Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford

Size: px
Start display at page:

Download "Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford"

Transcription

1 Homework on Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, April 8 30 points Prof. Rieke & TA Melissa Halford You are going to work with some famous astronomical data in this homework. The image data is available at Follow the narrative below, and go to the web site as needed to examine the images. Print out this pdf and turn it in with your answers. Introduction to the Hubble Deep Field In 1996 an experiment in how to take pictures of the sky was executed using the Hubble Space Telescope. This was both an experiment in the sense of whether images that collected photons over a period of several days would reveal anything fainter than was already know and an experiment in the sense of a single dataset being made available to astronomers worldwide for them to analyze as they wished. The Hubble Deep Field is described at the end of the Mar 30 lecture on Types of Galaxy. To get oriented, look at the images below. The notches in the images are due to the fact that one of the camera s light sensors was configured to take a more magnified views of the sky than the other three sensors. The higher magnification means that less of the sky is seen. We won t be using any of the imagery from this section of the camera. The two images cover the same area of the sky, but the galaxy in the right hand image is only 56 million light years away, so close that it overfills the camera s view. Left hand image: Hubble Deep Field Right hand image: Spiral Galaxy M100 1) Given how large M100 appears compared to the galaxies in the Hubble Deep Field image, what can you conclude about the distance to the Hubble Deep Field as compared to the distance to the Hubble Deep Field? Make a quantitative estimate by assuming that M100 and the spiral in the yellow oval in the lower left are physically the same size and only appear different in size due to distance. An object s apparent size decreases the further it is away so you can assume that the diameters of objects that you measure from pictures like these can be directly ratioed to indicate relative distances.

2 2) The total exposure time for the Hubble Deep Field was about 240 hours. The total exposure time for the M100 image was 3.3 hours. Review the end of the lecture on Light which discusses how the apparent brightness of an object changes with its distance from us. Explain whether this exposure time difference is in agreement with your answer to question 1. Part 1: How many objects are visible? When the Hubble Deep Field data were first shown to astronomers, the images raised a number of questions in the astronomers minds. One obvious question was How many objects are present in the image?. You are going to measure how many galaxies are in the image, and use that to estimate how many galaxies there across the entire sky. At the web site mentioned above, follow the Part 1 link which will take you to a copy of the Hubble Deep Field data. If we wanted to keep you busy for hours, we could just have you count the objects that you see in this image. Rather than have you count everything in the image, we will have you use a procedure that scientists often employ when faced with a large data sample. When we ask how many objects are there?, we can use sampling to save work. We will assume that objects are distributed uniformly across the image. You can tell by eye that this is not quite strictly correct, and sampling techniques can be used to check the assumption of uniformity. 3) Click on one of three squares completely filled with an image. From the new image that appears, check the box for the camera that you have selected: A: B: C: 4) Click on one of the rectangles in the new image and enter its number: 5) Count how many objects you see in this image section: 6) Select a second area: Camera: A: B: C: Section Number: 7) Count how many objects you see in this image section: 8) Compute the average of your two counts and enter here: This represents the average number of objects in a section based on studying two sample sections. The power of the sampling technique lies in taking subset of the data and using it to give an estimate for what s present in the entire data set. Here s how to do this in this case to derive an estimate of the number of galaxies in the Hubble Deep Field and ultimately in the entire sky: 9) How many sections are there in the entire deep field (ignoring the camera with the different magnification)?

3 10) Use your average count for a section from 8) and the fraction of the deep field represented by one section to compute the total number of objects: Average count per section x Number of sections = Total number of objects in the Deep Field x = 11) Knowing that it would take about 30 million images of the area represented in the Hubble Deep Field image to cover the entire sky, compute the number of objects in the entire universe that would be seen if we could take images of the entire Universe as deep as the Hubble Deep Field. Setup the calculation in a manner similar to 10). 12) Review your counts for your two sections from 5) and 7). By what percentage do they differ from your average value? 13) Give two reasons why the two counts might differ even if you did everything correctly (Hint: Review the lecture on Distribution of Galaxies in Space and the discussion of counting statistics from Feb 29 available from the class home page). Part 2: Classifying the Deep Field Objects Knowing how many objects are visible in the Hubble Deep Field is just the start of using such data. Object Shape Ideally we would like to know what the objects are (foreground stars in the Milky Way or small, dim nearby galaxies or large, bright extremely distant galaxies). Three key factors that influence a galaxy s Color color are 1) the types of stars that dominate the light output; 2) how much interstellar gas and dust are Blue present in the galaxy; and 3) the galaxy s redshift (or White Yellow Red equivalently, its distance). The light output from elliptical galaxies is dominated by red giant stars while spiral galaxies have significant contributions from young and blue stars. Irregular galaxies tend to be dominated by young, blue stars. Ellipticals have very

