring the atmos- 107

2 Table 1 Operational satellites currently (May 2002) used to provide meteorological data for numerical weather prediction models Satellite programme Current satellite Longitude View Geostationary satellites Meteosat Meteosat-7 08 Eastern Atlantic, Europe, Africa INDOEX Meteosat-5 638E Asia, Indian Ocean, Africa GOMS/INSAT INSAT-1D 748E Asia, Indian Ocean, eastern Africa INSAT INSAT-2E 838E Asia, Indian Ocean Feng-Yun Feng-Yun-2B 1058E Asia, Indian Ocean, Australia GMS GMS E East Asia, western Pacific, Australia GOES (WEST) GOES W Eastern Pacific, North America GOES (EAST) GOES-8 758W North and South America, western Atlantic Polar-orbiting satellites NOAA-14, NOAA-15, NOAA-16, Meteor-2, Meteor-3, Feng-Yun-1C Since the continuity of data from these satellites is important, many of them have back-up satellites, which are not listed here. Further details can be found at and phere. Two years later, the USA launched Explorer 7, the first satellite with an instrument payload designed for studying the meteorology of the upper atmosphere. Since those early days, a series of satellites has been used to monitor the earth s atmosphere, of which the Geostationary Operational Environmental Satellite (GOES), Meteosat, and the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites are, perhaps, the most well known of the satellite systems in current operational use. Operational meteorologists rely upon information from a suite of meteorological satellites that provide both imagery and numerical data that can be used as input to weather forecast models. These satellites are shown in Table 1. As the table shows, there are two basic orbits that are used for meteorological satellites, namely geostationary and polar-orbiting. These papers discussed the difference between these two types of satellite (and how their data are used in weather forecast models), and also highlight the uses of research satellites (with emphasis on Envisat). Polar-orbiting satellites The world s first purpose-built meteorological satellite, a polar-orbiting satellite, was launched on 1 April Named TIROS (Television InfraRed Observation Satellite), it demonstrated the advantage of mapping the 108 earth s cloud cover from satellite altitudes. TIROS showed that clouds banded and clustered in unexpected ways (see Fig. 1). Sightings from the surface had not prepared meteorologists for the insight into cloud patterns that the view from an orbiting satellite would give, and that over the following years would become a familiar sight to everyone with a television (and later with Internet access). Ten TIROS satellites were launched, followed by the Environmental Science Services Administration (ESSA) and Improved TIROS Operational Satellite (ITOS) series. From October 1978 to July 1981, satellites in the TIROS-N series were launched. The `N represented the next generation of operational satellites including NOAA-6 and NOAA-7, which were launched during this time. Flight of the Advanced Very High Resolution Radiometer (AVHRR) and TIROS Operational Vertical Sounder (TOVS) instruments started on TIROS-N. On 28 March 1983, the first of the Advanced TIROS-N (ATN) satellites, designated NOAA-8, was launched. These satellites are physically larger and have more power than their predecessors. NOAA continues to operate the ATN series of satellites today with improved instruments, including NOAA-14 and NOAA-15 currently in orbit. NOAA-15 is the first in a series of five satellites with improved imaging and sounding capabilities that will operate over the next decade. Polar-orbiting satellites offer the advantage

3 Fig. 1 The first television picture of the earth s atmosphere from space, produced by TIROS, 1 April 1960 (courtesy of NOAA and the National Climate Data Center ± obtained from directive=quick_results&pop=yes) of daily near-global coverage from an almost constant altitude while keeping solar illumination as constant as possible. This is achieved by making nearly-polar orbits, circling the earth approximately 14.1 times daily. Since the number of orbits per day is not an integer, the sub-orbital tracks do not coincide from one day to the next. The orbits of these satellites are circular, with an altitude between 830 and 870 km, and are sun-synchronous. The sun-synchronous capability means that the descending node of each orbit views the earth at almost the same local time during the day, and the ascending node views the earth at the same time of night. An example of the high resolution available from the polar orbiters is shown in Fig. 2. A suite of instruments on board each NOAA ATN satellite is able to measure many parameters of the earth s atmosphere, surface and cloud cover. As a part of the mission, the satellites can receive, process and retransmit data from search and rescue beacon transmitters, and automatic data-collection platforms on Fig. 2 High-resolution imagery available from the polar-orbiter satellites. The resolution is approximately 1.1 km per pixel; the image was received on 24 February 1998 (courtesy of the NERC Satellite Station, University of Dundee, and taken from their website 109

