# Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam]

Size: px
Start display at page:

Transcription

1 Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Although we can be certain that other stars are as complex as the Sun, we will try to reduce their description to a fairly small number of properties, since these are the only attributes of stars that can be determined by observations. We will attempt to use relations between these properties to answer questions like: Why do there appear to be different types of stars? How are stars born, evolve, and die? You will find it useful to keep in mind these general and important big picture questions. First we discuss how the properties of stars are measured and how they can be interpreted (ch. 17). That is the content of this set of notes. Then we do the same for the gas between the stars (the interstellar medium, ch. 18) and try to put them together to understand how stars form (ch. 19), especially as a function of mass. [For the next exam, however, we will probably have to omit ch. 19.] Finally, in the next section of the course we will consider in detail how stars of different mass evolve from birth to death. [Not on the exam: Discover 17-1, p. 441; More Precisely 17-1, p. 445; you should just have a basic idea of what the magnitude system means when referring to stellar brightnesses; More precisely I won t test you on the different types of binary stars (pp ) or specifically how masses are determined for each type, but you should be comfortable with the general idea; recall that we have been talking about this, off and on, since we discussed how to get the mass of the Sun from the Earth s semimajor axis and period, using Kepler s 2 nd law. ]

2 Basic properties of stars 1. Distances. The most basic method is to measure a star s parallax angle, a subject we discussed early in the course. (See Fig for a useful illustration.) This method gives rise to the unit of distance we will use throughout the remainder of the course, the parsec, which is the distance of a star with a parallax of one second of arc. (The nearest stars are a few parsecs distant from us, while our Galaxy is about 30,000 parsecs across.) A parsec is about 3 x cm, or over a hundred thousand times larger than the distance from the Earth to the Sun (1AU). Distance (in parsecs) is equal to the inverse of the parallax angle (expressed in seconds of arc). For example, a star 10 pc distant has a parallax angle of 0.1 seconds of arc. Distant stars have such small parallax angles that they cannot be measured (recall our discussion of the diffraction and seeing limits for telescopes). So there is a distance limit for this method, and it is only about pc.

3 (Think: size of our Galaxy ~ 30,000 pc, nearest other galaxies millions of pc away, most distant galaxies we can see are billions of pc away.) The Hipparcos space mission revolutionized our knowledge of parallaxes (p. 452). Planned future space missions (around 2010; SIM and GAIA) aim to enormously extend the distances to which parallaxes can be measured, covering our entire Galaxy. Important to note: Most objects we ll encounter in astronomy are too far away to get distances by parallax, so we have to use other, less direct measurements (the idea of standard candles is the most important). But parallax is crucial because it serves as the calibration of all these other methods; it is the yardstick upon which other distance measurements are based.

4 2. Motions We already know how to measure the component of star s motion along our line of sight, called the radial velocity: obtain a spectrum and measure the Doppler shift using spectral lines. But the star also has a component across our line of sight; this is called the transverse velocity. All we can directly measure is the angular speed across our line of sight ( proper motion ); in order to get the transverse velocity, we also need the distance. (Think about mosquito/ufo used in class.) What kind of star do you expect to exhibit the largest proper motion? When you combine the two components of velocity, you get the total space velocity of the star. We won t use this information much until we get to topics like the origin of our galaxy and the evidence for dark matter. But you should still know that most stars in the disk of our Galaxy are moving relative to each other at around 5 to 50 km/sec. Our sun and solar system are moving about 15 km/sec relative to the average of nearby stars. But we orbit our Galaxy about 250 km/s. These numbers are important because they allow us to obtain the mass of our galaxy, just as we obtained the mass of the Sun from Kepler s third law.