4 little interstellar material while spirals and especially irregulars have a lot. As described in the lecture Other Stars, any star seen in the deep field might have any color in the visible spectrum but recall that red stars are the most common type of star in the Milky Way (but don t assume that this means that galaxies like the Milky Way look red because these common stars are also very dim so they do not dominate the light output). Click on Part 2 from the exercise start page. Click on one of the three camera sections. A labelled image will appear. Examine the image carefully and classify each numbered object using the scheme in the table. Enter an object s number into the correct bin in the table. 14) Objects in the column 1 are stars (the spikes are diffraction spikes cause by structures inside the Hubble Space Telescope) while the other objects are galaxies. Did you find more stars than galaxies? Give a reason why this is the case. 15) Identify columns 2-4 with the galaxy types discussed in lecture. A galaxy type might contribute to more than one column and indicate whether you found any such examples. 16) What type of galaxy (elliptical, spiral, irregular) is most common in your sample? Part 3: Distances to the Deep Field Objects Return to the exercise main page and click on Part 3. A section of the Hubble Deep Field will pop up with some galaxies labelled from A to F. In the table below, enter the letters in what you think is in order of distance: Nearest Most Distant 17) Explain what criteria you used to put the galaxies in distance order.

5 18) By taking spectra and measuring redshifts, we have determined that galaxy F is actually closer than galaxy C. Explain how this can be true. Part 4: What is this? Click on Part 4 from the exercise main page. An image of a single object will appear. 19) From what you have learned in this exercise and in lecture, what type of object do you think this is? Give at least two reasons for your choice or why you eliminated possibilities.

Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October points Profs. Rieke

Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October points Profs. Rieke Homework #7: Properties of Galaxies in the Hubble Deep Field Name: Due: Friday, October 31 30 points Profs. Rieke You are going to work with some famous astronomical data in this homework. The image data

More information

The Galaxy Zoo Project

The Galaxy Zoo Project Astronomy 201: Cosmology Fall 2009 Prof. Bechtold NAME: The Galaxy Zoo Project 200 points Due: Nov. 23, 2010, in class Professional astronomers often have to search through enormous quantities of data

More information

Obtain one of the laminated sheets, and classify the numbered objects by color (hopefully obvious) and by shape:

Obtain one of the laminated sheets, and classify the numbered objects by color (hopefully obvious) and by shape: Astronomy 100 Name(s): Exercise 8: Galaxies and the Hubble Law The large-scale structure of the universe is governed by gravity. The Sun orbits the center of our galaxy, the Milky Way. The Milky Way, in

More information

Galaxies and The Milky Way

Galaxies and The Milky Way Galaxies and The Milky Way Attendance Quiz Are you here today? Here! (a) yes (b) no (c) To infinity and beyond! Next Tuesday, 5/30, I will be away at a meeting. There will be a guest lecture by Dr. Jorge

More information

The Milky Way. Finding the Center. Milky Way Composite Photo. Finding the Center. Milky Way : A band of and a. Milky Way

The Milky Way. Finding the Center. Milky Way Composite Photo. Finding the Center. Milky Way : A band of and a. Milky Way The Milky Way Milky Way : A band of and a The band of light we see is really 100 billion stars Milky Way probably looks like Andromeda. Milky Way Composite Photo Milky Way Before the 1920 s, astronomers

More information

THE UNIVERSE CHAPTER 20

THE UNIVERSE CHAPTER 20 THE UNIVERSE CHAPTER 20 THE UNIVERSE UNIVERSE everything physical in and Includes all space, matter, and energy that has existed, now exists, and will exist in the future. How did our universe form, how

More information

Lecture Tutorial: Using Astronomy Picture of the Day to learn about the life cycle of stars

Lecture Tutorial: Using Astronomy Picture of the Day to learn about the life cycle of stars Lecture Tutorial: Using Astronomy Picture of the Day to learn about the life cycle of stars For this exercise, you will need an ipad or computer and access to the internet. We will be using the website

More information

Group Member Names: You may work in groups of two, or you may work alone. Due November 20 in Class!

Group Member Names: You may work in groups of two, or you may work alone. Due November 20 in Class! Galaxy Classification and Their Properties Group Member Names: You may work in groups of two, or you may work alone. Due November 20 in Class! Learning Objectives Classify a collection of galaxies based

More information

Hubble Deep Field Activity

Hubble Deep Field Activity National Aeronautics and Space Administration Hubble Deep Field Activity This booklet contains activities that appear on the back of the HDF poster. The Amazing Space Web site contains an online version

More information

AS102 -The Astronomical Universe. The boring details. AS102 - Major Topics. Day Labs - Rooms B4 & 606. Where are we (earth, sun) in the universe?

