Chapter 29: Our Solar System

Size: px
Start display at page:

Download "Chapter 29: Our Solar System"

Transcription

1 Chapter 29: Our Slar System Sectin 1: Overview f Our Slar System Objectives: 1. Describe early mdels f ur slar system. 2. Examine the mdern helicentric mdel f ur slar system. 3. Relate gravity t the mtins f celestial bdies. A. Overview f Our Slar System Earth is ne f eight planets revlving arund, r rbiting, the Sun. All f the planets and mst natural satellites r rbit the Sun in the same directin, and all their rbits lie near the same plane. B. Early Ideas 1. (Earth-centered) mdel Culd nt explain certain aspects f planetary mtin (like the retrgrade mtin f Mars in ur sky) 2. (Sun-centered) mdel 3. [Jhannes] Kepler s First Law Based n Tych Brahe s bservatins f planetary psitins States that each planet rbits the Sun in an, which is an val shape that is centered n tw pints called fci Majr axis: the maximum diameter f the ellipse, which runs thrugh bth fci, ne f which is always the Sun Semimajr axis: half f the majr axis; equal t the average distance between the Sun and the planet - Is the rati f the distance between the fci t the length f the majr axis 29-1

2 Is a value between 0 and 1, where numbers clser t 0 indicate mre rbits (lw eccentricity) and numbers clser t 1 indicate mre rbits (high eccentricity) - : the length f time it takes fr a planet r ther bdy t travel ne cmplete elliptical rbit arund the Sun - : when a planet is at its clsest pint t the Sun - : when a planet is at its farthest pint frm the Sun - Astrnmical unit (AU): ; the average distance between the Sun and Earth, which is used t measure the distances between the Sun and each planet 4. [Jhannes] Kepler s Secnd and Third Laws : because a planet mves fastest when clse t the Sun and slwest when far frm the Sun, equal areas are swept ut in equal amunts f time Kepler s Third Law:, where P is the rbital perid measured in Earth years and a is the semimajr axis f the rbital ellipse measured in AU C. Gravity and Orbits In 1684, English scientist published a mathematical and physical explanatin f the mtins f celestial bdies: : every pair f bdies in the universe attract each ther with a frce that is prprtinal t the prduct f their masses and inversely prprtinal t the square f the distance between them Where is the magnitude f the gravitatinal frce between the tw pint masses, is the gravitatinal cnstant, is the mass f the first pint mass, is the mass f the secnd pint mass, and is the distance between the tw pint masses Each planet rbits a pint between it and the Sun called the, which is the balance pint between the tw 29-2

3 rbiting bdies If ne f the tw bdies is mre massive than the ther, the center f mass is clser t the mre massive bdy. Sectin 2: The Terrestrial Planets Objectives: 1. Describe the prperties f the terrestrial planets. 2. Cmpare Earth with the ther terrestrial planets. Our slar system s planets can be gruped int tw main categries accrding t their basic prperties: (1) Terrestrial planets: the inner fur planets that are clse t the size f Earth and have slid, rcky surfaces; Mercury, Venus, Earth, and Mars (2) Gas giant planets: the uter planets that are large, gaseus, and lack slid surfaces; Jupiter, Saturn, Uranus, and Neptune A. Mercury Is the clsest planet t the Sun Has n mns Is smaller (~ the size f) Earth and has less mass than Earth 1. Atmsphere Essentially nnexistent what little des exist is cmpsed primarily f and 2. Surface Mapped by Mariner 10 (US prbe) in Is cvered with craters and smth, relatively crater-free plains Has planet-wide system f cliffs, called, which may have develped as Mercury s crust shrank and fractured early in it s gelgical histry 3. Interir Has high density = an extensive Ni-Fe cre (~42% f Mercury s vlume) B. Venus Is the 2 nd planet frm the Sun 29-3