5 3. Luminosities. This is how much energy a star is emitting per unit time, i.e. the rate at which photon energy is being emitted. It is exactly the same as the power of a light bulb in Watts. You can think of it as the absolute brightness of the star, to distinguish it from how much energy an observer is receiving from the star, its apparent brightness, which obviously depends on the star s distance. The three quantities are related by the inverse square law of light: apparent brightness luminosity/(distance) 2 Since apparent brightness is EASY to measure (if you can see something, you can measure how bright it appears), and we can get distance, at least for some stars, from parallax, we can solve this for L. Examples given in class should make this clear if it s not already. [You do NOT have to know anything about magnitude scales except the basic idea, if that. I won t use this idea on the exam, but if you encounter it in the book, just remember that it s just a handy way to assign numbers to apparent brightness and luminosity that have a smaller range, like the Richter scale for earthquakes.]

6 4. Temperature. We are talking about the photospheric temperature, which is all we can directly observe. There are 2 ways to get T: a. Color remember Wien s law? Even though stars aren t perfect blackbodies, we can get fairly accurate temperatures (especially in a relative sense) by colors. See p , esp. Fig. 17.9, so that you understand color as a measure of how much energy is being radiated in two different wavelength bands. b. Spectra and spectral classification We ve already discussed how the strengths of spectral lines of different elements are extremely sensitive to the temperature of the gas. E.g. if helium lines, star s photosphere must be really hot, since it takes so much energy to excite its electron levels. Look carefully at Fig , p. 459, to see how different absorption lines appear for stars of different temperatures.

7 Astronomers have classified stars into spectral types that turn out to be a temperature sequence in the order O B A F G K M memorize this 50,000K..6,000K.3,000K temperature HeII HeI H various metals molecules strongest lines

8 5. Sizes. Since stars only appear as points of light to even the largest telescopes (with a very few exceptions, using interferometry for the largest nearby stars: see Fig for the best example), we can t get their diameters directly. Instead we use a method that is based on Stefan s law (see ch.3 if you have forgotten): The rate of emission of energy of all light, at all wavelengths, by an object, by a unit area of its surface, per unit time (e.g. per second), E, is proportional to the fourth power of the surface (photospheric) temperature T 4. Writing L for the luminosity (total energy emitted per unit time by the whole object) of the object (we ll see how to measure this shortly), and noting that the area of a star is proportional to the square of its radius, this gives E L / R 2 T 4 ; or L T 4 R 2. You can see there are two ways for a star to be luminous: have a high temperature and/or have a large surface area. This means that if we can measure the temperature (from color, or using spectral lines; see below), we can get the surface area, i.e. the size R: R L 1/2 / T 2. Don t worry much about the exponents, just understand the idea.

9 If you carry this out for a large number of stars (see Fig ), you find that most of them have R similar to the sun (these are called main sequence stars ), but a fraction of them are either: (a) red giants large L (up to 10 6 x sun) and small T (i.e. red), so must have large size (up to 1000 x sun s); or (b) white dwarfs T fairly large ( white ), but faint, L only a few percent of sun. This means they must not have much surface area, i.e. their sizes are tiny (comparable the size of the Earth!), even though their masses are similar to the sun s. They must have huge densities! (Later we ll see what these classes represent in terms of evolution.) NEXT: The HR diagram (extremely important) read sec

10 The H-R diagram (sec. 17.5) The H-R diagram is a graph of luminosity vs. temperature for individual stars. This will be our basic device for describing the evolution of stars so it is important to be comfortable with it. [Notice that temperature increases from right to left. Also note that stars evolve on timescales of at least millions of years, so we don t see them move around in this diagram. We watch models of stars move around. More in later chapters.] Understand from earlier notes why stars in the upper right of this diagram must have large sizes (red giants) while those in the lower left (white dwarfs) must be small (white dwarfs). Also read why plotting only the stars that are apparently the brightest would be very misleading. We need to plot all the stars out to some distance. The textbook has some useful graphs (pp. 464, 465) illustrating this point. The next plot is an HR diagram showing all the stars with Hipparcos distances. This is still highly biased toward the brightest (as well as most numerous) stars. Also note that the width of the main sequence is pretty large this is because the

11 main sequence varies somewhat for stars with different metal abundances. HR diagram for stars with Hipparcos distances.