AS102 -The Astronomical Universe. The boring details. AS102 - Major Topics. Day Labs - Rooms B4 & 606. Where are we (earth, sun) in the universe? AS102 - Major Topics Where are we (earth, sun) in the universe? What are stars? AS102 -The Astronomical Universe Instructor: Professor Tereasa Brainerd TAs: Ren Cashman & Katie Garcia How are stars born,

More information

Physics Lab #10: Citizen Science - The Galaxy Zoo

Physics Lab #10: Citizen Science - The Galaxy Zoo Physics 10263 Lab #10: Citizen Science - The Galaxy Zoo Introduction Astronomy over the last two decades has been dominated by large sky survey projects. The Sloan Digital Sky Survey was one of the first

More information

GALAXIES. Hello Mission Team members. Today our mission is to learn about galaxies.

GALAXIES. Hello Mission Team members. Today our mission is to learn about galaxies. GALAXIES Discussion Hello Mission Team members. Today our mission is to learn about galaxies. (Intro slide- 1) Galaxies span a vast range of properties, from dwarf galaxies with a few million stars barely

More information

Astro 3 Lab Exercise

Astro 3 Lab Exercise Astro 3 Lab Exercise Lab #4: Measuring Redshifts of Galaxies Dates: August 5 6 Lab Report due: 5 pm Friday August 15 Summer 2014 1 Introduction This project involves measuring the redshifts of distant

More information

Galaxy Zoo. Materials Computer Internet connection

Galaxy Zoo. Materials Computer Internet connection Name: Date: Galaxy Zoo Objectives: Distinguish between different types of galaxies Identify the various features of each subclass Contribute data that will be used by astronomers in their work Learn to

More information

Galaxies. What is a Galaxy? A bit of History. A bit of History. Three major components: 1. A thin disk consisting of young and intermediate age stars

Galaxies. What is a Galaxy? A bit of History. A bit of History. Three major components: 1. A thin disk consisting of young and intermediate age stars What is a Galaxy? Galaxies A galaxy is a collection of billions of stars, dust, and gas all held together by gravity. Galaxies are scattered throughout the universe. They vary greatly in size and shape.

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Galaxy Growth and Classification

Galaxy Growth and Classification Observational Astronomy Lab: I-1FS Objectives: First Name: Last Name: Galaxy Growth and Classification To understand the concept of color in astronomy. To be able to classify galaxies based on their morphology

More information

1 What s Way Out There? The Hubble Ultra Deep Field

1 What s Way Out There? The Hubble Ultra Deep Field ENGAGING IN ASTRONOMICAL INQUIRY 5 1 What s Way Out There? The Hubble Ultra Deep Field Big Idea: The Hubble Space Telescope image Hubble Ultra Deep Field reveals a variety of previously unknown objects

More information

Lecture 14: Other Galaxies A2020 Prof. Tom Megeath. The Milky Way in the Infrared 3/17/10. NGC 7331: the Milky Way s Twins. Spiral Galaxy bulge halo

Lecture 14: Other Galaxies A2020 Prof. Tom Megeath. The Milky Way in the Infrared 3/17/10. NGC 7331: the Milky Way s Twins. Spiral Galaxy bulge halo Lecture 14: Other Galaxies A2020 Prof. Tom Megeath Our Galaxy: Side View We see our galaxy edge-on Primary features: Disk: young and old stars where we live. Bulge: older stars Halo: oldest stars, globular

More information

UNIVERSITY COLLEGE LONDON. PHAS : Palomar Sky Survey Prints: Virgo and Hercules Clusters

UNIVERSITY COLLEGE LONDON. PHAS : Palomar Sky Survey Prints: Virgo and Hercules Clusters UNIVERSITY COLLEGE LONDON University Of London Observatory PHAS1510 Certificate in Astronomy, 1213.01 PHAS1510-04: Palomar Sky Survey Prints: Virgo and Hercules Clusters Name: An experienced student should

More information

Galaxies and Cosmology

Galaxies and Cosmology 4/28/17 The Discovery of Galaxies Up to the 1920 s, astronomers were not sure exactly how far away galaxies were, and thus didn t know how big they are! Spiral Nebulae could be assumed to be inside our

More information

Open Cluster Research Project

Open Cluster Research Project Open Cluster Research Project I. Introduction The observational data indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium and a trace of other elements, something triggers