4 Has mns Has a high albed (0.75 r 75%), which with its clse prximity t Earth makes it the brightest planet in Earth s night sky 1. Atmsphere Pressure Earth atmspheres Primarily and N 2 with cluds f sulfuric acid (H 2 SO 4 ) à intense greenhuse effect 2. Surface Mapped by Magellan (US prbe) in using radar reflectin Has been smthed by vlcanic lava flws and has nly a few impact craters Experienced mst recent glbal episde f vlcanic activity ~ 500 millin years ag (mya) Shws little evidence f current tectnic activity Has n well-defined system f crustal plates 3. Interir Is mst likely similar t Earth because the size and density f Venus are similar t Earth Is therized t have a liquid metal cre that extends halfway t the surface Has n measurable magnetic field despite liquid cre, which is prbably due t Venus s slw rtatin rate C. Earth Is the 3 rd planet frm the Sun Distance frm the Sun + nearly circular rbit = in all 3 states (slid, liquid, gas) Liquid is required fr life Mderately dense atmsphere (78% N % O 2 ) + a mild greenhuse effect = suitable fr life Earth s axis is tilted and ges thrugh cycles f, which is a wbble caused by the sideways pull f the Mn s gravity (and the Sun s gravity) One cycle f precessin D. Mars Is the 4 th planet frm the Sun Is smaller (~1/2 the size f) and less dense than Earth 29-4

5 Has been explred by telescpes n Earth, and beginning in the 1960s, by prbes that have flwn by, rbited, r landed 1. Atmsphere Has a cmpsitin similar t that f Venus, but with much lwer density and pressure Has that may last fr weeks 2. Surface Is due t its high irn cntent (hence its nickname: ) Has heavily-cratered, highlands in the S hemisphere Is dminated by sparsely-cratered plains in the N hemisphere Cntains the Tharsis Plateau, which has fur gigantic shield vlcanes including Olympus Mns (which is the largest muntain in the slar system) and which is split by Valles Marineris, an enrmus canyn that lies n the Martian equatr Has plar ice caps f frzen CO 2, which grw and shrink with the Martian seasns lies beneath the CO 2 ice in the nrthern cap 3. Interir Has uncertain structure, but is thught t have a cre f Fe and Ni (and pssibly S), which is cvered by a mantle Has n magnetic field à slid cre Shws n evidence f current tectnic activity r crustal plates Sectin 3: The Gas-Giant Planets Objectives: 1. Describe the prperties f the gas giant planets. 2. Identify the unique nature f Plut. All f the gas giants Are very large Have fluid (either gaseus r liquid) interirs and pssibly small, slid cres Are cmpsed primarily f lightweight elements such as H, He, C, N, and O Are very cld Have many satellites 29-5

6 A. Jupiter Is the 5 th planet frm the Sun Has a banded appearance due t flw patterns in its atmsphere Has been explred by several US space prbes 1. Atmsphere Has a mean temp. 120 K (~ -153ºC; clud tps) Cmpsed f lightweight elements (mstly and ) = lw density (1326 kg/m 3 ) Cntains layer f, which is a frm f H that has prperties f bth a liquid and a metal and exists nly under very high pressure cnditins Has electric currents that flw within the layer f liquid metallic hydrgen and generate Jupiter s magnetic field Has rapidly-flwing cluds due t Jupiter s rapid rtatin lw, warm, dark-clred cluds that sink high, cl, light-clred cluds that rise 2. Mns and Rings Has the mst mns in the slar system: ttal, including the 4 large Galilean mns (1) : largest mn in slar system (2) (3) : due t Jupiter s gravitatinal frce, almst cmpletely mlten inside and underges cnstant vlcanic eruptins (4) : may have a subsurface cean f liquid water Has rings B. Saturn Is the 6 th planet frm the Sun Is the 2 nd largest planet in the slar system... ~9X larger than Earth Has a strng magnetic field that is aligned with its rtatinal axis, which is unusual 1. Atmsphere Has a mean temp. 88 K (~ -185ºC; 1 bar level) 29-6

7 Has an average density < density f Has flwing belts and znes due t Saturn s rapid rtatin 2. Mns and Rings Ttal mns = Saturn s largest mn,, is larger than Earth s mn and has an atmsphere made f and methane (CH 4 ) Ring system Is much brader and brighter than thse f the ther gas giant planets Is made up f, which are cmpsed f narrwer rings, called, and many pen gaps Has rings that are <200 m thick and are aligned with Saturn s equatrial plane Cnsists f particles that are prbably debris left ver when a mn was destryed either by a cllisin r Saturn s gravity C. Uranus Was discvered in 1781 by English astrnmer Sir William Herschel, wh first thught it was a cmet Is the 7 th planet frm the Sun Is 4X as large and 15X as massive as Earth Has a strng magnetic field 1. Atmsphere Has a mean temp. f 59 K (~ -214 C) Has a, velvety appearance (due t CH 4 gas) Has banded appearance but des nt have distinct belts r znes 2. Mns and Rings Has knwn mns and rings, which rbit in Uranus equatrial plane Largest mn: Rings are very dark almst black D. Neptune Was discvered in 1846 by French astrnmer Urbain Le Verrier after its existence was predicted based n small deviatins in the mtin f Uranus Is the 8 th planet frm the Sun 29-7