4 land, on ocean buoys, or aboard free-floating balloons. The primary instrument on board the polar-orbiting satellite nowadays is the AVHRR. The AVHRR is a radiation-detection imager that can be used for remotely determining cloud cover and the surface temperature. Note that the term `surface can mean the surface of the earth, the upper surfaces of clouds, or the surface of a body of water. This scanning radiometer uses six detectors that collect information in different wavelength bands, enabling measurements of daytime cloud and surface mapping (0.58± 0.68 mm), land± water boundaries (0.725± 1.00 mm), snow and ice presence (1.58± 1.64 mm), night-time cloud mapping and sea surface temperature (3.55± 3.93 and 10.3± 11.3mm), and sea surface temperature (11.5± 12.5 mm). As a result of the characteristics of a polar orbit and because their sensors have a wide field of view, these satellites are able to collect global data on a daily basis for a variety of land, ocean, and atmospheric applications. Data from the NOAA series of polar-orbiting satellites support a broad range of environmental monitoring applications including weather analysis and forecasting, climate research and prediction, global sea surface temperature measurements, atmospheric soundings of temperature and humidity, ocean dynamics research, monitoring volcanic eruptions, forest fire detection, and global vegetation analysis. Geosynchronous satellites Images of whole earth discs are taken routinely by, amongst others, EUMETSAT s Meteosat, and NOAA s GOES series of satellites from geostationary orbits about km above the equator ± see Fig. 3. `Whole earth images are composited on a half-hourly basis. A geosynchronous orbit may be defined as one with an orbital period matching the rotation rate of the earth. This period is a sidereal day, which is 23 hours 56 minutes 4 seconds in length, and represents the time taken for the earth to rotate once about its polar axis relative to a distant fixed point. This time is about 4 minutes shorter than the civil day length, which is relative to the sun. A satellite is in a geostationary orbit when it appears stationary 110 Fig. 3 The GOES-2 meteorological satellite (courtesy of NOAA Photo Library, at index.html) from the point of view of an observer on the earth s surface. This can only occur when: (i) (ii) (iii) the orbit is geosynchronous; the orbit is a circle; and the orbit lies in the plane of the earth s equator. Note that a geostationary orbit is a special case of a geosynchronous orbit. Unfortunately, because of the altitude of geostationary satellites their imaging is of fairly low quality towards the poles (see Fig. 4), and polar-orbiting satellites generally produce better resolution data. However, polar orbiters suffer from the disadvantage that their orbit tracks are continually changing, so making them less useful in monitoring a given location continuously in comparison with geostationary satellites. Geostationary satellites provide the kind of continuous monitoring necessary for intensive data analysis, by maintaining station over one position on the surface. The geosynchronous plane is high enough to allow the satellites a full-disc view of the earth. Because they stay above a fixed spot on the surface, they provide a constant vigil for the atmospheric `triggers of severe weather conditions such as tornadoes, flash floods, hailstorms, and hurri-

5 Fig. 4 Meteosat global infrared image, 1200 GMTon 7 June 2002 (courtesy of EUMETSATand NOAA, and taken from gov/f_meteo.html). Note how the image shows the presence of deep (cold) convective cloud (white) in equatorial areas, and deep frontal cloud in midlatitude regions. The warmer land masses are shown as black in the image. canes. When these conditions develop, the satellites are able to monitor storm development and track their movements. Geostationary satellite imagery is also used to estimate rainfall during thunderstorms and hurricanes for flash flood warnings, as well as estimating snowfall accumulations and the overall extent of snow-cover. Such data help meteorologists to issue winter storm warnings and spring snowmelt advisories. Satellite sensors also detect ice fields and map the movements of sea- and lake-ice. Visible and near-infrared images show the sunlight that is reflected off clouds and the surface of the earth, using the 0.5± 1.0 mm band. They show all types of cloud and are the best type of image for seeing low-level weather systems, which do not show up well on far-infrared imagery. Thus fog may be invisible on a farinfrared image because of the lack of temperature contrast between the fog and surrounding land or sea. Visible imagery can only be used for this purpose when the area of interest is in daylight. An example of visible imagery is shown in Fig. 2. Types of image Satellite imagery is, nowadays, available widely on the Internet and it is worth reviewing, briefly, the main types of imagery available there. Examples of all types of imagery can also be found from time to time in Weather. Visible and near-infrared Far-infrared Far-infrared (commonly called thermal) imagery shows the amount of heat emitted by the different cloud features and the surface of the earth. Thermal images show clouds at higher levels better because they are colder. These images are usually presented such that lower temperatures appear as white parts of the image, and warmer parts appear dark (e.g. Fig. 4). 111

6 Fig. 5 NOAA) Water-vapour image over the western coast of North America at 1800GMT on 14 February 2002 (courtesy of The far-infrared images are derived from emissions in the 10± 12 mm waveband, and provide information to the satellite on the underlying surface or cloud. However, since the emitted radiation must traverse the top of the earth s atmosphere before reaching the satellite, this upper atmosphere will modify the emitted radiation. It is worth noting, however, that in the tropics even cloudless air may show up as a shade of grey in the image, due to the presence of high levels of humidity ± this impacts upon the radiative processes at the infrared wavelengths. Water vapour 112 Water-vapour images are images that show water-vapour content in the troposphere (Fig. 5), using measurements made of emissions around the 6± 7 mm band. This is an area of the electromagnetic spectrum where the water vapour is the major absorbing gas. If the upper troposphere is moist, then the radiation reaching the satellite instrument will mostly originate from this region, and will usually be displayed in white ± mirroring the convention for far-infrared images denoting this altitude. If the upper troposphere is relatively dry then the emissions will originate from water vapour at warmer, lower levels and the imagery will be shown as black by convention. In a normally moist atmosphere, most of the watervapour radiation measured by the satellite radiometer arrives from the 300± 600 mbar layer, but if the air is dry some may come from layers as low as 800 mbar (2± 3 km above the earth s surface). Part 2 of this article will describe how satellite data can be used in modern weather forecasting, and how data from research satellites are also being used in numerical models of the atmosphere. Correspondence to: Dr R. Brugge, NERC Data Assimilation Research Centre, Department of Meteorology, University of Reading, PO Box 243, Earley Gate, Reading, Berkshire RG6 6BB. brugge@met.rdg.ac.uk # Royal Meteorological Society, doi: /wea A

Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum

Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum Satellites, Weather and Climate Module 1: Introduction to the Electromagnetic Spectrum What is remote sensing? = science & art of obtaining information through data analysis, such that the device is not

More information

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures? CHAPTER 17 1 What Is Climate? SECTION Climate BEFORE YOU READ After you read this section, you should be able to answer these questions: What is climate? What factors affect climate? How do climates differ

More information

International Cooperation in Operational Environmental Satellites: The U.S. Experience

International Cooperation in Operational Environmental Satellites: The U.S. Experience Committee on the Peaceful Uses of Outer Space Science and Technology Sub committee Forty seventh session February 17, 2010 Vienna, Austria International Cooperation in Operational Environmental Satellites:

More information

Fifty Years of Operational Environmental Satellites: The U.S. Experience

Fifty Years of Operational Environmental Satellites: The U.S. Experience United Nations Committee on the Peaceful Uses of Outer Space Vienna, Austria June 15, 2010 Fifty Years of Operational Environmental Satellites: The U.S. Experience Mr. Charles Baker Deputy Assistant Administrator

More information

4 Forecasting Weather

4 Forecasting Weather CHAPTER 2 4 Forecasting Weather SECTION Understanding Weather BEFORE YOU READ After you read this section, you should be able to answer these questions: What instruments are used to forecast weather? How

More information

EUMETSAT PLANS. K. Dieter Klaes EUMETSAT Darmstadt, Germany

EUMETSAT PLANS. K. Dieter Klaes EUMETSAT Darmstadt, Germany EUMETSAT PLANS K. Dieter Klaes EUMETSAT Darmstadt, Germany 1. INTRODUCTION The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), contributes to the World Weather Watch

More information

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures? CHAPTER 3 1 What Is Climate? SECTION Climate BEFORE YOU READ After you read this section, you should be able to answer these questions: What is climate? What factors affect climate? How do climates differ

More information

MODULE 2 LECTURE NOTES 1 SATELLITES AND ORBITS

MODULE 2 LECTURE NOTES 1 SATELLITES AND ORBITS MODULE 2 LECTURE NOTES 1 SATELLITES AND ORBITS 1. Introduction When a satellite is launched into the space, it moves in a well defined path around the Earth, which is called the orbit of the satellite.

More information

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure.

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 05 SOME OBSERVING INSTRUMENTS. Instrument Enclosure. Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

SAN FRANCISCO STATE UNIVERSITY NAME DEPARTMENT OF GEOSCIENCES Spring 2013

SAN FRANCISCO STATE UNIVERSITY NAME DEPARTMENT OF GEOSCIENCES Spring 2013 SAN FRANCISCO STATE UNIVERSITY NAME DEPARTMENT OF GEOSCIENCES Spring 2013 METR 415/715: MONTEVERDI QUIZ 1 Open Book and Open Notes 200 points, 45 minutes 1. Compute the altitude of a geostationary orbit

More information

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature Lectures 7 and 8: 14, 16 Oct 2008 Sea Surface Temperature References: Martin, S., 2004, An Introduction to Ocean Remote Sensing, Cambridge University Press, 454 pp. Chapter 7. Robinson, I. S., 2004, Measuring

More information

4 Forecasting Weather

4 Forecasting Weather CHAPTER 16 4 Forecasting Weather SECTION Understanding Weather BEFORE YOU READ After you read this section, you should be able to answer these questions: What instruments are used to forecast weather?

More information

FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9

FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9 FUTURE PLAN AND RECENT ACTIVITIES FOR THE JAPANESE FOLLOW-ON GEOSTATIONARY METEOROLOGICAL SATELLITE HIMAWARI-8/9 Toshiyuki Kurino Japan Meteorological Agency, 1-3-4 Otemachi Chiyodaku, Tokyo 100-8122,

More information

EUMETSAT Satellite Status

EUMETSAT Satellite Status EUMETSAT Satellite Status Dr. K. Dieter Klaes EUMETSAT 1 ET-SAT Meeting 4-6 April 2017, WMO, Geneva, Switzerland EUMETSAT is an intergovernmental organisation with 30 Member States and 1 Cooperating State

More information

Outline of 4 Lectures

Outline of 4 Lectures Outline of 4 Lectures 1. Sept. 17, 2008: TC best track definition and datasets, global distribution of TCs; Review of history of meteorological satellites, introducing different orbits, scanning patterns,

More information

Principles of Satellite Remote Sensing

Principles of Satellite Remote Sensing Chapter 5 Principles of Satellite Remote Sensing Goal: Give a overview on the characteristics of satellite remote sensing. Satellites have several unique characteristics which make them particularly useful