More information

Galaxy Classification and the Hubble Deep Field

Galaxy Classification and the Hubble Deep Field Galaxy Classification and the Hubble Deep Field A. The Hubble Galaxy Classification Scheme Adapted from the UW Astronomy Dept., 1999 Introduction A galaxy is an assembly of between a billion (10 9 ) and

More information

University of Groningen. The opacity of spiral galaxy disks. Holwerda, Benne

University of Groningen. The opacity of spiral galaxy disks. Holwerda, Benne University of Groningen The opacity of spiral galaxy disks. Holwerda, Benne IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check

More information

Galaxy Classification

Galaxy Classification Galaxies Galaxies are collections of billons of stars; our home galaxy, the Milky Way, is a typical example. Stars, gas, and interstellar dust orbit the center of the galaxy due to the gravitational attraction

More information

Name Class Date. Chapter 27. Stars and Galaxies. Review Choose the best response. Write the letter of that choice in the space provided.

Name Class Date. Chapter 27. Stars and Galaxies. Review Choose the best response. Write the letter of that choice in the space provided. Stars and Galaxies Review Choose the best response. Write the letter of that choice in the space provided. 1. In the majority of stars, the most common element is a. oxygen. b. helium. c. hydrogen. d.

More information

PDF / WHERE IS THE CENTER OF THE MILKY WAY

PDF / WHERE IS THE CENTER OF THE MILKY WAY 10 April, 2018 PDF / WHERE IS THE CENTER OF THE MILKY WAY Document Filetype: PDF 332.68 KB 0 PDF / WHERE IS THE CENTER OF THE MILKY WAY The center of our galaxy is teeming with black holes, sort of like

More information

BHS Astronomy: Galaxy Classification and Evolution

BHS Astronomy: Galaxy Classification and Evolution Name Pd Date BHS Astronomy: Galaxy Classification and Evolution This lab comes from http://cosmos.phy.tufts.edu/~zirbel/ast21/homework/hw-8.pdf (Tufts University) The word galaxy, having been used in English

More information

The Milky Way Galaxy: galac1c geography

The Milky Way Galaxy: galac1c geography The Milky Way Galaxy: galac1c geography From Ki8 Peak, looking south toward the constella1on Sagi8arius, summer 1me: the Milky Way! Next, Look at the en1re sky as shown by sofware Stellarium The solar

More information

1. The symbols below represent the Milky Way galaxy, the solar system, the Sun, and the universe.

1. The symbols below represent the Milky Way galaxy, the solar system, the Sun, and the universe. Name Date 1. The symbols below represent the Milky Way galaxy, the solar system, the Sun, and the universe. 4. The diagram below illustrates three stages of a current theory of the formation of the universe.

More information

Astronomers discover an active, bright galaxy "in its infancy"

Astronomers discover an active, bright galaxy in its infancy Astronomers discover an active, bright galaxy "in its infancy" By Los Angeles Times, adapted by Newsela staff on 05.18.15 Word Count 825 The galaxy EGS-zs8-1, the most distant galaxy yet seen, was discovered

More information

Homework Due Feb Is the spectrum below a. an absorption line one b. a continuum c. an emission line one d. Doppler shifted e.

Homework Due Feb Is the spectrum below a. an absorption line one b. a continuum c. an emission line one d. Doppler shifted e. NatSci102 Professors G. and M. Rieke Homework Due Feb. 8 Homework on spectroscopy, colors, and light. Lecture notes for Jan 29 and Feb 1 will be very helpful. This homework will be due on Feb 8 but working

More information

Hertzsprung-Russel Diagrams and Distance to Stars

Hertzsprung-Russel Diagrams and Distance to Stars Chapter 10 Hertzsprung-Russel Diagrams and Distance to Stars 10.1 Purpose In this lab, we will explore how astronomer classify stars. This classificatin one way that can be used to determine the distance

More information

Tour of Galaxies. Sgr A* VLT in IR + adaptive optics. orbits. ASTR 1040 Accel Astro: Stars & Galaxies VLT IR+AO

Tour of Galaxies. Sgr A* VLT in IR + adaptive optics. orbits. ASTR 1040 Accel Astro: Stars & Galaxies VLT IR+AO ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Kyle Augustson Lecture 23 Tues 8 Apr 08 zeus.colorado.edu/astr1040-toomre toomre Tour of Galaxies Briefly revisit Monster in the Milky Way

More information

The Universe April 2, Lecture 2 1

The Universe April 2, Lecture 2 1 Beyond Our Comfort Zone Direct Experience: 10-5 to 10 5 meters Dust grain may have 0.01 mm = 10 micron diameter View from mountaintop may extend 100 km Experts may claim comfort with 10-7 to 10 7 m Optical