8 Has many similarities t Uranus: slightly smaller and denser than Uranus (but still ~4X as large as Earth); bluish clr; atmspheric cmpsitin; temperature; magnetic field; interir; and rings 1. Atmsphere Has a mean temp. f 48 K (~ -225 C) Has a cmpsitin like Uranus Has a banded appearance Has distinctive cluds and atmspheric belts and znes (similar t thse f Jupiter and Saturn) 2. Mns and Rings Ttal mns =, Neptune s largest mn, has a retrgrade rbit (rbits backward), a thin atmsphere, and nitrgen geysers. Has rings cmpsed f micrscpic dust particles E. Plut Was discvered in 1930 by American Clyde Tmbaugh at the Lwell Observatry in Flagstaff, Arizna Is very different frm the eight planets f ur slar system Cannt be classified as a terrestrial r gas giant planet reclassified as a in 2006 Lcated in the Has prperties mre similar t mns f the gas giants than t thse f any ther planet Cmpsed f ½ ice and ½ rck (indicated by density) Atmsphere cmpsed f unknwn quantities f,, and carbn mnxide (CO) Highly eccentric rbit 50 AU at aphelin and ~30 AU at perihelin Satellites: Charn* (1978), Nix (2005), Hydra (2005), and S/2011 P1 (2011) Sectin 4: Frmatin f Our Slar System Objectives: 1. Summarize the prperties f the slar system that supprt the thery f the slar system s frmatin. 2. Describe hw the planets frmed frm a disk surrunding the yung Sun. 3. Explre remnants f slar system frmatin. 29-8

9 A. A Cllapsing Interstellar Clud Our slar system may have begun when an (cmpsed f dust and gases, such as H and He) started t cllapse due t gravity and became cncentrated. Initially, the cllapse is slw, but it accelerates and becmes much denser at its center. Rtatin slws the cllapse, and the clud becmes a rtating disk with a dense cncentratin at the center that eventually will becme the Sun. B. Sun and Planet Frmatin As the slar nebula began t cl, different elements and cmpunds cndensed based n their distance frm the Sun. cndensed clse t the Sun, where it was warm; these cmprise the terrestrial planets. cndensed far frm the Sun, where it was cl; these cmprise the planets further frm the Sun. Once the cndensing slwed, the tiny grains f cndensed material started t accumulate and merge tgether t frm larger bdies, called. As the gas giants frmed, their gravity attracted additinal gas, dust, and planetesimals. This material ultimately frmed the satellites and rings f the gas giants. Due t their prximity t the Sun (and its gravitatinal frce), the inner planets were unable t acquire much additinal material. Initially, the inner planets had n. Eventually, mst f the leftver interplanetary debris crashed int planets r was swept ut f the slar system. C. Asterids Have sizes ranging frm a few km t abut 1000 km in diameter Have pitted, irregular surfaces May break int meterids D. Cmets Are remnants frm slar system frmatin Have highly eccentric rbits arund the Sun May becme disturbed by the gravity f anther bject and thrwn int the inner slar system frm ne f the cmet clusters 29-9

10 Peridic cmets (AKA shrt-perid cmets): cmets which have rbital perids f years Begin t evaprate when they near the Sun : the small slid cre that releases the gas and dust particles, which, when heated, frm the cmet s cma and tails : the glwing gas arund a cmet s nucleus : the glwing streams f gas and dust that trail behind cmet and always pint away frm the Sun E. Meterids, Meters, and Meterites : interplanetary debris, smaller than an asterid : the streak f light prduced when a meterid enters Earth s atmsphere and burns up : a meterid that enters Earth s atmsphere and cllides with the grund instead f burning up : ccur when Earth intersects an interplanetary debris field, such as that left behind a cmet, and numerus debris particles burn up as they enter Earth s upper atmsphere «Mst meters are caused by dust particles frm cmets, while mst meterites, which are slid chunks f rck that reach Earth s surface, are fragments f asterids

THE SUN-EARTH-MOON SYSTEM SECTION 27.1 Tools of Astronomy

THE SUN-EARTH-MOON SYSTEM SECTION 27.1 Tools of Astronomy Name Date Perid THE SUN-EARTH-MOON SYSTEM SECTION 27.1 Tls f Astrnmy (45 pints this side) In yur textbk, read abut electrmagnetic radiatin and telescpes. Use each f the terms belw just nce t cmplete the

More information

Unit 5: THE SOLAR SYSTEM 1.THE SOLAR SYSTEM What is a planetary system?