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures? CHAPTER 17 1 What Is Climate? SECTION Climate BEFORE YOU READ After you read this section, you should be able to answer these questions: What is climate? What factors affect climate? How do climates differ

More information

III. Section 3.3 Vertical air motion can cause severe storms

III. Section 3.3 Vertical air motion can cause severe storms III. Section 3.3 Vertical air motion can cause severe storms http://www.youtube.com/watch?v=nxwbr60tflg&feature=relmfu A. Thunderstorms form from rising moist air Electrical charges build up near the tops

More information

METEOSAT THIRD GENERATION

METEOSAT THIRD GENERATION METEOSAT THIRD GENERATION FACTS AND FIGURES MONITORING WEATHER AND CLIMATE FROM SPACE A HIGHLY INNOVATIVE GEOSTATIONARY SATELLITE SYSTEM FOR EUROPE AND AFRICA The Meteosat Third Generation (MTG) system

More information

EUMETSAT Plans. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D Darmstadt Germany. Abstract. Introduction. Programmatic Aspects

EUMETSAT Plans. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D Darmstadt Germany. Abstract. Introduction. Programmatic Aspects EUMETSAT Plans K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D-64295 Darmstadt Germany Abstract This paper provides a summary on EUMETSAT current and planned programmes. EUMETSAT is currently developing,

More information

An Update on EUMETSAT Programmes and Plans. Dieter Klaes on behalf of EUMETSAT teams

An Update on EUMETSAT Programmes and Plans. Dieter Klaes on behalf of EUMETSAT teams An Update on EUMETSAT Programmes and Plans Dieter Klaes on behalf of EUMETSAT teams 1 21 st International TOVS Study Conference (ITSC), Darmstadt, Germany, 29 November 2017 5 December 2017 Current EUMETSAT

More information

Arctic Weather Every 10 Minutes: Design & Operation of ABI for PCW

Arctic Weather Every 10 Minutes: Design & Operation of ABI for PCW Arctic Weather Every 10 Minutes: Design and Operation of ABI for PCW Dr. Paul C. Griffith and Sue Wirth 31st Space Symposium, Technical Track, Colorado Springs, Colorado This document is not subject to

More information

NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY. ECMWF, Shinfield Park, Reading ABSTRACT

NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY. ECMWF, Shinfield Park, Reading ABSTRACT NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY ECMWF, Shinfield Park, Reading ABSTRACT Recent monitoring of cloud motion winds (SATOBs) at ECMWF has shown an improvement in quality.

More information

WEATHER ON WHEELS Middle School Program

WEATHER ON WHEELS Middle School Program WEATHER ON WHEELS Middle School Program MAST ACADEMY OUTREACH Post-Site Activities Miami-Dade County Public Schools Miami, Florida MAST ACADEMY OUTREACH WEATHER ON WHEELS POST-SITE PACKAGE TABLE OF CONTENTS

More information

Why There Is Weather?

Why There Is Weather? Lecture 6: Weather, Music Of Our Sphere Weather and Climate WEATHER The daily fluctuations in atmospheric conditions. The atmosphere on its own can produce weather. (From Understanding Weather & Climate)

More information

Basic cloud Interpretation using Satellite Imagery

Basic cloud Interpretation using Satellite Imagery Basic cloud Interpretation using Satellite Imagery Introduction Recall that images from weather satellites are actually measurements of energy from specified bands within the Electromagnetic (EM) spectrum.

More information

Weather Studies Introduction to Atmospheric Science

Weather Studies Introduction to Atmospheric Science Weather Studies Introduction to Atmospheric Science American Meteorological Society Chapter 1 Monitoring The Weather Credit: This presentation was prepared for AMS by Michael Leach, Professor of Geography

More information

Climate Changes due to Natural Processes

Climate Changes due to Natural Processes Climate Changes due to Natural Processes 2.6.2a Summarize natural processes that can and have affected global climate (particularly El Niño/La Niña, volcanic eruptions, sunspots, shifts in Earth's orbit,

More information

25.1 Air Masses. Section 25.1 Objectives

25.1 Air Masses. Section 25.1 Objectives Section 25.1 Objectives Explain how an air mass forms. List the four main types of air masses. Describe how air masses affect the weather of North America. Air Masses 25.1 Air Masses Differences in air

More information

- satellite orbits. Further Reading: Chapter 04 of the text book. Outline. - satellite sensor measurements

- satellite orbits. Further Reading: Chapter 04 of the text book. Outline. - satellite sensor measurements (1 of 12) Further Reading: Chapter 04 of the text book Outline - satellite orbits - satellite sensor measurements - remote sensing of land, atmosphere and oceans (2 of 12) Introduction Remote Sensing:

More information

Unit 11 Section 1 Computer Lab. Part 1: REMOTE SENSING OF THE EARTH SYSTEM BY SATELLITE

Unit 11 Section 1 Computer Lab. Part 1: REMOTE SENSING OF THE EARTH SYSTEM BY SATELLITE Unit 11 Section 1 Computer Lab Part 1: REMOTE SENSING OF THE EARTH SYSTEM BY SATELLITE Educational Outcomes: Satellites orbiting the planet are ideal platforms for monitoring the Earth system from above