More information

LAB: Photometry of the Pleiades Cluster

LAB: Photometry of the Pleiades Cluster LAB: Photometry of the Pleiades Cluster ASTR 203 - Instructors Olszewski & Rigby Due IN CLASS on Oct. 30 You may work with 1 partner. If you do, only turn in 1 assignment with both your names on it! You

More information

AstroBITS: Open Cluster Project

AstroBITS: Open Cluster Project AstroBITS: Open Cluster Project I. Introduction The observational data that astronomers have gathered over many years indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium

More information

Galaxies. Say Thanks to the Authors Click (No sign in required)

Galaxies. Say Thanks to the Authors Click  (No sign in required) Galaxies Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12

More information

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5 and proceed to 25.1, 25.2, 25.3. Then, if there is time remaining,

More information

Star Systems and Galaxies

Star Systems and Galaxies Star Systems and Galaxies Why Does the Milky Way Look Hazy? 1. Using a pencil, carefully poke at least 20 holes close together in a sheet of white paper. 2. Tape the paper to a chalkboard or dark-colored

More information

Chapter 20: Galaxies and the Foundation of Modern Cosmology

Chapter 20: Galaxies and the Foundation of Modern Cosmology Chapter 20 Lecture Chapter 20: Galaxies and the Foundation of Modern Cosmology Galaxies and the Foundation of Modern Cosmology 20.1 Islands of Stars Our goals for learning: How are the lives of galaxies

More information

Figure 19.19: HST photo called Hubble Deep Field.

Figure 19.19: HST photo called Hubble Deep Field. 19.3 Galaxies and the Universe Early civilizations thought that Earth was the center of the universe. In the sixteenth century, we became aware that Earth is a small planet orbiting a medium-sized star.

More information

Lab 1: Measurement Errors Adapted from Holtzman's Intro Lab for Astr110

Lab 1: Measurement Errors Adapted from Holtzman's Intro Lab for Astr110 Lab 1: Measurement Errors Adapted from Holtzman's Intro Lab for Astr110 Purpose: to give students practice making measurements and estimating error, as an introduction to understanding measurements in

More information

COLOR MAGNITUDE DIAGRAMS

COLOR MAGNITUDE DIAGRAMS COLOR MAGNITUDE DIAGRAMS What will you learn in this Lab? This lab will introduce you to Color-Magnitude, or Hertzsprung-Russell, Diagrams: one of the most useful diagnostic tools developed in 20 th century

More information

Lecture 8: What we can learn via light

Lecture 8: What we can learn via light Lecture 8: What we can learn via light As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. Lecture 8: What we can learn

More information

Primary KS1 1 VotesForSchools2018

Primary KS1 1 VotesForSchools2018 Primary KS1 1 Do aliens exist? This photo of Earth was taken by an astronaut on the moon! Would you like to stand on the moon? What is an alien? You probably drew some kind of big eyed, blue-skinned,

More information

The Milky Way & Galaxies

The Milky Way & Galaxies The Milky Way & Galaxies The Milky Way Appears as a milky band of light across the sky A small telescope reveals that it is composed of many stars (Galileo again!) Our knowledge of the Milky Way comes

More information

How do telescopes "see" on Earth and in space?

How do telescopes see on Earth and in space? How do telescopes "see" on Earth and in space? By NASA, adapted by Newsela staff on 03.28.17 Word Count 933 Level 970L TOP IMAGE: The Hubble Space Telescope orbiting in space over Earth. SECOND IMAGE:

More information

Cosmic Microwave Background Radiation

Cosmic Microwave Background Radiation Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

More information

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A 29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

More information

Galaxies. Beyond the Book. FOCUS Book. Make a model that helps demonstrate how the universe is expanding. Follow these steps:

Galaxies. Beyond the Book. FOCUS Book. Make a model that helps demonstrate how the universe is expanding. Follow these steps: FOCUS Book Galaxies Make a model that helps demonstrate how the universe is expanding. Follow these steps: 1 Use markers to make dots on the outside of an uninflated balloon to represent galaxies full

More information

This Week in Astronomy

This Week in Astronomy Homework #8 Due Wednesday, April 18, 11:59PM Covers Chapters 15 and 16 Estimated time to complete: 40 minutes Read chapters, review notes before starting This Week in Astronomy Credit: NASA/JPL-Caltech

More information

On Today s s Radar. ASTR 1040 Accel Astro: Stars & Galaxies. Sb) Andromeda M31 (Sb( Andromeda surprises with Spitzer in IR

On Today s s Radar. ASTR 1040 Accel Astro: Stars & Galaxies. Sb) Andromeda M31 (Sb( Andromeda surprises with Spitzer in IR ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TAs: Nicholas Nelson, Zeeshan Parkar Lecture 24 Thur 8 Apr 2010 zeus.colorado.edu/astr1040-toomre toomre NGC 1232 Spiral Sb On Today s s Radar

More information

A blue flame is hotter than a yellow one.