Unit 5: THE SOLAR SYSTEM 1.THE SOLAR SYSTEM What is a planetary system? 1.THE SOLAR SYSTEM 1.1. What is a planetary system? A planetary system cnsists f the varius nn-stellar bjects rbiting a star such as planets, dwarf planets, mns, asterids, meterids, cmets, and interstellar

More information

Kepler's Laws of Planetary Motion

Kepler's Laws of Planetary Motion Writing Assignment Essay n Kepler s Laws. Yu have been prvided tw shrt articles n Kepler s Three Laws f Planetary Mtin. Yu are t first read the articles t better understand what these laws are, what they

More information

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system ASTRODYNAMICS Early Space Explratin Niclaus Cpernicus (1473-1543) Placed Sun at center f slar system Shwed Earth rtates n its axis nce a day Thught planets rbit in unifrm circles (wrng!) Jhannes Kepler

More information

Chapter 1 Notes Using Geography Skills

Chapter 1 Notes Using Geography Skills Chapter 1 Ntes Using Gegraphy Skills Sectin 1: Thinking Like a Gegrapher Gegraphy is used t interpret the past, understand the present, and plan fr the future. Gegraphy is the study f the Earth. It is

More information

Chapter 30: Stars. B. The Solar Interior 1. Core : the combining of lightweight nuclei into heavier nuclei

Chapter 30: Stars. B. The Solar Interior 1. Core : the combining of lightweight nuclei into heavier nuclei Chapter 30: Stars Sectin 1: The Sun Objectives 1. Explre the structure f the Sun. 2. Describe the slar activity cycle and hw the Sun affects Earth. 3. Cmpare the different types f spectra. A. Prperties

More information

Chapter 31: Galaxies and the Universe

Chapter 31: Galaxies and the Universe Chapter 31: Galaxies and the Universe Sectin 1: The Milky Way Galaxy Objectives 1. Determine the size and shape f the Milky Way, as well as Earth s lcatin within it. 2. Describe hw the Milky Way frmed.

More information

Debris Belts Around Vega

Debris Belts Around Vega Debris Belts Arund Vega Tpic: Explanets Cncepts: Infrared bservatins, debris disks, explanet detectin, planetary systems Missins: Spitzer, Herschel Crdinated by the NASA Astrphysics Frum An Instructr s

More information

Chapter 11: Atmosphere

Chapter 11: Atmosphere Chapter 11: Atmsphere Sectin 1: Atmspheric Basics Objectives 1. Describe the cmpsitin f the atmsphere. 2. Cmpare and cntrast the varius layers f the atmsphere. 3. Identify three methds f transferring energy

More information

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

Solar System revised.notebook October 12, 2016 Solar Nebula Theory Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity

More information

Lectures 10-11: Planetary interiors

Lectures 10-11: Planetary interiors Lectures 10-11: Planetary interirs Tpics t be cvered: Heat f frmatin Chemical differentiatin Natural radiactivity Planet cling Surface f Venus Summary f planetary interirs Make-up f planetary interirs

More information

OSIRIS-REx Frequently Asked Questions

OSIRIS-REx Frequently Asked Questions OSIRIS-REx Frequently Asked Questins What is the OSIRIS-REx Missin? The OSIRIS-REx missin is NASA New Frntiers missin t return a sample f an asterid t the Earth. Missin cst is apprximately $800 millin

More information

Exhibit Alignment with SC Science Standards 8 th Grade

Exhibit Alignment with SC Science Standards 8 th Grade Scientific Inquiry Standard 8-1: The student will demnstrate an understanding f technlgical design and scientific inquiry, including prcess skills, mathematical thinking, cntrlled investigative design

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day Name Skills: 1. Interpreting Mdels f the Atm 2. Determining the number f subatmic particles 3. Determine P, e-, n fr ins 4. Distinguish istpes frm ther atms/ins Regents Chemistry Perid Unit 3: Atmic Structure

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

Downloaded from Downloaded from

Downloaded from   Downloaded from MATTER IN OUR SURROUNDINGS Date Diagram Observatin Explanatin Cnclusin ACTIVITY 1.1 (10 marks) date n which the experiment was perfrmed. I have drawn a diagram. My diagram is neat. My diagram is well labeled.

