Lecture 02: The Milky Way Galaxy classification Overview of observational facts. Further reading: SG ch.1, MBW ch.2

Size: px
Start display at page:

Download "Lecture 02: The Milky Way Galaxy classification Overview of observational facts. Further reading: SG ch.1, MBW ch.2"

Transcription

1 Lecture 02: The Milky Way Galaxy classification Overview of observational facts Further reading: SG ch.1, MBW ch.2

2 The Milky Way Disk scale heights h H 150 pc h mol 60 pc h thin 200 pc h thick 1 kpc R sun 8 kpc z sun 15 pc V 250 km/s SG, fig. 1.8

3 Useful coordinate systems Equatorial Galactic Galactocentric «Local Standard of Rest» (LSR) Fig. 1.9, 1.10 in SG, ch. 1

4 We are upside down in the MW! Image credit: S. Mikelbank MW angular momentum

5 Measure orbital parameters of stars close to the center of the MW from time-domain distance/velocity measurements Infer the mass of the center mass: consistent with M A No significant concentration of stellar objects in the small volume constrained through orbital calculations «evidence» of a supermassive compact object in the center of the MW Supported by sobservation of strong radio emission from the very same position (SagA) See also SG, problem 2.6 Central black hole

6 Differential rotation discovered through proper motions (Oort, 1927) Measuring galactic rotation

7 Measuring galactic rotation Radial motions may further probe rotation across the MW V r = VVVV α V 0 sin l Using the sine theorem, Differential rotation discovered through proper motions (Oort, 1927) V r = R 0 sin l V R V 0 R 0

8 Measuring galactic rotation V r = R 0 sin l V R V 0 R 0 Evidence of spiral/bar structure Measure of rotation curve at R<R 0 through the tangent point method SG, fig. 2.20

9 «From the outside»

10 What do we aim to learn from galaxies? How and why they form and evolve The role of their components (stars, gas, dust, DM) in their history and how they are related (i.e. link observed properties to physics) To what extent galaxies are biased tracers of matter distribution, since we basically observe only baryons in an underlying distribution of (mostly dark) matter. the origin of extreme regularity of various parameters of the galaxy population The link between galaxy formation and evolution to cosmology Galaxies and LSSs (clusters, superclusters) are unique astrophysical laboratories to investigate the processes related to the cycle of baryons in the universe.

11 Galaxy classification

12 Hubble Tuning Fork diagram (Hubble 1936)

13 Spiral Galaxies Disk + spiral arms + bulge (usually) Subtype a b c defined by 3 criteria: Bulge/disk luminosity ratio Sa: B/D>1 Sc: B/D<0.2 Spiral pitch angle Sa: tightly wound arms Sc: loosely wound arms Degree of resolution into knots, HII regions, etc.

14 Barred Spiral Galaxies Contain a linear feature of nearly uniform brightness centered on nucleus Subclasses follow those of spirals with subtypes a b and c

15 Elliptical Galaxies Smooth structure and symmetric, elliptical contours Subtype E0 - E7 defined by flattening En where n = 10(a-b)/a where a and b are the projected major and minor axes (doesn t tell what the 3-D shape is)

16 Lenticulars or S0 Galaxies Smooth, central brightness concentration (bulge similar to E) surrounded by a large region of less steeply declining brightness (similar to a disk) No spiral arm structure Originally thought to be transition objects between Sa and E but typical S0 is 1-2 mags fainter than typical Sa, E (van den Bergh 1998)

17 Irregular Galaxies NGC 4485-Irr II M82-Irr II Irr I No morphological symmetry Lots of young, blue stars and interstellar material Smaller than most spirals and elliptical galaxies Two major subtypes: Irr I: spiral-like but without defined arms, show bright knots with O,B stars Irr II: asymmetrical with dust lanes and gas filaments (e.g. M82) - explosive

18

19 General trends within Hubble sequence from E to Sc: Decreasing L Bulge /L Disk Decreasing stellar age Increasing fractional gas content Increasing ongoing star formation Limitations of the Hubble Classification Scheme 1. Only includes massive galaxies (doesnt include dwarf spheroidals, dwarf irregulars, blue compact dwarfs) 2. Three different parameters for classifying spirals is unsatisfactory because the parameters are not perfectly correlated. 3. Bars are not all-or-nothing. There is a continuum of bar strengths.

20 de Vaucouleurs Revised Hubble Classification System (de Vaucouleurs 1958, Handbuch der Phys. 53, 275) (de Vaucouleurs , Reference Catalog of Bright Galaxies) Basic idea: retain Hubble system, but add lots of optional bells and whistles Mixed types: Mixed barred/normal: Inner rings: Outer rings: E/S0, Sab, Sbc SA (unbarred), SB (barred), SAB (in between) S(s) (arms out of ring), S(r) (arms in ring), S(rs) (R) S Extended spiral, irr types: Sm (between spiral and Irr), Im (magellanic), Sd (extreme Sc), Sdm (between Sd and Im) t-types scale Added in later editions of the Reference Catalog (de Vaucouleurs 2, Corwin 1976) E0 S0 Sa Sb Sc Im (t-type)

21 Schematic Diagram of Revised Hubble Classification E E+ S0- S0 S0+ Sa Sb Sc Sd Sm Im Cross section of diagram No Bar Spiral shaped Ring shaped Bar