12 If we use a complete sample of stars (i.e. not biased by how bright they appear) we find: ~90% main sequence (MS) stars ~1% red giants ~9% white dwarfs Why? That s the purpose of stellar evolution theory, but you can already guess a couple of possible answers. Spectroscopic Parallax (p. 466) If you can establish that a star is a main sequence (MS) star (and you can from its spectrum; see luminosity class in text), then the spectral type gives you the temperature, so you can just read off the luminosity from the H-R diagram. Knowing the apparent brightness (really easy to measure) and luminosity, this gives the distance (review earlier material if you don t understand this), without having to get a trigonometric parallax. Distances obtained in this way are called spectroscopic parallaxes. (In spectroscopic parallax the word parallax is just used to mean distance. ) You can get distances out to roughly 10,000 pc (10 kiloparsecs) using this method. (Compared to about 500 pc for trigonometric parallax.) This is our first example of using a standard candle : some property of the star (in this case its temperature) gives you its luminosity (hence the analogy with a candle or light bulb).

13 Stellar Masses The only method for directly determining the masses of stars is from binary stars, using Newton s form of Kepler s 3 rd law. There are three types of binary stars, which depend on how close they are to each other, their relative brightnesses, the distance of the binary, and other factors: a.visual binaries can see both stars, and so monitor orbit directly. (But must be near enough for you to resolve the two stars not that many of these!) See Fig Notice that you need the distance to convert the angular separation of the binary pair into a linear separation (i.e. in km or AU). b.spectroscopic binaries in this case you might see one or both stars, but the way you can tell they are in orbit is by observing periodic changes in the Doppler shift of their spectral lines. See Fig The period of the radial velocity variation is the period of the system. Using this, you can estimate the semimajor axis (for a circular orbit, the period = 2π x orbital radius/orbital velocity). So with period and semimajor axis, can get masses (actually only lower limit inclination; see text). Recall that this is how extrasolar planets were discovered (the radial velocity method ).

14 c. Eclipsing binaries only get eclipses if the orbit is very nearly along the observer s line of sight, i.e. edgeon (so favors very small orbits), but can get lots of information, even the sizes of the stars, from the light curve. (See Fig ) Recall that this is the basis for the transit method that we discussed in relation to extrasolar planet detection. Generally, get only limits on stars masses, but in many cases (e.g. spectroscopic eclipsing binaries) can get actual masses. See p Results: Accurate masses are known for ~ 100 stars, showing that stars span the mass range ~ 0.1 to solar masses. Why this range? That is subject of future chapter, but for now, the most important thing we learn from this is an estimate of the lifetimes of stars, and how they depend on mass. This comes from:

15 The mass-luminosity relation for main sequence stars (sec. 17.8). Roughly, find from observations that L M 3. This tells us that the mass varies continuously along the main sequence. Range is roughly 50 solar masses (luminous hot stars, spectral type O) to about 0.1 solar masses (faint cool stars, spectral type M). But notice strong mass-dependence of luminosity! Theory tells us that the mass a star is born with determines nearly everything else about its fate. Good example: stellar lifetime = fuel supply/rate at which it is being burned stellar mass / stellar luminosity M / M 3 1/M 2 So low mass stars live the longest. Numerically, we find a lifetime of a few million years for 50 solar masses, 10 billion years for the sun, and about a trillion years (much greater than the estimated age of our universe) for the lowest mass stars. Now stare at Table 17.5 (Measuring the Stars) and see if it all makes sense to you. Try the questions at the end of the chapter before moving on. Next (ch.18): try to understand the properties of material (the interstellar medium) from which stars form.