More information

o Land and water both are heated by solar radiation, but land

o Land and water both are heated by solar radiation, but land Benchmark: SC.D.l.4.1 The student knws hw climatic patterns n Earth result frm an interplay f many factrs (Earth's tpgraphy, its rtatin'tn its axis, slar radiatin, the transfer f heat energy where the

More information

To get you thinking...

To get you thinking... T get yu thinking... 1.) What is an element? Give at least 4 examples f elements. 2.) What is the atmic number f hydrgen? What des a neutral hydrgen atm cnsist f? Describe its "mtin". 3.) Hw des an atm

More information

3/22/18. Onward to Galaxies, starting with our own! Warping of Space by Gravity. Three aspects of falling into a black hole: 1) Spaghettified

3/22/18. Onward to Galaxies, starting with our own! Warping of Space by Gravity. Three aspects of falling into a black hole: 1) Spaghettified ASTR 1040: Stars & Galaxies Prf. Juri Tmre TAs: Peri Jhnsn, Ryan Hrtn Lecture 20 Thur 22 Mar 2018 zeus.clrad.edu/astr1040-tmre M51 Whirlpl Onward t Galaxies, starting with ur wn! Revisit Our Milky Way

More information

Electromagnetic Radiation

Electromagnetic Radiation CLASSICALLY -- ELECTROMAGNETIC RADIATION Maxwell (1865) Electrmagnetic Radiatin http://apd.nasa.gv/apd/astrpix.html Classically, an electrmagnetic wave can be viewed as a self-sustaining wave f electric

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

Today in Our Galaxy SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope)

Today in Our Galaxy SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope) ASTR 1040 Accel Astr: Stars & Galaxies Prf. Juri Tmre TA: Kyle Augustsn Lecture 20 Thur 20 Mar 08 zeus.clrad.edu/astr1040-tmre tmre Eagle Nebula Tday in Our Galaxy Hw t detect black hles (indirectly) Our

More information

The Solar System. Presented By; Rahul Chaturvedi

The Solar System. Presented By; Rahul Chaturvedi The Solar System Presented By; Rahul Chaturvedi What s in Our Solar System? Our Solar System consists of a central star (the Sun), the eight planets and their satellites (or moon), thousand of other smaller

More information

State of matter characteristics solid Retains shape and volume

State of matter characteristics solid Retains shape and volume **See attachment fr graphs States f matter The fundamental difference between states f matter is the distance between particles Gas Ttal disrder Much empty space Particles have cmpletely freedm f mtin

More information

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC OUR SOLAR SYSTEM James Martin Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC It s time for the human race to enter the solar system. -Dan Quayle Structure of the Solar System Our Solar System contains

More information

Formation of the Universe

Formation of the Universe A. The Universe 1. 2. 3. How did the universe begin? Only one exists or are there more? Composed of space and 100 billion galaxies A galaxy is a grouping of millions or billions of stars kept together

More information

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System 23.1 The Solar System Orbits of the Planets The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets are the huge gas giants

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Ag Earth Science Chapter 23

Ag Earth Science Chapter 23 Ag Earth Science Chapter 23 Chapter 23.1 Vocabulary Any of the Earth- like planets, including Mercury, Venus, and Earth terrestrial planet Jovian planet The Jupiter- like planets: Jupiter, Saturn, Uranus,

More information

Earth Science 11 Learning Guide Unit Complete the following table with information about the sun:

Earth Science 11 Learning Guide Unit Complete the following table with information about the sun: Earth Science 11 Learning Guide Unit 2 Name: 2-1 The sun 1. Complete the following table with information about the sun: a. Mass compare to the Earth: b. Temperature of the gases: c. The light and heat

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 23.1 The Solar System The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 23 Touring Our Solar System 23.1 The Solar System The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus,

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 7: Magnetism and Electromagnetism. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 7: Magnetism and Electrmagnetism Ntes (Cntent in bld is fr Higher Tier nly) Magnets - Nrth and Suth Ples - Same Ples repel - Oppsite ples attract Permanent Magnets - Always magnetic,

More information

Chapter 0 Charting the Heavens The Foundations of Astronomy

Chapter 0 Charting the Heavens The Foundations of Astronomy Chapter 0 Charting the Heavens The Fundatins f Astrnmy 0.1 The Obvius View Our Place in Space Humans live n a large rck called a planet Planets g arund giant balls f gas called stars Stars are tiny grains

More information

AQA GCSE Physics. Topic 4: Atomic Structure. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 4: Atomic Structure. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 4: Atmic Structure Ntes (Cntent in bld is fr Higher Tier nly) Atmic Structure Psitively charged nucleus (which cntains neutrns and prtns) surrunded by negatively charged electrns.