22 Schematic Diagram of Revised Hubble Classification Cross section of diagram No Bar Spiral shaped Ring shaped Limitations: E --- Im is not a linear sequence of one parameter Rings and bars are not independent Does not take into consideration mass or other important parameters. All based on optical surface brightness morphology. Bar

23 Luminosity Classification or DDO System van den Bergh (1960) - who was at David Dunlop Observatory in Ontario, Canada - hence the DDO In spirals and irregular galaxies, some properties correlate with galaxy mass rather than type. For spirals, the key parameter is arm development (i.e. arm length, continuity and width relative to size) Sc I - long, well-developed arms Sc III - short, stubby arms Sc IV - dwarf, spiral galaxy -faint hint of spiral structure Revised DDO - van den Bergh (1976): Placed disk galaxies into 3 parallel classes based on luminosity: Gas-rich, anemics and lenticulars Anemics have weak and diffuse spiral arms and low level of ongoing SF Parameters which change systematically from Lenticular to Gas-rich Mean stellar age Gas fraction Recent SF Van den Berg speculates that all disk galaxies are born as gas-rich spirals and gradually evolve to anemic and finally S0 s.

24 Yerkes System (Morgan 1958) Utilizes fact that there is a strong correlation between the nuclear light concentration (how big the bulge is) and its integrated spectrum. Type is based on this one parameter - integrated spectral type. E, S0 S Irr K-type spectrum F-K stars dominate A stars dominate Nomenclature: g S 2 Spectral type (dominant stars) Hubble type flattening (I.e. bulge/disk) E - elliptical 10(a-b) a, af, f, fg, g, gk, k D - S0 a S - spiral B - barred I - Irregular R -rotationally symmetric but no S or E structure

25 Galaxy classes not addressed in these classification systems Dwarf Ellipticals - de - Dwarf Spheroidals - dsph - Dwarf Spirals ds - Dwarf Irregulars di -

26 Morphological Distributions The range and frequency of different morphological types is sensitive to the sample studied. Some key results: The Local Group is the only sample that includes a significant number of very faint galaxies. Of the 35 galaxies now considered members of the Local Group, only the 3 brightest (M31, MW and M33) are spirals, the remainder are equally divided between irregular and dwarf elliptical /spheroidal galaxies (Hodge 1995). Magnitude-limited sample of galaxies outside of clusters (in the field ) are biased towards late-type (Sc) spirals. A typical field sample might consist of 80% S galaxies, 10% S0 galaxies, and 10% E galaxies. Within rich clusters, the population of bright galaxies is dominated by early-type systems (Dressler 1980). An intermediate density cluster will have 40% S galaxies, 40% S0 galaxies, and 20% E galaxies. A high density cluster will have 10% S, 50% S0, and 40% E.

27 Automated Classification Visual classification is inherently time consuming and different observers are unlikely to agree in ambiguous cases. This motivates the development of algorithms to automatically and impartially classify galaxy images - very important for large surveys like 2MASS and SDSS. Abraham et al. (1994, 1996): Concentration parameter C - fraction of light within ellipsoidal radius 0.3 x outer isophotal radius (1.5σ above sky level). Asymmetry parameter A - fraction of light in features not symmetric wrt a 180 degree rotation Naim, Ratnatunga & Griffiths (1997) use 4 parameters: blobbiness, asymmetry, filling factor and elongation. Naim et al. (1995) used artificial neural nets to classify galaxies into the numerical T types. Achieved uncertainty of +/- 1.8 in T which is comparable to the dispersion between observers. For distant galaxies (greater than z=0.5), classification is difficult because of small angular size and apparent faintness of galaxies. HST field galaxies (z~1) classified by 2 humans (Ellis and van den Bergh) and A and C parameters of Abraham. For faint galaxies (I>21mag), C parameter alone is fairly good. For brighter galaxies, C is degenerate between E and S0.

28 Pay attention to the band.

29

30

31 End of today s lecture (additional slides follow)

32 Overview of observational facts (additional slides use them as a track for further reading)

33 LOTS of them out there 50/sq. arcmin/0.5 rising to From R. Mushotzky s lecture

34 When and where did they form? Farthest object as of Nov. 15 th, 2012: z=11 (about 400Myr after BB), observed thanks to lensing magnification from galaxy cluster MACS0647-JD But things have changed somehow since then! Present galaxy pattern established at z=1

35 When and where did they form? Baryons are (biased) tracers of the cosmic web: galaxies assemble in the deep gravitational wells produced by underlying dark matter distribution Snapshots from the Millennium Simulation:

36 When and where did they form? Baryons are (biased) tracers of the cosmic web: galaxies assemble in the deep gravitational wells produced by underlying dark matter distribution Snapshots from the Millennium Simulation:

37 Present day galaxy population exhibits a remarkably small range of masses, sizes, ages of stellar pops., shapes, and all correlated. (Compare dynamic range of this plot with e.g. the typical col-mag diagram of a stellar pop) Galaxy regularity

38 Galaxy regularity Segregation in color/luminosity (bright is red, faint is blue) Segregation in color/stellar mass Segregation in shape/color Baldry et al. ApJ 2004