### Chapter 10 Measuring the Stars

Chapter 10 Measuring the Stars Some of the topics included in this chapter Stellar parallax Distance to the stars Stellar motion Luminosity and apparent brightness of stars The magnitude scale Stellar

### Parallax: Measuring the distance to Stars

Measuring the Stars Parallax: Measuring the distance to Stars Use Earth s orbit as baseline Parallactic angle = 1/2 angular shift Distance from the Sun required for a star to have a parallactic angle of

### Lecture Outlines. Chapter 17. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 17 Astronomy Today 8th Edition Chaisson/McMillan Chapter 17 Measuring the Stars Units of Chapter 17 17.1 The Solar Neighborhood 17.2 Luminosity and Apparent Brightness 17.3 Stellar

### Basic Properties of the Stars

Basic Properties of the Stars The Sun-centered model of the solar system laid out by Copernicus in De Revolutionibus (1543) made a very specific prediction: that the nearby stars should exhibit parallax

### The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax

The Family of Stars Chapter 13 Measuring the Properties of Stars 1 Those tiny glints of light in the night sky are in reality huge, dazzling balls of gas, many of which are vastly larger and brighter than

### Lecture Outline: Spectroscopy (Ch. 4)

Lecture Outline: Spectroscopy (Ch. 4) NOTE: These are just an outline of the lectures and a guide to the textbook. The material will be covered in more detail in class. We will cover nearly all of the

### Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

### CASE STUDY FOR USE WITH SECTION B

GCE A level 325/0-A PHYSICS PH5 Assessment Unit CASE STUDY FOR USE WITH SECTION B Pre-Release Material To be opened on receipt A new copy of this Case Study will be given out in the examination 325 0A00

### Chapter 15 Surveying the Stars

Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? How do we

### ! p. 1. Observations. 1.1 Parameters

1 Observations 11 Parameters - Distance d : measured by triangulation (parallax method), or the amount that the star has dimmed (if it s the same type of star as the Sun ) - Brightness or flux f : energy

### The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) much in class, but read it there will probably be a question or a few on it. In following lecture outline, numbers

### Determining the Properties of the Stars

Determining the Properties of the Stars This set of notes by Nick Strobel covers: The properties of stars--their distances, luminosities, compositions, velocities, masses, radii, and how we determine those

### AST 301: What you will have to learn and get used to 1. Basic types of objects in the universe

AST 301: What you will have to learn and get used to 1. Basic types of objects in the universe Planets, stars, galaxies, a few things inbetween--look through your textbook soon! You will have to learn:

### Properties of Stars (continued) Some Properties of Stars. What is brightness?

Properties of Stars (continued) Some Properties of Stars Luminosity Temperature of the star s surface Mass Physical size 2 Chemical makeup 3 What is brightness? Apparent brightness is the energy flux (watts/m

### 301 Physics 1/20/09. The Family of Stars. Chapter 12. Triangulation. Trigonometric Parallax. Course/Syllabus Overview Review of 301 stuff Start Ch.

1/20/09 Course/Syllabus Overview Review of 301 stuff Start Ch. 12 More than just knowing various facts Understand how we arrive at these conclusions 301 Physics Physics Concepts Light Properties of (frequency,wavelength,energy)

### Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars 8-2 Parallax For nearby stars - measure distances with parallax July 1 AU d p A A A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

### Chapter 15: Surveying the Stars

Chapter 15 Lecture Chapter 15: Surveying the Stars Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How

### Lecture 16 The Measuring the Stars 3/26/2018

Lecture 16 The Measuring the Stars 3/26/2018 Test 2 Results D C B A Questions that I thought were unfair: 13, 18, 25, 76, 77, 80 Curved from 85 to 79 Measuring stars How far away are they? How bright are

### Chapter 15 Surveying the Stars Properties of Stars

Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? Luminosity:

### Mass-Luminosity and Stellar Lifetimes WS

Name Mass-Luminosity and Stellar Lifetimes WS The graph shows the Mass-Luminosity Relationship for main sequence stars. Use it to answer questions 1-3. 1) A star with a mass of 0.5 solar masses would be

### The Cosmic Perspective. Surveying the Properties of Stars. Surveying the Stars. How do we measure stellar luminosities?