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

Today. Today in Milky Way. ASTR 1040 Accel Astro: Stars & Galaxies

Today. Today in Milky Way. ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astr: Stars & Galaxies Prf. Juri Tmre TA: Nichlas Nelsn Lecture 19 Tues 15 Mar 2011 zeus.clrad.edu/astr1040-tmre tmre Superbubble NGC 3079 Tday in Milky Way Lk at cmpnents f galaxy: stars,

More information

CESAR Science Case The differential rotation of the Sun and its Chromosphere. Introduction. Material that is necessary during the laboratory

CESAR Science Case The differential rotation of the Sun and its Chromosphere. Introduction. Material that is necessary during the laboratory Teacher s guide CESAR Science Case The differential rtatin f the Sun and its Chrmsphere Material that is necessary during the labratry CESAR Astrnmical wrd list CESAR Bklet CESAR Frmula sheet CESAR Student

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)

More information

UC A-G Earth Science. Gorman Learning Center (052344) Basic Course Information

UC A-G Earth Science. Gorman Learning Center (052344) Basic Course Information UC A-G Earth Science Grman Learning Center (052344) Basic Curse Infrmatin Title: UC A-G Earth Science Transcript abbreviatins: A-G Earth Sci / A-G Earth Sci Length f curse: Full Year Subject area: Labratry

More information

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher -Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher Formation Overview All explanations as to how the solar system was formed are only

More information

Aircraft Performance - Drag

Aircraft Performance - Drag Aircraft Perfrmance - Drag Classificatin f Drag Ntes: Drag Frce and Drag Cefficient Drag is the enemy f flight and its cst. One f the primary functins f aerdynamicists and aircraft designers is t reduce

More information

Plate Tectonics and the Fossil Record

Plate Tectonics and the Fossil Record Plate Tectnics and the Fssil Recrd Accrding t the thery f plate tectnics, the earth's surface is dynamic. The current cnfiguratin f its land and cean masses is the result f mtins that have ccurred ver

More information

1. Galaxy (a) the length of a planet s day. 2. Rotational Period (b) dust and gases floating in space

1. Galaxy (a) the length of a planet s day. 2. Rotational Period (b) dust and gases floating in space Vocabulary: Match the vocabulary terms on the left with the definitions on the right 1. Galaxy (a) the length of a planet s day 2. Rotational Period (b) dust and gases floating in space 3. Orbital Period

More information

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW GASES Pressure & Byle s Law Temperature & Charles s Law Avgadr s Law IDEAL GAS LAW PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2 Earth s atmsphere: 78% N 2 21% O 2 sme Ar, CO 2 Sme Cmmn Gasses Frmula Name

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

The Solar System. Tour of the Solar System

The Solar System. Tour of the Solar System The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets

More information

The MAVEN Mission: Exploring Mars Climate History. Bruce Jakosky LASP / University of Colorado

The MAVEN Mission: Exploring Mars Climate History. Bruce Jakosky LASP / University of Colorado The MAVEN Missin: Explring Mars Climate Histry Bruce Jaksky LASP / University f Clrad Evidence fr Surface Water n Ancient Mars Where Did the Water G? Where Did the CO 2 G? Abundant evidence fr ancient

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Hnrs Chemistry / / Beynd Lewis Structures Exceptins t the Octet Rule Mdel Hydrgen is an exceptin t the ctet rule because it fills its uter energy level with nly 2 electrns. The secnd rw elements B

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

ASTR 1040: Stars & Galaxies

ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Onward t Galaxies, starting with ur wn! M51 Whirlpl Prf. Juri Tmre TA: Ryan Orvedahl Lecture 21 Tues 1 Apr 2014 6 Our Milky Way Galaxy in verview, aspects f any spiral galaxy

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

More information

Midterm Review Notes - Unit 1 Intro

Midterm Review Notes - Unit 1 Intro Midterm Review Ntes - Unit 1 Intr 3 States f Matter Slid definite shape, definite vlume, very little mlecular mvement Liquid definite vlume, takes shape f cntainer, mlecules mve faster Gas des nt have

More information

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets Lecture #11: Plan Terrestrial Planets (cont d) Jovian Planets Mercury (review) Density = 5.4 kg / liter.. ~ Earth s Rocky mantle + iron/nickel core Slow spin: 59 days (orbital period = 88 days) No satellites