More information

Lecture 4b: Meteorological Satellites and Instruments. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Lecture 4b: Meteorological Satellites and Instruments. Acknowledgement: Dr. S. Kidder at Colorado State Univ. Lecture 4b: Meteorological Satellites and Instruments Acknowledgement: Dr. S. Kidder at Colorado State Univ. US Geostationary satellites - GOES (Geostationary Operational Environmental Satellites) US

More information

3 Severe Weather. Critical Thinking

3 Severe Weather. Critical Thinking CHAPTER 2 3 Severe Weather SECTION Understanding Weather BEFORE YOU READ After you read this section, you should be able to answer these questions: What are some types of severe weather? How can you stay

More information

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long period of time Many factors influence weather & climate

More information

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy. Fluid Circulation Review Vocabulary Absorption - taking in energy as in radiation. For example, the ground will absorb the sun s radiation faster than the ocean water. Air pressure Albedo - Dark colored

More information

Fire Weather Drivers, Seasonal Outlook and Climate Change. Steven McGibbony, Severe Weather Manager Victoria Region Friday 9 October 2015

Fire Weather Drivers, Seasonal Outlook and Climate Change. Steven McGibbony, Severe Weather Manager Victoria Region Friday 9 October 2015 Fire Weather Drivers, Seasonal Outlook and Climate Change Steven McGibbony, Severe Weather Manager Victoria Region Friday 9 October 2015 Outline Weather and Fire Risk Environmental conditions leading to

More information

MSG system over view

MSG system over view MSG system over view 1 Introduction METEOSAT SECOND GENERATION Overview 2 MSG Missions and Services 3 The SEVIRI Instrument 4 The MSG Ground Segment 5 SAF Network 6 Conclusions METEOSAT SECOND GENERATION

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

Unit: Weather Study Guide

Unit: Weather Study Guide Name: Period: Unit: Weather Study Guide Define each vocabulary word on a separate piece of paper or index card. Weather Climate Temperature Wind chill Heat index Sky conditions UV index Visibility Wind

More information

Unit 5 Lesson 3 How is Weather Predicted? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 3 How is Weather Predicted? Copyright Houghton Mifflin Harcourt Publishing Company Tracking the Weather Warm up 1 Why is it important to watch the weather forecast before traveling to another country? Tracking the Weather A meteorologist is a scientist who studies weather. Meteorologists

More information

Use the terms from the following list to complete the sentences below. Each term may be used only once.

Use the terms from the following list to complete the sentences below. Each term may be used only once. Skills Worksheet Directed Reading Section: Air Masses Use the terms from the following list to complete the sentences below. Each term may be used only once. high pressure poles low pressure equator wind

More information

P3.13 GLOBAL COMPOSITE OF VOLCANIC ASH SPLIT ` WINDOW GEOSTATIONARY SATELLITE IMAGES

P3.13 GLOBAL COMPOSITE OF VOLCANIC ASH SPLIT ` WINDOW GEOSTATIONARY SATELLITE IMAGES P3.13 GLOBAL COMPOSITE OF VOLCANIC ASH SPLIT ` WINDOW GEOSTATIONARY SATELLITE IMAGES Frederick R. Mosher * Embry-Riddle Aeronautical University Daytona Beach, FL 1.0 Introduction Volcanic ash is exceptionally

More information

Comparison of cloud statistics from Meteosat with regional climate model data

Comparison of cloud statistics from Meteosat with regional climate model data Comparison of cloud statistics from Meteosat with regional climate model data R. Huckle, F. Olesen, G. Schädler Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany (roger.huckle@imk.fzk.de

More information

GEOSC/METEO 597K Kevin Bowley Kaitlin Walsh

GEOSC/METEO 597K Kevin Bowley Kaitlin Walsh GEOSC/METEO 597K Kevin Bowley Kaitlin Walsh Timeline of Satellites ERS-1 (1991-2000) NSCAT (1996) Envisat (2002) RADARSAT (2007) Seasat (1978) TOPEX/Poseidon (1992-2005) QuikSCAT (1999) Jason-2 (2008)

More information

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT FRANÇOIS BECKER International Space University and University Louis Pasteur, Strasbourg, France; E-mail: becker@isu.isunet.edu Abstract. Remote sensing

More information

MSG/SEVIRI CHANNEL 4 Short-Wave IR 3.9 m IR3.9 Tutorial

MSG/SEVIRI CHANNEL 4 Short-Wave IR 3.9 m IR3.9 Tutorial MSG/SEVIRI CHANNEL 4 Short-Wave IR Channel @ 3.9 m IR3.9 Tutorial HansPeter Roesli EUMETSAT satmet.hp@ticino.com Contributions: D Rosenfeld (HUJ) J Kerkmann (EUM), M Koenig (EUM), J Prieto (EUM), HJ Lutz

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

Nerushev A.F., Barkhatov A.E. Research and Production Association "Typhoon" 4 Pobedy Street, , Obninsk, Kaluga Region, Russia.