A blue flame is hotter than a yellow one. CHAPTER 19 1 Stars SECTION Stars, Galaxies, and the Universe BEFORE YOU READ After you read this section, you should be able to answer these questions: Why are stars different colors? How can scientists

More information

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well.

Hubble sequence galaxy classification scheme, originally based on appearance, but correlates with other properties as well. Normal Galaxies (Ch. 24) Here we will cover topics in Ch. 24 up to 24.4, but then skip 24.4, 24.5. The sections we are skipping are all about processes that occur in the centers of galaxies, so I d like

More information

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy.

Galaxies. Need a (physically) meaningful way of describing the relevant properties of a galaxy. Galaxies Aim to understand the characteristics of galaxies, how they have evolved in time, and how they depend on environment (location in space), size, mass, etc. Need a (physically) meaningful way of

More information

Stars and Galaxies 1

Stars and Galaxies 1 Stars and Galaxies 1 Characteristics of Stars 2 Star - body of gases that gives off great amounts of radiant energy as light and heat 3 Most stars look white but are actually different colors Antares -

More information

11/8/18. Tour of Galaxies. Our Schedule

11/8/18. Tour of Galaxies. Our Schedule ASTR 1040: Stars & Galaxies Super-bubble blowout in NGC 3709 Prof. Juri Toomre TAs: Ryan Horton, Loren Matilsky Lecture 22 Thur 8 Nov 2018 zeus.colorado.edu/astr1040-toomre Tour of Galaxies Look at complex

More information

1. Is the spectrum below a. an absorption line one b. a continuum c. an emission line one d. Doppler shifted e. unresolved

1. Is the spectrum below a. an absorption line one b. a continuum c. an emission line one d. Doppler shifted e. unresolved NatSci102 Due Feb. 14 Professor G. Rieke Homework on spectroscopy, colors, and light. Answers should be entered on a Scantron form given out in class. This exercise is worth 30 points (25 questions plus

More information

National Aeronautics and Space Administration. Student Reading ABOUT GALAXIES

National Aeronautics and Space Administration. Student Reading ABOUT GALAXIES National Aeronautics and Space Administration Student Reading ABOUT GALAXIES OUR HOME PLANET, Earth, resides in a glittering city of stars called the Milky Way galaxy. Our Milky Way is one of billions

More information

Galaxies and Cosmology

Galaxies and Cosmology Galaxies and Cosmology Attendance Quiz Are you here today? (a) yes (b) no Here! (c) Cosmetology? Like hair and nails and makeup? Next Tuesday, 5/30: Dr. Jorge Moreno is unavailable, so class will be cancelled

More information

Assignment #9 Star Colors & the B-V Index

Assignment #9 Star Colors & the B-V Index Name Class Date Assignment #9 Star Colors & the B-V Index Millions of stars are scattered across the sky. Astronomers want to study these stars as carefully as possible. This means measuring everything

More information

The principle of geometrical parallax

The principle of geometrical parallax The principle of geometrical parallax One of the hardest things to do in astronomy is to determine how far away things are. Does the star Vega in Lyra appear exceptionally bright because it s an intrinsically

More information

Tuesday, Thursday 2:30-3:45 pm. Astronomy 100. Tom Burbine

Tuesday, Thursday 2:30-3:45 pm.   Astronomy 100. Tom Burbine Astronomy 100 Tuesday, Thursday 2:30-3:45 pm Tom Burbine tburbine@mtholyoke.edu www.xanga.com/astronomy100 OWL assignment (Due Today) There is be an OWL assignment due on Thursday April 14 at 11:59 pm.