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company Unit 2 Lesson 1 What Objects Are Part of the Solar System? Florida Benchmarks SC.5.E.5.2 Recognize the major common characteristics of all planets and compare/contrast the properties of inner and outer

More information

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System

Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23 Touring Our Solar System 23.1 The Solar System 23.2 The Terrestrial Planet 23.3 The Outer Planets 23.4 Minor Members of the Solar System Ch 23.1 The Solar System Terrestrial planets- Small Rocky

More information

Solar System Scale & Size Grades: 5-8 Prep Time: ~20 Minutes Lesson Time: ~60 minutes

Solar System Scale & Size Grades: 5-8 Prep Time: ~20 Minutes Lesson Time: ~60 minutes Slar System Scale & Size Grades: 5-8 Prep Time: ~20 Minutes Lessn Time: ~60 minutes WHAT STUDENTS DO: Explre Size and Distance Relatinships amng Planets Students will create a mdel f the slar system using

More information

Chapter 29. The Solar System. The Solar System. Section 29.1 Models of the Solar System notes Models of the Solar System

Chapter 29. The Solar System. The Solar System. Section 29.1 Models of the Solar System notes Models of the Solar System The Solar System Chapter 29 The Solar System Section 29.1 Models of the Solar System 29.1 notes Models of the Solar System Geocentric: : Earth-centered model of the solar system. (Everything revolves around

More information

CVtpf 2-1. Section 1 Review. 3. Describe How did the process of outgassing help shape Earth's atmosphere?

CVtpf 2-1. Section 1 Review. 3. Describe How did the process of outgassing help shape Earth's atmosphere? ----------------------------- ---------- ------ Section 1 Review CVtpf 2-1 -- SECTION VOCABULARY planet a celestial body that orbits the sun, is round because of its own gravity, and has cleared the neighborhood

More information

C Nitrogen and others. D Oxygen and carbon

C Nitrogen and others. D Oxygen and carbon 6.5A Knw that an element is a pure substance represented by chemical symbls. Knw AN ELEMENT IS A PURE SUBSTANCE REPRESENTED BY CHEMICAL SYMBOLS Element a pure substance that cannt be brken dwn chemically

More information

Notes: The Solar System

Notes: The Solar System Notes: The Solar System The Formation of the Solar System 1. A gas cloud collapses under the influence of gravity. 2. Solids condense at the center, forming a protostar. 3. A falttened disk of matter surrounds

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

DATING LUNAR SURFACE FEATURES BY USING CRATER FREQUENCIES* T. J. Kreiter

DATING LUNAR SURFACE FEATURES BY USING CRATER FREQUENCIES* T. J. Kreiter DATING LUNAR SURFACE FEATURES BY USING CRATER FREQUENCIES* T. J. Kreiter Divisin f Space Sciences Jet Prpulsin Labratry Califrnia Institute f Technlgy INTRODUCTION Several theries have been advanced relating

More information

What s in Our Solar System?

What s in Our Solar System? The Planets What s in Our Solar System? Our Solar System consists of a central star (the Sun), the main eight planets orbiting the sun, the dwarf planets, moons, asteroids, comets, meteors, interplanetary

More information

C Nitrogen and others. D Oxygen and carbon

C Nitrogen and others. D Oxygen and carbon 6.5A Knw that an element is a pure substance represented by chemical symbls. Knw AN ELEMENT IS A PURE SUBSTANCE REPRESENTED BY CHEMICAL SYMBOLS Element a pure substance that cannt be brken dwn chemically

More information

GEOL 2920C The Sedimentary Rock Cycle of Mars & Earth Eberswalde fan deposits: deltaic or alluvial? Deltas at Aeolis Dorsa(?

GEOL 2920C The Sedimentary Rock Cycle of Mars & Earth Eberswalde fan deposits: deltaic or alluvial? Deltas at Aeolis Dorsa(? GEOL 2920C The Sedimentary Rck Cycle f Mars & Earth Week 12 Basin Scale Prcesses n Mars I (April 16, 2018) Discussin Pints, Key Equatins, Key Figures (prepared by Jesse Tarnas) Eberswalde fan depsits:

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Words with Magnetism. 201 S. Market St. San Jose CA thetech.org

Words with Magnetism. 201 S. Market St. San Jose CA thetech.org Students play Kahts and cmplete a crsswrd puzzle t reinfrce cntent learning frm their lab n the Galactic Frces f Magnetism, with an emphasis n scientific vcabulary. Grades 3-8 Estimated Time: 15-45 Minutes