Nerushev A.F., Barkhatov A.E. Research and Production Association Typhoon 4 Pobedy Street, , Obninsk, Kaluga Region, Russia. DETERMINATION OF ATMOSPHERIC CHARACTERISTICS IN THE ZONE OF ACTION OF EXTRA-TROPICAL CYCLONE XYNTHIA (FEBRUARY 2010) INFERRED FROM SATELLITE MEASUREMENT DATA Nerushev A.F., Barkhatov A.E. Research and

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long

Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long Weather Atmospheric condition in one place during a limited period of time Climate Weather patterns that an area typically experiences over a long period of time Many factors influence weather & climate

More information

Lecture 4: Meteorological Satellites and Instruments. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Lecture 4: Meteorological Satellites and Instruments. Acknowledgement: Dr. S. Kidder at Colorado State Univ. Lecture 4: Meteorological Satellites and Instruments Acknowledgement: Dr. S. Kidder at Colorado State Univ. Homework for the Spring Break: get some tangible, preliminary results for your final project.

More information

Title: The Impact of Convection on the Transport and Redistribution of Dust Aerosols

Title: The Impact of Convection on the Transport and Redistribution of Dust Aerosols Authors: Kathryn Sauter, Tristan L'Ecuyer Title: The Impact of Convection on the Transport and Redistribution of Dust Aerosols Type of Presentation: Oral Short Abstract: The distribution of mineral dust

More information

Science 1206 Chapter 1 - Inquiring about Weather

Science 1206 Chapter 1 - Inquiring about Weather Science 1206 Chapter 1 - Inquiring about Weather 1.1 - The Atmosphere: Energy Transfer and Properties (pp. 10-25) Weather and the Atmosphere weather the physical conditions of the atmosphere at a specific

More information

EUMETSAT PLANS. Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D Darmstadt Germany

EUMETSAT PLANS. Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D Darmstadt Germany EUMETSAT PLANS Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D-64295 Darmstadt Germany Page 1 EUMETSAT SATELLITE PROGRAMMES 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 METEOSAT

More information

A Guide to Satellite Data Appropriate for Solar Energy Applications in Ireland

A Guide to Satellite Data Appropriate for Solar Energy Applications in Ireland University College Dublin Satellite Data A Guide to Satellite Data Appropriate for Solar Energy Applications in Ireland Eadaoin Doddy eadaoin.doddy@ucdconnect.ie 13 January 2017 Contents 1 Satellites 1

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

Figure 1. Carbon dioxide time series in the North Pacific Ocean (

Figure 1. Carbon dioxide time series in the North Pacific Ocean ( Evidence #1: Since 1950, Earth s atmosphere and oceans have changed. The amount of carbon released to the atmosphere has risen. Dissolved carbon in the ocean has also risen. More carbon has increased ocean

More information

The In-Orbit Commissioning of MSG-1

The In-Orbit Commissioning of MSG-1 Earth Observation The In-Orbit Commissioning of MSG-1 MSG Project Team, Earth Observation Projects Department, ESA Directorate of Earth Observation, ESTEC, Noordwijk, The Netherlands 80 esa bulletin 114

More information

EUMETSAT products and services for monitoring storms - New missions, more data and more meteorological products

EUMETSAT products and services for monitoring storms - New missions, more data and more meteorological products EUMETSAT products and services for monitoring storms - New missions, more data and more meteorological products Jochen Grandell 1 EUM/RSP/VWG/17/921460 Outline Overview of EUMETSAT missions Current...and

More information

Global reanalysis: Some lessons learned and future plans

Global reanalysis: Some lessons learned and future plans Global reanalysis: Some lessons learned and future plans Adrian Simmons and Sakari Uppala European Centre for Medium-Range Weather Forecasts With thanks to Per Kållberg and many other colleagues from ECMWF

More information

Satellite observation of atmospheric dust

Satellite observation of atmospheric dust Satellite observation of atmospheric dust Taichu Y. Tanaka Meteorological Research Institute, Japan Meteorological Agency 11 April 2017, SDS WAS: Dust observation and modeling @WMO, Geneva Dust observations

More information

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D)

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D) 1. The hottest climates on Earth are located near the Equator because this region A) is usually closest to the Sun B) reflects the greatest amount of insolation C) receives the most hours of daylight D)

More information

PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY

PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY A.M. BRASJEN AUGUST 2014 1 2 PRECIPITATION ESTIMATION FROM INFRARED SATELLITE IMAGERY MASTER S THESIS AUGUST 2014 A.M. BRASJEN Department of Geoscience

More information

Ch. 3: Weather Patterns. Sect. 1: Air Mass & Fronts Sect. 2: Storms Sect. 3: Predicting the Weather

Ch. 3: Weather Patterns. Sect. 1: Air Mass & Fronts Sect. 2: Storms Sect. 3: Predicting the Weather Ch. 3: Weather Patterns Sect. 1: Air Mass & Fronts Sect. 2: Storms Sect. 3: Predicting the Weather Sect. 1: Air Masses & Fronts An air mass is a huge body of air that has similar temperature, humidity,