Surveying the Stars Chapter 15 Lecture The Cosmic Perspective 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we

### ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR-1020: Astronomy II Course Lecture Notes Section III Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

### HOMEWORK - Chapter 17 The Stars

Astronomy 20 HOMEWORK - Chapter 7 The Stars Use a calculator whenever necessary. For full credit, always show your work and explain how you got your answer in full, complete sentences on a separate sheet

### Chapter 15 Surveying the Stars Pearson Education, Inc.

Chapter 15 Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? 1. How

### Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

### AST 301: Topics for today!

AST 301: Topics for today! 1.! Syllabus. You should have read the syllabus in detail. So only brief questions about course, grading, etc. today.!!!go to the course web site and bookmark it as soon as possible.!

### Astr 5465 Feb. 6, 2018 Today s Topics

Astr 5465 Feb. 6, 2018 Today s Topics Stars: Binary Stars Determination of Stellar Properties via Binary Stars Classification of Binary Stars Visual Binaries Both stars visible Only one star visible Spectroscopic

### 5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

### Chapter 11 Surveying the Stars

Chapter 11 Surveying the Stars Luminosity Luminosity: Rate of energy emitted by star every second. Apparent brightness (flux): Amount of energy passing through every second per unit area. Luninosity =

### Chapter 8: The Family of Stars

Chapter 8: The Family of Stars We already know how to determine a star s surface temperature chemical composition motion Next, we will learn how we can determine its distance luminosity radius mass Measuring

### 15.1 Properties of Stars

Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures? How do we measure stellar masses? How do we measure

### Stars: Stars and their Properties

Stars: Stars and their Properties Astronomy 110 Class 10 WHEN I heard the learn d astronomer; When the proofs, the figures, were ranged in columns before me; When I was shown the charts and the diagrams,

### ASTR Look over Chapter 15. Good things to Know. Triangulation

ASTR 1020 Look over Chapter 15 Good things to Know Triangulation Parallax Parsecs Absolute Visual Magnitude Distance Modulus Luminosity Balmer Lines Spectral Classes Hertzsprung-Russell (HR) diagram Main

### V. Stars.

V. Stars http://sgoodwin.staff.shef.ac.uk/phy111.html 0. The local HR diagram We saw that locally we can make an HR diagram of absolute luminosity against temperature. We find a main sequence, giants and

Astronomy 1143 Final Exam Review Answers Prof. Pradhan April 24, 2015 What is Science? 1. Explain the difference between astronomy and astrology. 2. What number is the metric system based around? What

### Characterizing Stars

Characterizing Stars 1 Guiding Questions 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

### Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances

Guiding Questions Characterizing Stars 1. How far away are the stars? 2. What evidence do astronomers have that the Sun is a typical star? 3. What is meant by a first-magnitude or second magnitude star?

### A star is at a distance of 1.3 parsecs, what is its parallax?

Stars Spectral lines from stars Binaries and the masses of stars Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram A star

### 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

### Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

### Based on the reduction of the intensity of the light from a star with distance. It drops off with the inverse square of the distance.

6/28 Based on the reduction of the intensity of the light from a star with distance. It drops off with the inverse square of the distance. Intensity is power per unit area of electromagnetic radiation.

### HW 5 posted. Deadline: * Monday 3.00 PM * -- Tip from the coach: Do it earlier, as practice for mid term (it covers only parts included in exam).