39 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation MBW fig. 2.12

40 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation

41 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation

42 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation Color bimodality in the SDSS for z < 0.08 Luminous red ellipticals Luminous bimodal disk/spirals Faint, mostly blue irregulars u - r Baldry et al., ApJ 600: , 2004

43 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation Baldry, AIPC (2004)

44 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation Kennicutt, ApJ 498, 541 (1998)

45 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation Φ L dd = N L L α e L L dd L

46 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation Φ L dd = N L L α e L L dd L

47 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation

48 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation MBW, fig log R e = a log σ 0 + b log I e + c

49 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation Djorgovski & Davis, ApJS 313, 59 (1987)

50 More hints to a big picture Spectrum vs morph M(HI)/L B vs morph Gas mass% vs morph Color vs morph Color vs environment SFR vs gas Luminosity fcn Mass/metallicity Elliptical galaxies: Fundamental plane Disks/Spirals Tully-Fisher relation Trachternach et al., A&A 505, 577 (2009)

51 And all of this may (and does) evolve with time Luminosity changes Number Density changes In general, both change Different bands probe evolution at different levels

52 Time evolution B band: sensitive to young, massive stars probe evolution in star formation

53 Time evolution Over the age of the universe the cosmic star formation rate Has changed by over a factor of 30-dropping rapidly over the last 7 Gyrs (since z=1). At high redshifts most star formation occured in the progenitors of todays luminous red galaxies, since z = 1 it has occured in the galaxies that became todays spirals. Madau plot: Shows peak of SF activity at z=2-3

54 Time evolution Cirasuolo et al Fontana et al K band (2um): old long lived dwarfs + red giants probe evolution in stellar mass

55 Time evolution The Hubble sequence was established relatively recently, z<1. Each bin contains 5% of the galaxies by number. At z<0.65 the number of elliptical and lenticular galaxies is roughly constant; in contrast there is strong evolution of spiral and peculiar galaxies. Spiral galaxies were 2.3 times less abundant in the past, and peculiars a factor 5 of more abundant. more than half of the present-day spirals had peculiar morphologies, 6 Gyrs ago SDSS Delgado-Serrano et al., A&A 509, A78 (2010) Herschel/GOODS

Lecture 15: Galaxy morphology and environment

Lecture 15: Galaxy morphology and environment GALAXIES 626 Lecture 15: Galaxy morphology and environment Why classify galaxies? The Hubble system gives us our basic description of galaxies. The sequence of galaxy types may reflect an underlying physical

More information

2 Galaxy morphology and classification

2 Galaxy morphology and classification 2 Galaxy morphology and classification Galaxy classification is an important first step towards a physical understanding of the nature of these objects. For a detailed description of classification systems

More information

Galaxy classification

Galaxy classification Galaxy classification Questions of the Day What are elliptical, spiral, lenticular and dwarf galaxies? What is the Hubble sequence? What determines the colors of galaxies? Top View of the Milky Way The

More information

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy.

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy. Galaxies Aim to understand the characteristics of galaxies, how they have evolved in time, and how they depend on environment (location in space), size, mass, etc. Need a (physically) meaningful way of

More information

An analogy. "Galaxies" can be compared to "cities" What would you like to know about cities? What would you need to be able to answer these questions?

An analogy. Galaxies can be compared to cities What would you like to know about cities? What would you need to be able to answer these questions? An analogy "Galaxies" can be compared to "cities" What would you like to know about cities? how does your own city look like? how big is it? what is its population? history? how did it develop? how does

More information

ASTRO504 Extragalactic Astronomy. 2. Classification

ASTRO504 Extragalactic Astronomy. 2. Classification ASTRO504 Extragalactic Astronomy 2. Classification Morphological classification Elliptical (E) galaxies Lenticular (SO) galaxies Spiral (S) galaxies Irregular (Im) galaxies The realm of nebulae Hubble

More information

Morphology The Study of the Basic Pattern of Things

Morphology The Study of the Basic Pattern of Things Morphology The Study of the Basic Pattern of Things Fundamental Considerations Different libraries of galaxies are liable to lead to the ID of different classes Images in library must be homogeneous (filter,

More information

Galaxies -- Introduction. Classification -- Feb 13, 2014

Galaxies -- Introduction. Classification -- Feb 13, 2014 Galaxies -- Introduction Classification -- Feb 13, 2014 Why Begin with Classification? The Hubble system forms the basic vocabulary of the subject. The sequence of galaxy types reflects an underlying physical

More information

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy? Lecture 12: Galaxies View of the Galaxy from within The Milky Way galaxy Rotation curves and dark matter External galaxies and the Hubble classification scheme Plotting the sky brightness in galactic coordinates,

More information

There are three main ways to derive q 0 :

There are three main ways to derive q 0 : Measuring q 0 Measuring the deceleration parameter, q 0, is much more difficult than measuring H 0. In order to measure the Hubble Constant, one needs to derive distances to objects at 100 Mpc; this corresponds

More information

Normal Galaxies ASTR 2120 Sarazin

Normal Galaxies ASTR 2120 Sarazin Normal Galaxies ASTR 2120 Sarazin Test #2 Monday, April 8, 11-11:50 am ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other materials or any person