More information

Exercise Brunswick ALPHA 2018

Exercise Brunswick ALPHA 2018 ALPHA Exercise Brunswick ALPHA 2018 Who we are (our structure) What we do (our forecasts) How you can access the information Tropical cyclone information (basic) Overview of the products used for Exercise

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

Energy Transfer in the Atmosphere

Energy Transfer in the Atmosphere Energy Transfer in the Atmosphere Textbook pages 436 459 Section 10.2 Summary Before You Read What do you think causes wind? Write your thoughts in the lines below. Mark the Text In Your Own Words Highlight

More information

Page 1 of 5 Home research global climate enso effects Research Effects of El Niño on world weather Precipitation Temperature Tropical Cyclones El Niño affects the weather in large parts of the world. The

More information

GEOMETRIC CLOUD HEIGHTS FROM METEOSAT AND AVHRR. G. Garrett Campbell 1 and Kenneth Holmlund 2

GEOMETRIC CLOUD HEIGHTS FROM METEOSAT AND AVHRR. G. Garrett Campbell 1 and Kenneth Holmlund 2 GEOMETRIC CLOUD HEIGHTS FROM METEOSAT AND AVHRR G. Garrett Campbell 1 and Kenneth Holmlund 2 1 Cooperative Institute for Research in the Atmosphere Colorado State University 2 EUMETSAT ABSTRACT Geometric

More information

Weather - is the state of the atmosphere at a specific time & place

Weather - is the state of the atmosphere at a specific time & place Weather Section 1 Weather - is the state of the atmosphere at a specific time & place Includes such conditions as air pressure, wind, temperature, and moisture in the air The Sun s heat evaporates water

More information

IV. Atmospheric Science Section

IV. Atmospheric Science Section EAPS 100 Planet Earth Lecture Topics Brief Outlines IV. Atmospheric Science Section 1. Introduction, Composition and Structure of the Atmosphere Learning objectives: Understand the basic characteristics

More information

CGMS Baseline. Sustained contributions to the Global Observing System. Endorsed by CGMS-46 in Bengaluru, June 2018

CGMS Baseline. Sustained contributions to the Global Observing System. Endorsed by CGMS-46 in Bengaluru, June 2018 CGMS Baseline Sustained contributions to the Global Observing System Best Practices for Achieving User Readiness for New Meteorological Satellites Endorsed by CGMS-46 in Bengaluru, June 2018 CGMS/DOC/18/1028862,

More information

Weather What is weather? Weather. is the study of our atmosphere. Atmosphere literally means vapor (atmos) of a sphere.

Weather What is weather? Weather. is the study of our atmosphere. Atmosphere literally means vapor (atmos) of a sphere. Weather What is weather? Weather is the study of our atmosphere. Atmosphere literally means vapor (atmos) of a sphere. Our atmosphere is made up of 4 basic layers: The outermost layer is the thermosphere

More information

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC Daisaku Uesawa Meteorological Satellite Center, Japan Meteorological Agency Abstract MTSAT-1R is the current operational Japanese

More information

Trend of dust storm days and variation in dust and carbon monoxide concentrations during dust storms observed at Cheongwon, Korea

Trend of dust storm days and variation in dust and carbon monoxide concentrations during dust storms observed at Cheongwon, Korea Korea Centre for Atmospheric Environment Research Trend of dust storm days and variation in dust and carbon monoxide concentrations during dust storms observed at Cheongwon, Korea Yong-Seung CHUNG and

More information

Status report on current and future satellite systems by EUMETSAT Presented to CGMS-44, Plenary session, agenda item D.1

Status report on current and future satellite systems by EUMETSAT Presented to CGMS-44, Plenary session, agenda item D.1 Status report on current and future satellite systems by EUMETSAT Presented to CGMS-44, Plenary session, agenda item D.1 CGMS-44-EUMETSAT-WP-19.ppt, version 1 (# 859110), 8 June 2016 MISSION PLANNING YEAR...

More information

Meteosat Third Generation (MTG): Lightning Imager and its products Jochen Grandell

Meteosat Third Generation (MTG): Lightning Imager and its products Jochen Grandell 1 Go to View menu and click on Slide Master to update this footer. Include DM reference, version number and date Meteosat Third Generation (MTG): Lightning Imager and its products Jochen Grandell Topics

More information

CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS

CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS CHAPTER 13 WEATHER ANALYSIS AND FORECASTING MULTIPLE CHOICE QUESTIONS 1. The atmosphere is a continuous fluid that envelops the globe, so that weather observation, analysis, and forecasting require international

More information

Pacific Decadal Oscillation ( PDO ):

Pacific Decadal Oscillation ( PDO ): Time again for my annual Winter Weather Outlook. Here's just a small part of the items I considered this year and how I think they will play out with our winter of 2015-2016. El Nino / La Nina: When looking

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system Li Bi James Jung John Le Marshall 16 April 2008 Outline WindSat overview and working

More information

Untitled.notebook May 12, Thunderstorms. Moisture is needed to form clouds and precipitation the lifting of air, or uplift, must be very strong

Untitled.notebook May 12, Thunderstorms. Moisture is needed to form clouds and precipitation the lifting of air, or uplift, must be very strong Thunderstorms Moisture is needed to form clouds and precipitation the lifting of air, or uplift, must be very strong cold air and warm air must mix; creating an active circulation system that has both

More information

Warm Up Vocabulary Check

Warm Up Vocabulary Check Warm Up Vocabulary Check Surface current Coriolis Effect global winds upwelling Gulf Stream deep current climate El Nino convection current continental deflection 1.The apparent curving of the path of

More information

Maps and Remote Sensing AOSC 200 Tim Canty

Maps and Remote Sensing AOSC 200 Tim Canty Maps and Remote Sensing AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Weather Maps Radar Satellite Observations Lecture 04 Feb 7 2019 1 Today s Weather Map

More information

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 1. Introduction Precipitation is one of most important environmental parameters.