Admin HW 5 posted. Deadline: * Monday 3.00 PM * -- Tip from the coach: Do it earlier, as practice for mid term (it covers only parts included in exam). Lab Wednesday/Thursday -- Spectra http://jonsundqvist.com/phys133/labs.html

### How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

### The Sun (chapter 14) some of this is review from quiz 3, but you should

Astro20 / Harpell Topics for Quiz 4 The quiz will have 20 multiple choice questions; several "fill in the blanks" about five short essay questions that may require sketches.. If you can answer everything

### Black Hole Binary System. Outline - Feb. 25, Constraining the Size of the Region that Contains the Invisible Mass

Outline - Feb. 25, 2010 Black Hole Binary System Observational evidence for Black Holes (pgs. 600-601) Properties of Stars (Ch. 16) Luminosities (pgs. 519-523) Temperatures (pg. 524) Optical image of Cygnus

### Announcements. Lecture 11 Properties of Stars. App Bright = L / 4!d 2

Announcements Quiz#3 today at the end of 60min lecture. Homework#3 will be handed out on Thursday. Due October 14 (next Thursday) Review of Mid-term exam will be handed out next Tuesday. Mid-term exam

### Parallax: Space Observatories. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & Universe Lecture #7 Outline

Stars, Galaxies & the Universe Announcements HW#4: posted Thursday; due Monday (9/20) Reading Quiz on Ch. 16.5 Monday (9/20) Exam #1 (Next Wednesday 9/22) In class (50 minutes) first 20 minutes: review

### Spectroscopy, the Doppler Shift and Masses of Binary Stars

Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

### The Stars. Background & History The Celestial Sphere: Fixed Stars and the Luminaries

The Stars Background & History The Celestial Sphere: Fixed Stars and the Luminaries The Appearance of Stars on the Sky Brightness and Brightness Variations Atmospheric Effects: Twinkling Variable Stars

### Which property of a star would not change if we could observe it from twice as far away? a) Angular size b) Color c) Flux d) Parallax e) Proper Motion

Exam #1 is in class next monday 25 multiple-choice questions 50 minutes Similar to questions asked in class Review sheet to be posted this week. We will have two 1-hour review sessions Friday 5-6pm (with

### Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets

Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition Doppler Effect & Motion Extrasolar Planets Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum

### OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

NAME: 1. Define using complete sentences: Globular Cluster: OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! Open Cluster: Main Sequence: Turnoff point: Answer the following

### Types of Stars and the HR diagram

Types of Stars and the HR diagram Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted! See

### Review Chapter 10. 2) A parsec is slightly more than 200,000 AU. 2)

Review Chapter 10 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A parsec is about 3.3 light-years. 1) 2) A parsec is slightly more than 200,000 AU. 2) 3) The nearest

### Types of Stars 1/31/14 O B A F G K M. 8-6 Luminosity. 8-7 Stellar Temperatures

Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars For nearby stars - measure distances with parallax 1 AU d p 8-2 Parallax A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

### Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Chapter 15 Lecture The Cosmic Perspective Seventh Edition Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?

### Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Motivation We already know how to determine a star s surface temperature chemical composition surface density In this chapter, we will learn how we can determine its distance

### Position 1 Position 2 6 after position 1 Distance between positions 1 and 2 is the Bigger = bigger parallax (Ɵ)

STARS CHAPTER 10.1 the solar neighborhood The distances to the nearest stars can be measured using Parallax => the shift of an object relative to some distant background as the observer s point of view

### Chapter 15 Surveying the Stars. Properties of Stars. Parallax and Distance. Distances Luminosities Temperatures Radii Masses

hapter 15 Surveying the Stars Properties of Stars istances Luminosities s Radii Masses istance Use radar in Solar System, but stars are so far we use parallax: apparent shift of a nearby object against

### Properties of Stars. For such huge objects, stars have comparatively simple properties when seen from a long way off

Properties of Stars For such huge objects, stars have comparatively simple properties when seen from a long way off apparent magnitude distance and direction in space luminosity - absolute magnitude temperature

### Structure & Evolution of Stars 1

Structure and Evolution of Stars Lecture 2: Observational Properties Distance measurement Space velocities Apparent magnitudes and colours Absolute magnitudes and luminosities Blackbodies and temperatures