More information

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations

Galaxies. Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Galaxies Hubble's measurement of distance to M31 Normal versus other galaxies Classification of galaxies Ellipticals Spirals Scaling relations Cepheids in M31 Up to 1920s, the Milky Way was thought by

More information

Galaxy Morphology. - a description of the structure of galaxies

Galaxy Morphology. - a description of the structure of galaxies Galaxy Morphology - a description of the structure of galaxies Galaxy Morphology - a description of the structure of galaxies Galaxy Morphology - a description of the structure of galaxies Clearly astronomical

More information

Lecture Two: Galaxy Morphology:

Lecture Two: Galaxy Morphology: Lecture Two: Galaxy Morphology: Looking more deeply at the Hubble Sequence Galaxy Morphology How do you quantify the properties of galaxies? and how do you put them in groups which allow you to study physically

More information

More on Galaxy Classifcation

More on Galaxy Classifcation More on Galaxy Classifcation Trends within the Hubble Sequence E0 --> S0 --> Sb Decreasing bulge to disk ratio Decreasing stellar age Increasing gas content Increasing star formation rate Problems Constructed

More information

Galaxies. Lecture Topics. Lecture 23. Discovering Galaxies. Galaxy properties. Local Group. History Cepheid variable stars. Classifying galaxies

Galaxies. Lecture Topics. Lecture 23. Discovering Galaxies. Galaxy properties. Local Group. History Cepheid variable stars. Classifying galaxies Galaxies Lecture 23 APOD: NGC 3628 (The Hamburger Galaxy) 1 Lecture Topics Discovering Galaxies History Cepheid variable stars Galaxy properties Classifying galaxies Local Group 2 23-1 Discovering Galaxies

More information

STRUCTURE OF GALAXIES

STRUCTURE OF GALAXIES STRUCTURE OF GALAXIES 2., classification, surface photometry Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands February 2010, classification, surface photometry

More information

Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies

Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies Astr 5465 Feb. 13, 2018 Distribution & Classification of Galaxies Distribution of Galaxies Faintest galaxies are distributed ~ uniformly over the sky except for the Galactic plane (zone of avoidance) Brighter

More information

Astronomy 540: Structure & Dynamics of Galaxies

Astronomy 540: Structure & Dynamics of Galaxies Astronomy 540: Structure & Dynamics of Galaxies Look at http://ircamera.as.arizona.edu/astr_540 for announcements and updates. August 21: Galaxy Classification, The Milky Way as a Galaxy, Aug 23: Components

More information

STRUCTURE AND DYNAMICS OF GALAXIES

STRUCTURE AND DYNAMICS OF GALAXIES STRUCTURE AND DYNAMICS OF GALAXIES 3., classification of galaxies Piet van der Kruit Kapteyn Astronomical Institute University of Groningen, the Netherlands www.astro.rug.nl/ vdkruit Beijing, September

More information

Chapter 30. Galaxies and the Universe. Chapter 30:

Chapter 30. Galaxies and the Universe. Chapter 30: Chapter 30 Galaxies and the Universe Chapter 30: Galaxies and the Universe Chapter 30.1: Stars with varying light output allowed astronomers to map the Milky Way, which has a halo, spiral arm, and a massive

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Introduction to Galaxies

Introduction to Galaxies Introduction to Galaxies History Famous Galaxies Catalogs and Atlases Classification Schemes What is a galaxy? - A gravitationally bound collection of stars - A galaxy has 10 6 to 10 12 stars - Participates

More information

24.1 Hubble s Galaxy Classification

24.1 Hubble s Galaxy Classification Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble s Law 24.4 XXActive Galactic Nuclei XXRelativistic Redshifts and Look-Back

More information

Laboratory: Milky Way

Laboratory: Milky Way Department of Physics and Geology Laboratory: Milky Way Astronomy 1402 Equipment Needed Quantity Equipment Needed Quantity Milky Way galaxy Model 1 Ruler 1 1.1 Our Milky Way Part 1: Background Milky Way

More information

An Introduction to Galaxies and Cosmology. Jun 29, 2005 Chap.2.1~2.3

An Introduction to Galaxies and Cosmology. Jun 29, 2005 Chap.2.1~2.3 An Introduction to Galaxies and Cosmology Jun 29, 2005 Chap.2.1~2.3 2.1 Introduction external galaxies normal galaxies - majority active galaxies - 2% high luminosity (non-stellar origin) variability

More information

Galaxies. Early Attempts to catalog and classify. Messier Catalog. "The Great Debate" PHY galaxies - J. Hedberg

Galaxies. Early Attempts to catalog and classify. Messier Catalog. The Great Debate PHY galaxies - J. Hedberg Galaxies 1. Early Attempts to catalog and classify 1. Messier Catalog 2. "The Great Debate" 3. Spiral: Andromeda 4. Ellipticals 2. Updates to the scheme 1. NGC1300 2. Grand Design Spiral 3. Grand Design

More information

Major Review: A very dense article" Dawes Review 4: Spiral Structures in Disc Galaxies; C. Dobbs and J Baba arxiv "

Major Review: A very dense article Dawes Review 4: Spiral Structures in Disc Galaxies; C. Dobbs and J Baba arxiv The Components of a Spiral Galaxy-a Bit of a Review- See MBW chap 11! we have discussed this in the context of the Milky Way" Disks:" Rotationally supported, lots of gas, dust, star formation occurs in