More information

FINAL EXAM PRACTICE #3: Meteorology, Climate, and Ecology

FINAL EXAM PRACTICE #3: Meteorology, Climate, and Ecology FINAL EXAM PRACTICE #3: Meteorology, Climate, and Ecology 1. Clay is watching the weather to prepare for a trip to the beach tomorrow. The forecast predicts that a low-pressure system will move in overnight.

More information

Global Weather Trade Winds etc.notebook February 17, 2017

Global Weather Trade Winds etc.notebook February 17, 2017 Global Weather 1 north pole northern hemisphere equator southern hemisphere south pole 2 We have seasons because of the Earth's tilt The seasons are opposite in the northern and southern hemispheres winter

More information

Name Period 4 th Six Weeks Notes 2013 Weather

Name Period 4 th Six Weeks Notes 2013 Weather Name Period 4 th Six Weeks Notes 2013 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Investigation A: OCEAN IN THE GLOBAL WATER CYCLE

Investigation A: OCEAN IN THE GLOBAL WATER CYCLE Investigation A: OCEAN IN THE GLOBAL WATER CYCLE (NOTE: Completion of this activity requires Internet access.) Driving Question: What role does the ocean play in the global water cycle within the Earth

More information

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading Extremes of Weather and the Latest Climate Change Science Prof. Richard Allan, Department of Meteorology University of Reading Extreme weather climate change Recent extreme weather focusses debate on climate

More information

Weather Systems Study Guide:

Weather Systems Study Guide: Weather Systems Study Guide: 1. Draw a diagram of Earth s water cycle and label each part. 2. Explain how the water cycle works. 3. What happens in the troposphere and stratosphere? Atmosphere Level What

More information

ATMOSPHERIC CIRCULATION AND WIND

ATMOSPHERIC CIRCULATION AND WIND ATMOSPHERIC CIRCULATION AND WIND The source of water for precipitation is the moisture laden air masses that circulate through the atmosphere. Atmospheric circulation is affected by the location on the

More information

Lightning Detection Systems

Lightning Detection Systems Lightning Detection Systems Roger Carter, Spectrum Manager, UK Met Office ITU/WMO SEMINAR ON USE OF RADIO SPECTRUM FOR METEOROLOGY. 16 18 September 2009 Lightning Detection Systems Table of Contents Introduction

More information

GENERATION OF HIMAWARI-8 AMVs USING THE FUTURE MTG AMV PROCESSOR

GENERATION OF HIMAWARI-8 AMVs USING THE FUTURE MTG AMV PROCESSOR GENERATION OF HIMAWARI-8 AMVs USING THE FUTURE MTG AMV PROCESSOR Manuel Carranza 1, Régis Borde 2, Masahiro Hayashi 3 1 GMV Aerospace and Defence S.A. at EUMETSAT, Eumetsat Allee 1, D-64295 Darmstadt,

More information

Chapter 3 Packet. and causes seasons Earth tilted at 23.5 / 365 1/4 days = one year or revolution

Chapter 3 Packet. and causes seasons Earth tilted at 23.5 / 365 1/4 days = one year or revolution Name Chapter 3 Packet Sequence Section 1 Seasons and Weather : and causes seasons Earth tilted at 23.5 / 365 1/4 days = one year or revolution solstice - begins summer in N. hemisphere, longest day winter

More information

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Weather Weather Patterns Weather Forecasts Chapter Wrap-Up How do scientists describe and predict weather? What do you think? Before you begin,

More information

CONSTRUCTION OF CLOUD TRAJECTORIES AND MOTION OF CIRRUS CLOUDS AND WATER VAPOUR STRUCTURES

CONSTRUCTION OF CLOUD TRAJECTORIES AND MOTION OF CIRRUS CLOUDS AND WATER VAPOUR STRUCTURES CONSTRUCTION OF CLOUD TRAJECTORIES AND MOTION OF CIRRUS CLOUDS AND WATER VAPOUR STRUCTURES André SZANTAI +, Michel DESBOIS +, Laurence PICON +, Henri LAURENT *, Françoise DESALMAND + + Laboratoire de Météorologie

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

WMO Aeronautical Meteorology Scientific Conference 2017

WMO Aeronautical Meteorology Scientific Conference 2017 Session 1 Science underpinning meteorological observations, forecasts, advisories and warnings 1.6 Observation, nowcast and forecast of future needs 1.6.1 Advances in observing methods and use of observations

More information