### Observed Properties of Stars - 2 ASTR 2120 Sarazin

Observed Properties of Stars - 2 ASTR 2120 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Hipparchus 1) Classified stars by brightness,

### The Life Histories of Stars I. Birth and Violent Lives

The Life Histories of Stars I Birth and Violent Lives Stellar evolution--first problem for new discipline of astrophysics What is a star? What is it made of? How does it produce and release energy? How

### Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

### Astronomy II (ASTR-1020) Homework 2

Astronomy II (ASTR-1020) Homework 2 Due: 10 February 2009 The answers of this multiple choice homework are to be indicated on a Scantron sheet (either Form # 822 N-E or Ref # ABF-882) which you are to

### Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

### ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies HOMEWORK #3 due NEXT TUE, 09/29, by 5pm Fiske planetarium: The Birth of Stars by Prof. John Bally - TH 09/24-FRI 09/25, 7:30pm Astronomer s s Toolbox: What

### Astro 1050 Mon. Apr. 3, 2017

Astro 1050 Mon. Apr. 3, 017 Today: Chapter 15, Surveying the Stars Reading in Bennett: For Monday: Ch. 15 Surveying the Stars Reminders: HW CH. 14, 14 due next monday. 1 Chapter 1: Properties of Stars

### Astr 2320 Tues. March 7, 2017 Today s Topics

Astr 2320 Tues. March 7, 2017 Today s Topics Chapter 13: Stars: Binary Stars Determination of Stellar Properties vi Binary Stars Classification of Binary Stars Visual Binaries Both stars visible Only one

### Observed Properties of Stars - 2 ASTR 2110 Sarazin

Observed Properties of Stars - 2 ASTR 2110 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Stellar Colors Stellar Colors Stellar Colors Stars

### ASTRONOMY 1 EXAM 3 a Name

ASTRONOMY 1 EXAM 3 a Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) Multiple Choice (25 @ 2 points each = 50 pts.) Essays (choose 3 of 4 @ 10 points each = 30 pt 1.Luminosity D 8.White dwarf

### Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

The Family of Stars Lines of Hydrogen Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Balmer Thermometer Balmer line strength is sensitive to temperature: Most hydrogen

### Masses are much harder than distance, luminosity, or temperature. Binary Stars to the Rescue!! AST 101 Introduction to Astronomy: Stars & Galaxies

Last Two Classes Measuring the Stars AST 101 Introduction to Astronomy: Stars & Galaxies 1. Measuring distances 2. Measuring stellar luminosities 3. Measuring temperatures Next 4. Measuring masses Masses

### Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

### The Cosmological Distance Ladder. It's not perfect, but it works!

The Cosmological Distance Ladder It's not perfect, but it works! First, we must know how big the Earth is. Next, we must determine the scale of the solar system. Copernicus (1543) correctly determined

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

### HNRS 227 Lecture 18 October 2007 Chapter 12. Stars, Galaxies and the Universe presented by Dr. Geller

HNRS 227 Lecture 18 October 2007 Chapter 12 Stars, Galaxies and the Universe presented by Dr. Geller Recall from Chapters 1-11 Units of length, mass, density, time, and metric system The Scientific Method

### Measuring the Stars. The measurement of distances The family of distance-measurement techniques used by astronomers to chart the universe is called

Measuring the Stars How to measure: Distance Stellar motion Luminosity Temperature Size Evolutionary stage (H-R diagram) Cosmic distances Mass The measurement of distances The family of distance-measurement

### Earth in Space. Stars, Galaxies, and the Universe

Earth in Space Stars, Galaxies, and the Universe Key Concepts What are stars? How does the Sun compare to other stars? Where is Earth located in the universe? How is the universe structured? What do you

### INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram

INSIDE LAB 8: Plotting Stars on the Hertzsprung- Russell Diagram OBJECTIVE: To become familiar with the Hertzsprung-Russell diagram and the method of spectroscopic parallax. DISCUSSION: The Hertzsprung-Russell