More information

The final is Thursday, July 2nd in class. Don t be late! The test will cover Chapters 1-16 and with a STRONG EMPHASIS on Chapters 9-16, 18, and

The final is Thursday, July 2nd in class. Don t be late! The test will cover Chapters 1-16 and with a STRONG EMPHASIS on Chapters 9-16, 18, and Final Exam!!! The final is Thursday, July 2nd in class. Don t be late! The test will cover Chapters 1-16 and 18-19 with a STRONG EMPHASIS on Chapters 9-16, 18, and 19. It will consist of 50 questions and

More information

Galaxies. Lecture Topics. Lecture 23. Discovering Galaxies. Galaxy properties. Local Group. History Cepheid variable stars. Classifying galaxies

Galaxies. Lecture Topics. Lecture 23. Discovering Galaxies. Galaxy properties. Local Group. History Cepheid variable stars. Classifying galaxies Galaxies Lecture 23 APOD: NGC 3628 (The Hamburger Galaxy) 1 Lecture Topics Discovering Galaxies History Cepheid variable stars Galaxy properties Classifying galaxies Local Group 2 23-1 Discovering Galaxies

More information

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam]

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam] Although we can be certain that other stars are as complex as the Sun, we will try to

More information

Hubble s Law: Finding the Age of the Universe

Hubble s Law: Finding the Age of the Universe Lab 16 Name: Hubble s Law: Finding the Age of the Universe 16.1 Introduction In your lecture sessions (or the lab on spectroscopy), you will find out that an object s spectrum can be used to determine

More information

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath

Review of Lecture 15 3/17/10. Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath Lecture 15: Dark Matter and the Cosmic Web (plus Gamma Ray Bursts) Prof. Tom Megeath A2020 Disk Component: stars of all ages, many gas clouds Review of Lecture 15 Spheroidal Component: bulge & halo, old

More information

Galaxies and Star Systems

Galaxies and Star Systems Chapter 5 Section 5.1 Galaxies and Star Systems Galaxies Terms: Galaxy Spiral Galaxy Elliptical Galaxy Irregular Galaxy Milky Way Galaxy Quasar Black Hole Types of Galaxies A galaxy is a huge group of

More information

Background and Theory

Background and Theory Homework 4. Cluster HR Diagrams and the Age of Stars NAME: Due: Thursday, October 7, 2010 In Class Astro 201: Cosmology Prof. Bechtold In this assignment, we are going to measure the age of stars in star

More information

SOURCES AND RESOURCES:

SOURCES AND RESOURCES: A Galactic Zoo Lesson plan for grades K-2 Length of lesson: 1 Class Period (60 minutes) Adapted by: Jesús Aguilar-Landaverde, Environmental Science Institute, February 24, 2012 SOURCES AND RESOURCES: An

More information

ISP 205: Visions of the Universe. Your Professor. Assignments. Course Resources

ISP 205: Visions of the Universe. Your Professor. Assignments. Course Resources ISP 205: Visions of the Universe Goal To learn about the universe around us Astronomy Have fun Method Lectures Collaborative learning Hands-on activities Assessment Homework Electronic postings Quizzes

More information

chapter 31 Stars and Galaxies

chapter 31 Stars and Galaxies chapter 31 Stars and Galaxies Day 1:Technology and the Big Bang Studying the Stars A. Telescopes - Electromagnetic radiation emitted by stars and other objects include light, radio, and X-ray Space telescopes

More information

Study Guide Chapter 2

Study Guide Chapter 2 Section: Stars Pages 32-38 Study Guide Chapter 2 Circle the letter of the best answer for each question. 1. What do scientists study to learn about stars? a. gravity c. space b. starlight d. colors COLOR

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

Miami Dade County Public Schools Educational Transformation Office and the Division of Academics: Department of Science

Miami Dade County Public Schools Educational Transformation Office and the Division of Academics: Department of Science Unit 5 Assessment Comprehensive Science III Directions: Read through the questions carefully and select the best answer choice on your bubble sheet. 1. Space exploration has advanced our knowledge of the

More information

Modern Astronomy Review #1

Modern Astronomy Review #1 Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

More information

Life Cycle of Stars. Photometry of star clusters with SalsaJ. Authors: Daniel Duggan & Sarah Roberts

Life Cycle of Stars. Photometry of star clusters with SalsaJ. Authors: Daniel Duggan & Sarah Roberts Photometry of star clusters with SalsaJ Authors: Daniel Duggan & Sarah Roberts Photometry of star clusters with SalsaJ Introduction Photometry is the measurement of the intensity or brightness of an astronomical

More information

Star Cluster Photometry and the H-R Diagram

Star Cluster Photometry and the H-R Diagram Star Cluster Photometry and the H-R Diagram Contents Introduction Star Cluster Photometry... 1 Downloads... 1 Part 1: Measuring Star Magnitudes... 2 Part 2: Plotting the Stars on a Colour-Magnitude (H-R)

More information

9.6. Other Components of the Universe. Star Clusters. Types of Galaxies

9.6. Other Components of the Universe. Star Clusters. Types of Galaxies Other Components of the Universe 9.6 The most common type of celestial object astronomers see in space is a star. Most stars appear to be gravitationally bound together into groups, and some groups are