More information

Lecture 19: Galaxies. Astronomy 111

Lecture 19: Galaxies. Astronomy 111 Lecture 19: Galaxies Astronomy 111 Galaxies What is a galaxy? Large assembly of stars, gas and dust, held together by gravity Sizes: Largest: ~1 Trillion stars (or more) Smallest: ~10 Million stars Milky

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT GALAXIES

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT GALAXIES PROJECT 7 GALAXIES Objective: The topics covered in the previous lessons target celestial objects located in our neighbourhood, i.e. objects which are within our own Galaxy. However, the Universe extends

More information

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 24 Astronomy Today 8th Edition Chaisson/McMillan Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Goals: Galaxies To determine the types and distributions of galaxies? How do we measure the mass of galaxies and what comprises this mass? How do we measure distances to galaxies and what does this tell

More information

midterm exam thurs june 14 morning? evening? fri june 15 morning? evening? sat june 16 morning? afternoon? sun june 17 morning? afternoon?

midterm exam thurs june 14 morning? evening? fri june 15 morning? evening? sat june 16 morning? afternoon? sun june 17 morning? afternoon? Prof. Jeff Kenney Class 11 June 11, 2018 midterm exam thurs june 14 morning? evening? fri june 15 morning? evening? sat june 16 morning? afternoon? sun june 17 morning? afternoon? observing session tomorrow

More information

Galaxy Classification

Galaxy Classification Galaxies Galaxies are collections of billons of stars; our home galaxy, the Milky Way, is a typical example. Stars, gas, and interstellar dust orbit the center of the galaxy due to the gravitational attraction

More information

BHS Astronomy: Galaxy Classification and Evolution

BHS Astronomy: Galaxy Classification and Evolution Name Pd Date BHS Astronomy: Galaxy Classification and Evolution This lab comes from http://cosmos.phy.tufts.edu/~zirbel/ast21/homework/hw-8.pdf (Tufts University) The word galaxy, having been used in English

More information

Lecture 27 Galaxy Types and the Distance Ladder December 3, 2018

Lecture 27 Galaxy Types and the Distance Ladder December 3, 2018 Lecture 27 Galaxy Types and the Distance Ladder December 3, 2018 1 2 Early Observations Some galaxies had been observed before 1900 s. Distances were not known. Some looked like faint spirals. Originally

More information

GALAXIES. I. Morphologies and classification 2. Successes of Hubble scheme 3. Problems with Hubble scheme 4. Galaxies in other wavelengths

GALAXIES. I. Morphologies and classification 2. Successes of Hubble scheme 3. Problems with Hubble scheme 4. Galaxies in other wavelengths GALAXIES I. Morphologies and classification 2. Successes of Hubble scheme 3. Problems with Hubble scheme 4. Galaxies in other wavelengths 5. Properties of spirals and Irregulars. Hubble tuning-fork diagram.

More information

Galaxies & Introduction to Cosmology

Galaxies & Introduction to Cosmology Galaxies & Introduction to Cosmology Other Galaxies: How many are there? Hubble Deep Field Project 100 hour exposures over 10 days Covered an area of the sky about 1/100 the size of the full moon Probably

More information

Galaxies. Early Attempts to catalog and classify. Messier Catalog. "The Great Debate"

Galaxies. Early Attempts to catalog and classify. Messier Catalog. The Great Debate Galaxies 1. Early Attempts to catalog and classify 1. Messier Catalog 2. "The Great Debate" 3. Spiral: Andromeda 4. Ellipticals 2. Updates to the scheme 1. NGC1300 2. Grand Design Spiral 3. Flocculent

More information

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya Foundations Chapter of Astronomy 15 13e Our Milky Way Seeds Phys1403 Stars and Galaxies Instructor: Dr. Goderya Selected Topics in Chapter 15 A view our Milky Way? The Size of our Milky Way The Mass of

More information

Lecture 2: Galaxy types, spectra

Lecture 2: Galaxy types, spectra Lecture 2: Galaxy types, spectra Galaxies AS 3011 1 Hubble tuning fork this is really just descriptive, but Hubble suggested galaxies evolve from left to right in this picture not unreasonable, perhaps

More information

Lecture 2: Galaxy types, spectra. Galaxies AS

Lecture 2: Galaxy types, spectra. Galaxies AS Lecture 2: Galaxy types, spectra Galaxies AS 3011 1 Hubble tuning fork this is really just descriptive, but Hubble suggested galaxies evolve from left to right in this picture not unreasonable, perhaps

More information

Galaxies Guiding Questions

Galaxies Guiding Questions Galaxies Guiding Questions How did astronomers first discover other galaxies? How did astronomers first determine the distances to galaxies? Do all galaxies have spiral arms, like the Milky Way? How do

More information

Summary of Last Lecture - Local Group!

Summary of Last Lecture - Local Group! Summary of Last Lecture - Local Group Discussion of detailed properties of M31, M33 comparison to MW; differences in how they formed; MW very few 'major mergers' M31 more; not all galaxies even those close

More information

Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and

Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and sizes Edwin Hubble classified the galaxies into four

More information

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well.