### Lecture 14: Studying the stars. Astronomy 111 Monday October 16, 2017

Lecture 14: Studying the stars Astronomy 111 Monday October 16, 2017 Reminders Homework #7 due Monday I will give a lecture on DES and LIGO tomorrow at 4pm in the Mitchell Institute Studying the stars

### X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun.

6/25 How do we get information from the telescope? 1. Galileo drew pictures. 2. With the invention of photography, we began taking pictures of the view in the telescope. With telescopes that would rotate

### The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

### Chapter 15 Surveying the Stars. Agenda

hapter 15 Surveying the Stars genda nnounce: Test in 2.5 weeks Masteringastronomy.com issues Relativity review Review our sun h. 15 Surveying the Stars Lab Special vs. General Relativity pplies only to

### Test #2 results. Grades posted in UNM Learn. Along with current grade in the class

Test #2 results Grades posted in UNM Learn D C B A Along with current grade in the class F Clicker Question: If the Earth had no Moon then what would happen to the tides? A: The tides would not be as strong

### Magnitudes. How Powerful Are the Stars? Luminosities of Different Stars

How Powerful Are the Stars? Some stars are more powerful than others Power is energy output per. (Example: 00 Watts = 00 joules per second) Astronomers measure the power, or brightness of stars in ways:

### The Interstellar Medium (ch. 18)

The Interstellar Medium (ch. 18) The interstellar medium (ISM) is all the gas (and about 1% dust) that fills our Galaxy and others. It is the raw material from which stars form, and into which stars eject

### Astronomy 150: Killer Skies. Lecture 20, March 7

Assignments: Astronomy 150: Killer Skies HW6 due next time at start of class Lecture 20, March 7 Office Hours begin after class or by appointment Night Observing continues this week, 7-9 pm last week!

### Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

### Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars

Family of stars Reminder: the stellar magnitude scale In the 1900 s, the magnitude scale was defined as follows: a difference of 5 in magnitude corresponds to a change of a factor 100 in brightness. Dm

### Astro Fall 2012 Lecture 8. T. Howard

Astro 101 003 Fall 2012 Lecture 8 T. Howard Measuring the Stars How big are stars? How far away? How luminous? How hot? How old & how much longer to live? Chemical composition? How are they moving? Are

### Review of Star Intro. PHYSICS 162 Lecture 7a 1

Review of Star Intro Parallax - geometric method of determining star distance Absolute and apparent luminosity. Temperature Spectrum: What characterizes the star s surface Is related to its temperature

### How do we measure properties of a star? Today. Some Clicker Questions - #1. Some Clicker Questions - #1

Today Announcements: HW#8 due Friday 4/9 at 8:00 am. The size of the Universe (It s expanding!) The Big Bang Video on the Big Bang NOTE: I will take several questions on exam 3 and the final from the videos

### 1 of 6 5/2/2015 6:12 PM

1 of 6 5/2/2015 6:12 PM 1. What is parallax? The distance to an object, measured in parsecs. The difference between the apparent and absolute magnitude. The apparent shift in POSITION of an object caused

### Astronomy 10 Test #2 Practice Version

Given (a.k.a. `First ) Name(s): Family (a.k.a. `Last ) name: ON YOUR PARSCORE: `Bubble your name, your student I.D. number, and your multiple-choice answers. I will keep the Parscore forms. ON THIS TEST

### From measuring and classifying the stars to understanding their physics

From measuring and classifying the stars to understanding their physics What we can measure directly: Surface temperature and color Spectrum Apparent magnitude or intensity Diameter of a few nearby stars

### Today in Astronomy 328: binary stars

Today in Astronomy 38: binary stars Binary-star systems. Direct measurements of stellar mass and radius in eclipsing binary-star systems. At right: two young binary star systems in the Taurus star-forming

### Gaia Launched in Dec D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to

Gaia Launched in Dec 2013 3D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to 0.000024 arcseconds = hair at 1000km Accurate parallax/distances?