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS On cmpletin f this tutrial yu shuld be able t d the fllwing. Define viscsity

More information

CHAPTER 13 Temperature and Kinetic Theory. Units

CHAPTER 13 Temperature and Kinetic Theory. Units CHAPTER 13 Temperature and Kinetic Thery Units Atmic Thery f Matter Temperature and Thermmeters Thermal Equilibrium and the Zerth Law f Thermdynamics Thermal Expansin Thermal Stress The Gas Laws and Abslute

More information

The Inner Planets. Chapter 3 Lesson 1. Pages Workbook pages 51-52

The Inner Planets. Chapter 3 Lesson 1. Pages Workbook pages 51-52 The Inner Planets Chapter 3 Lesson 1 Pages 152-159 Workbook pages 51-52 Create the Foldable on pg 159 The solar The planets system The four inner planets Compare and Contrast Question What are planets?

More information

Cosmology Vocabulary

Cosmology Vocabulary Cosmology Vocabulary Vocabulary Words Terrestrial Planets The Sun Gravity Galaxy Lightyear Axis Comets Kuiper Belt Oort Cloud Meteors AU Nebula Solar System Cosmology Universe Coalescence Jovian Planets

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

Name Date Class. Earth in Space

Name Date Class. Earth in Space Chapter Review Earth in Space Part A. Vocabulary Review Directions: Select the term from the following list that matches each description. axis orbit rotation revolution equinox solstice lunar eclipse

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

( ) + θ θ. ω rotation rate. θ g geographic latitude - - θ geocentric latitude - - Reference Earth Model - WGS84 (Copyright 2002, David T.

( ) + θ θ. ω rotation rate. θ g geographic latitude - - θ geocentric latitude - - Reference Earth Model - WGS84 (Copyright 2002, David T. 1 Reference Earth Mdel - WGS84 (Cpyright, David T. Sandwell) ω spherid c θ θ g a parameter descriptin frmula value/unit GM e (WGS84) 3.9864418 x 1 14 m 3 s M e mass f earth - 5.98 x 1 4 kg G gravitatinal

More information

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion?

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? These small, rocky worlds orbit the sun generally between the orbits of

More information

Weather satellite Cumulus clouds Stratus clouds Cirrus clouds Cumulus Stratus Cirrus Nimbo-/-nimbus Cirro- nimbo- -nimbus Alto- cirro- alto-

Weather satellite Cumulus clouds Stratus clouds Cirrus clouds Cumulus Stratus Cirrus Nimbo-/-nimbus Cirro- nimbo- -nimbus Alto- cirro- alto- Study Guide: Weather Patterns Lessn 1: Watching the Cluds G By Cntent Objectives: Cluds frm when large areas f warm, mist air rise int the air t the pint where water vapr cndenses int water drplets. There

More information

Joy of Science Experience the evolution of the Universe, Earth and Life

Joy of Science Experience the evolution of the Universe, Earth and Life Joy of Science Experience the evolution of the Universe, Earth and Life Review Introduction Main contents Quiz Unless otherwise noted, all pictures are taken from wikipedia.org Review 1 The presence of

More information

known since prehistoric times almost 10 times larger than Jupiter

known since prehistoric times almost 10 times larger than Jupiter Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune 40.329407-74.667345 Sun Mercury Length of rotation Temperature at surface 8 official planets large number of smaller objects including Pluto, asteroids,

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Sep. 11, 2002 1) Introduction 2) Angular Momentum 3) Formation of the Solar System 4) Cowboy Astronomer Review Kepler s Laws empirical description of planetary motion Newton

More information

Overview of the Solar System

Overview of the Solar System The Solar System Overview of the Solar System Basics Source: Nine Planets - A Multimedia Tour of the Solar System * By Bill Arnett The solar system consists of the Sun, the nine planets, about 90 satellites

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Chapter 5: Force and Motion I-a

Chapter 5: Force and Motion I-a Chapter 5: rce and Mtin I-a rce is the interactin between bjects is a vectr causes acceleratin Net frce: vectr sum f all the frces n an bject. v v N v v v v v ttal net = i = + + 3 + 4 i= Envirnment respnse

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 4 The Solar System Lecture Presentation 4.0 What can be seen with the naked eye? Early astronomers knew about the Sun, Moon, stars, Mercury,

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B

PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B PHYS 160 Astronomy Test #3 Nov 1, 2017 Version B I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. The clouds of Jupiter are composed

More information

Name: Period: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY

Name: Period: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY Name: Perid: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information