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well. Normal Galaxies (Ch. 24) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5. The sections we are skipping are all about processes that occur in the centers of galaxies, so I d like

More information

The Classification of Galaxies

The Classification of Galaxies Admin. 11/9/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am (period 5), Bryant 3; Thur. ~12.30pm (end of period 5 and period 6), start

More information

Galaxies. CESAR s Booklet

Galaxies. CESAR s Booklet What is a galaxy? Figure 1: A typical galaxy: our Milky Way (artist s impression). (Credit: NASA) A galaxy is a huge collection of stars and interstellar matter isolated in space and bound together by

More information

Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification

Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification Lecture Outline Chapter 15 Normal and Active Galaxies Spiral galaxies are classified according to the size of their central bulge. Chapter 15 Normal and Active Galaxies Type Sa has the largest central

More information

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya Galaxies, AGN and Quasars Physics 113 Goderya Chapter(s): 16 and 17 Learning Outcomes: Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes

More information

A PRELIMINARY CLASSIFICATION SCHEME FOR THE CENTRAL REGIONS OF LATE-TYPE GALAXIES

A PRELIMINARY CLASSIFICATION SCHEME FOR THE CENTRAL REGIONS OF LATE-TYPE GALAXIES A PRELIMINARY CLASSIFICATION SCHEME FOR THE CENTRAL REGIONS OF LATE-TYPE GALAXIES SIDNEY VAN DEN BERGH* Dominion Astrophysical Observatory, National Research Council 5071 West Saanich Road, Victoria, B.C.,

More information

Lecture #21: Plan. Normal Galaxies. Classification Properties Distances

Lecture #21: Plan. Normal Galaxies. Classification Properties Distances Lecture #21: Plan Normal Galaxies Classification Properties Distances Messier 31 = M31 Early 20 th Century The Great Debate (4/26/1920): Harlow Shapley (Mt Wilson) vs Heber Curtis (Lick Observatory) Smithsonian

More information

Galaxy Classification and the Hubble Deep Field

Galaxy Classification and the Hubble Deep Field Galaxy Classification and the Hubble Deep Field A. The Hubble Galaxy Classification Scheme Adapted from the UW Astronomy Dept., 1999 Introduction A galaxy is an assembly of between a billion (10 9 ) and

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Galaxies. What is a Galaxy? A bit of History. A bit of History. Three major components: 1. A thin disk consisting of young and intermediate age stars

Galaxies. What is a Galaxy? A bit of History. A bit of History. Three major components: 1. A thin disk consisting of young and intermediate age stars What is a Galaxy? Galaxies A galaxy is a collection of billions of stars, dust, and gas all held together by gravity. Galaxies are scattered throughout the universe. They vary greatly in size and shape.

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) much in class, but read it there will probably be a question or a few on it. In following lecture outline, numbers

More information

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5 and proceed to 25.1, 25.2, 25.3. Then, if there is time remaining,

More information

1. Overview. Theory lags behind and there are many unsolved problems, including the nature of dark matter and dark energy.

1. Overview. Theory lags behind and there are many unsolved problems, including the nature of dark matter and dark energy. PC2491: Galaxies 1. Overview The aim of this course is to understand the observed properties of galaxies in the hierarchical structure formation model. This is a particular exciting time to study galaxies

More information

Clicker Question: Galaxy Classification. What type of galaxy do we live in? The Variety of Galaxy Morphologies Another barred galaxy

Clicker Question: Galaxy Classification. What type of galaxy do we live in? The Variety of Galaxy Morphologies Another barred galaxy Galaxies Galaxies First spiral nebula found in 1845 by the Earl of Rosse. Speculated it was beyond our Galaxy. 1920 - "Great Debate" between Shapley and Curtis on whether spiral nebulae were galaxies beyond

More information

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies ASTR 1120 General Astronomy: Stars & Galaxies!NNOUNCEMENTS HOMEWORK #6 DUE TODAY, by 5pm HOMEWORK #7 DUE Nov. 10, by 5pm Dark matter halo for galaxies Dark matter extends beyond visible part of the galaxy

More information

2. Can observe radio waves from the nucleus see a strong radio source there Sagittarius A* or Sgr A*.

2. Can observe radio waves from the nucleus see a strong radio source there Sagittarius A* or Sgr A*. 7/7 The Nucleus of the MW its center 1. Can t see the nucleus in visible light too much stuff in the way. 2. Can observe radio waves from the nucleus see a strong radio source there Sagittarius A* or Sgr

More information

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies ASTR 1120 General Astronomy: Stars & Galaxies!NNOUNCEMENTS HOMEWORK #6 DUE TODAY, by 5pm HOMEWORK #7 DUE Nov. 10, by 5pm Dark matter halo for galaxies REVIEW Dark matter extends beyond visible part of

More information

International Herald Tribune, November 1, 1907

International Herald Tribune, November 1, 1907 Recently reports have been current in certain newspapers that Mr. Thomas A. Edison, the inventor, has at last perfected the storage battery, and that within a few months electrically propelled vehicles,

More information

This week at Astro Lecture 06, Sep 13, Pick up PE#6. Please turn in HW#2. HW#3 is posted

This week at Astro Lecture 06, Sep 13, Pick up PE#6. Please turn in HW#2. HW#3 is posted This week at Astro 3303 Lecture 06, Sep 13, 2017 Pick up PE#6 Please turn in HW#2 HW#3 is posted Today: Introduction to galaxy photometry Quantitative morphology Elliptical galaxies Reading: Continue reading

More information

Spheroidal (Elliptical) Galaxies MBW chap 13, S+G ch 6!

Spheroidal (Elliptical) Galaxies MBW chap 13, S+G ch 6! " The project: Due May 2!! I expect ~10 pages double spaced (250 words/page) with references from material you used (I do not expect 'densely' cited but a sufficient number).! It must be in a subject related

More information

Tour of Galaxies. Sgr A* VLT in IR + adaptive optics. orbits. ASTR 1040 Accel Astro: Stars & Galaxies VLT IR+AO

Tour of Galaxies. Sgr A* VLT in IR + adaptive optics. orbits. ASTR 1040 Accel Astro: Stars & Galaxies VLT IR+AO ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Kyle Augustson Lecture 23 Tues 8 Apr 08 zeus.colorado.edu/astr1040-toomre toomre Tour of Galaxies Briefly revisit Monster in the Milky Way

More information

Chapter 20 Lecture. The Cosmic Perspective Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc.

Chapter 20 Lecture. The Cosmic Perspective Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc. Chapter 20 Lecture The Cosmic Perspective Seventh Edition Galaxies and the Foundation of Modern Cosmology Galaxies and the Foundation of Modern Cosmology 20.1 Islands of Stars Our goals for learning: How

More information

Ay162, Spring 2006 Week 8 p. 1 of 15

Ay162, Spring 2006 Week 8 p. 1 of 15 Astronomy 162, Week 8 Milky Way Galaxy, continued Patrick S. Osmer Spring, 2006 Rotation of Galaxy How do we know the galaxy is rotating, and how do we measure its rotation? Measure radial velocities of

More information

The Milky Way & Galaxies

The Milky Way & Galaxies The Milky Way & Galaxies The Milky Way Appears as a milky band of light across the sky A small telescope reveals that it is composed of many stars (Galileo again!) Our knowledge of the Milky Way comes

More information

1.4 Galaxy Light Distributions

1.4 Galaxy Light Distributions 26 1.4 Galaxy Light Distributions List of topics Hubble classification scheme see Binney & Merrifield text Galaxy surface brightness profiles (JL 2.3.1, plus additional material) Galaxy luminosity function

More information

Galaxies. Nebulae. Virgo Cluster of Galaxies sky.google.com

Galaxies. Nebulae. Virgo Cluster of Galaxies sky.google.com Virgo Cluster of Galaxies sky.google.com Galaxies Mid 18th century, Kant and Wright suggested that the Milky Way is a finite system of stars. Turns out this is accurate. Kant went on to suggest that the

More information

Galaxies and Supermassive Black Holes

Galaxies and Supermassive Black Holes Galaxies and Supermassive Black Holes Josh Webster 4/21/2014 4/21/2014 Josh Webster 1 http://www.nasa.gov/images/content/690958main_p1237a1.jpg A Look Ahead 4/21/2014 Josh Webster 2 A Look Ahead Galaxy

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter.

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter. Chapter 1 Introduction 1.1 What is a Galaxy? It s surprisingly difficult to answer the question what is a galaxy? Many astronomers seem content to say I know one when I see one. But one possible definition

More information

Surface Brightness of Spiral Galaxies

Surface Brightness of Spiral Galaxies Surface Brightness of Spiral Galaxies M104: SA N4535: SAB LMC: dwarf irregular,barred Normal 1/4-law+exp fits An example of surface brightness profile. The top curve is the sum of exp disk+1/4-bulge. The

More information

4/10/18. Our wide world (universe) of Galaxies. Spirals ~80% of galaxies

4/10/18.  Our wide world (universe) of Galaxies. Spirals ~80% of galaxies ASTR 1040: Stars & Galaxies Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 23 Tues 10 Apr 2018 zeus.colorado.edu/astr1040-toomre Our wide world (universe) of Galaxies The rich range of galaxies:

More information

Arvind Borde / AST 10, Week 2: Our Home: The Milky Way

Arvind Borde / AST 10, Week 2: Our Home: The Milky Way Arvind Borde / AST 10, Week 2: Our Home: The Milky Way The Milky Way is our home galaxy. It s a collection of stars, gas and dust. (1) What holds it together? Its self-gravity. (2) What did the last slide

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

Lecture Two: Observed Properties of Galaxies

Lecture Two: Observed Properties of Galaxies Lecture Two: Observed Properties of Galaxies http://www.astro.rug.nl/~etolstoy/gfe14/index.html Longair, chapter 3 Wednesday 5th Feb Binney & Merrifield, chapter 4 1 From pretty picture to science 2 Galaxies

More information

The physical properties of galaxies in Universe

The physical properties of galaxies in Universe The physical properties of galaxies in Universe Iurii Babyk, Dublin Institute for Advanced Studies, Dublin City University, Main Astronomical Observatory of the NAS of Ukraine. Introduction Large-Scale

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

Lecture 14: Other Galaxies A2020 Prof. Tom Megeath. The Milky Way in the Infrared 3/17/10. NGC 7331: the Milky Way s Twins. Spiral Galaxy bulge halo

Lecture 14: Other Galaxies A2020 Prof. Tom Megeath. The Milky Way in the Infrared 3/17/10. NGC 7331: the Milky Way s Twins. Spiral Galaxy bulge halo Lecture 14: Other Galaxies A2020 Prof. Tom Megeath Our Galaxy: Side View We see our galaxy edge-on Primary features: Disk: young and old stars where we live. Bulge: older stars Halo: oldest stars, globular

More information

Chapter 20 Lecture. The Cosmic Perspective. Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc.

Chapter 20 Lecture. The Cosmic Perspective. Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc. Chapter 20 Lecture The Cosmic Perspective Seventh Edition Galaxies and the Foundation of Modern Cosmology 20.1 Islands of Stars Our goals for learning: How do galaxies evolve? What are the three major

More information

11/8/18. Tour of Galaxies. Our Schedule

11/8/18. Tour of Galaxies. Our Schedule ASTR 1040: Stars & Galaxies Super-bubble blowout in NGC 3709 Prof. Juri Toomre TAs: Ryan Horton, Loren Matilsky Lecture 22 Thur 8 Nov 2018 zeus.colorado.edu/astr1040-toomre Tour of Galaxies Look at complex

More information

LET S MAKE A PORTRAIT OF A GALAXY

LET S MAKE A PORTRAIT OF A GALAXY LET S MAKE A PORTRAIT OF A GALAXY Veselka S. Radeva EAAE Summer School Working Group (Bulgaria) Abstract The goal of the exercise is for students to learn about the different types of galaxies, about the

More information

Lecture 30. The Galactic Center

Lecture 30. The Galactic Center Lecture 30 History of the Galaxy Populations and Enrichment Galactic Evolution Spiral Arms Galactic Types Apr 5, 2006 Astro 100 Lecture 30 1 The Galactic Center The nature of the center of the Galaxy is

More information

How did the universe form? 1 and 2

How did the universe form? 1 and 2 Galaxies How did the universe form? 1 and 2 Galaxies Astronomers estimate that 40 billion galaxies exist in the observable universe The universe may contain over 100 billion galaxies Even a modest-sized

More information

tuning fork ellipticals, spirals, irregulars. Hubble Sequence.

tuning fork ellipticals, spirals, irregulars. Hubble Sequence. Hubble arranged his sequence on a tuning fork diagram. Originally he (incorrectly) hypothesized that galaxies evolved from the Left to the Right of this sequence. Early types Later types Hubble went on

More information

Group Member Names: You may work in groups of two, or you may work alone. Due November 20 in Class!

Group Member Names: You may work in groups of two, or you may work alone. Due November 20 in Class! Galaxy Classification and Their Properties Group Member Names: You may work in groups of two, or you may work alone. Due November 20 in Class! Learning Objectives Classify a collection of galaxies based

More information

M31 - Andromeda Galaxy M110 M32

M31 - Andromeda Galaxy M110 M32 UNIT 4 - Galaxies XIV. The Milky Way galaxy - a huge collection of millions or billions of stars, gas, and dust, isolated in space and held together by its own gravity M110 M31 - Andromeda Galaxy A. Structure

More information

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath A2020 Disk Component: stars of all ages, many gas clouds Review of Lecture 15 Spheroidal Component: bulge & halo, old

More information

Figure 1: (Image Credit)

Figure 1: (Image Credit) Ricky Leon Murphy HET609 Semester 1 2005 Project 83 May 30, 2005 Spiral Galaxy Morphology and a Comparison of Four Spiral Galaxies Stars are grouped into island universes called galaxies and there are

More information

The Galaxy. (The Milky Way Galaxy)

The Galaxy. (The Milky Way Galaxy) The Galaxy (The Milky Way Galaxy) Which is a picture of the Milky Way? A A is what we see from Earth inside the Milky Way while B is what the Milky Way might look like if we were far away looking back

More information

The Neighbors Looking outward from the Sun s location in the Milky Way, we can see a variety of other galaxies:

The Neighbors Looking outward from the Sun s location in the Milky Way, we can see a variety of other galaxies: Galaxies The Neighbors Looking outward from the Sun s location in the Milky Way, we can see a variety of other galaxies: Small Magellanic Cloud (Digital Sky Survey) Large Magellanic Cloud (credit: Eckhard

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc

Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc Hubble Sequence Lecture Three: Fundamental difference between Elliptical galaxies and galaxies with disks, and variations of disk type & importance of bulges Observed Properties of Galaxies, contd.! Monday

More information

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA Hello! The Universe of Galaxies The Universe o Galaxies Ajit Kembhavi IUCAA Galaxies: Stars: ~10 11 Mass: ~10 11 M Sun Contain stars, gas and dust, possibly a supermassive black hole at the centre. Much

More information

On Today s s Radar. ASTR 1040 Accel Astro: Stars & Galaxies. Sb) Andromeda M31 (Sb( Andromeda surprises with Spitzer in IR

On Today s s Radar. ASTR 1040 Accel Astro: Stars & Galaxies. Sb) Andromeda M31 (Sb( Andromeda surprises with Spitzer in IR ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TAs: Nicholas Nelson, Zeeshan Parkar Lecture 24 Thur 8 Apr 2010 zeus.colorado.edu/astr1040-toomre toomre NGC 1232 Spiral Sb On Today s s Radar

More information