More information

THE MILKY WAY GALAXY BACKGROUND READING FOR MIDDLE AND HIGH SCHOOL SCIENCE

THE MILKY WAY GALAXY BACKGROUND READING FOR MIDDLE AND HIGH SCHOOL SCIENCE THE MILKY WAY GALAXY BACKGROUND READING FOR MIDDLE AND HIGH SCHOOL SCIENCE The Milky Way Galaxy The Milky Way is a huge collection of stars, dust and gas. It s called a spiral galaxy because if you could

More information

Laboratory: Milky Way

Laboratory: Milky Way Department of Physics and Geology Laboratory: Milky Way Astronomy 1402 Equipment Needed Quantity Equipment Needed Quantity Milky Way galaxy Model 1 Ruler 1 1.1 Our Milky Way Part 1: Background Milky Way

More information

LESSON 1. Solar System

LESSON 1. Solar System Astronomy Notes LESSON 1 Solar System 11.1 Structure of the Solar System axis of rotation period of rotation period of revolution ellipse astronomical unit What is the solar system? 11.1 Structure of the

More information

24.1 Hubble s Galaxy Classification

24.1 Hubble s Galaxy Classification Chapter 24 Galaxies Units of Chapter 24 24.1 Hubble s Galaxy Classification 24.2 The Distribution of Galaxies in Space 24.3 Hubble s Law 24.4 XXActive Galactic Nuclei XXRelativistic Redshifts and Look-Back

More information

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc. Chapter 5 Light: The Cosmic Messenger 5.1 Basic Properties of Light and Matter Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light is an electromagnetic

More information

Unit 7 Review Guide: The Universe

Unit 7 Review Guide: The Universe Unit 7 Review Guide: The Universe Light Year: Unit of distance used to measure the great vastness of space. Galaxy: Large group of stars, gas, and dust held together by gravity. Spiral Galaxy: Galaxy in

More information

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies Big Galaxies Are Rare! Potato Chip Rule: More small things than large things Big, bright spirals are easy to see, but least common Dwarf ellipticals & irregulars are most common Faint, hard to see Mostly

More information

4/10/18. Our wide world (universe) of Galaxies. Spirals ~80% of galaxies

4/10/18.  Our wide world (universe) of Galaxies. Spirals ~80% of galaxies ASTR 1040: Stars & Galaxies Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 23 Tues 10 Apr 2018 zeus.colorado.edu/astr1040-toomre Our wide world (universe) of Galaxies The rich range of galaxies:

More information

Betelgeuse. The Life of Stars. Stars can be grouped into 4 major categories based on size: supergiants giants main sequence stars dwarfs.

Betelgeuse. The Life of Stars. Stars can be grouped into 4 major categories based on size: supergiants giants main sequence stars dwarfs. The Life of A Star The Life of Stars Stars can be grouped into 4 major categories based on size: supergiants giants main sequence stars dwarfs dwarf star Rigel Sun Betelgeuse The Life of Stars Stars can

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy? Lecture 12: Galaxies View of the Galaxy from within The Milky Way galaxy Rotation curves and dark matter External galaxies and the Hubble classification scheme Plotting the sky brightness in galactic coordinates,

More information

What is the solar system?

What is the solar system? Notes Astronomy What is the solar system? 11.1 Structure of the Solar System Our solar system includes planets and dwarf planets, their moons, a star called the Sun, asteroids and comets. Planets, dwarf

More information

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 10

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 10 Name Lab Partners: Section Date Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 10 Equipment: Balloon Ruler THE EXPANDING UNIVERSE Purpose: To create a simple universe and observe

More information

The Sun: Source of Heat & Light

The Sun: Source of Heat & Light Swinburne Online Education Exploring the Solar System Module 19: The Sun Activity 1: The Sun: Source of Heat & Light Swinburne University of Technology Summary: In this Activity, we will investigate (a)

More information

Galaxies and the Universe

Galaxies and the Universe Standard 7.3.1: Recognize and describe that the Sun is a medium-sized star located near the edge of a diskshaped galaxy of stars and that the universe contains many billions of galaxies and each galaxy

More information

Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2)

Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2) Name Date Star Magnitudes & Distances with Stellarium (Stellarium Exercise #2) Millions of stars are scattered across the sky. Astronomers want to study these stars as carefully as possible. This means

More information

A100 Exploring the Universe: Measuring the Universe. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Measuring the Universe. Martin D. Weinberg UMass Astronomy A100 Exploring the : Measuring the Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu November 18, 2014 Read: Chaps 20, 21 11/18/14 slide 1 Age of the in an Exam #2 scores posted in Mastering.

More information

Chapter 20 Galaxies And the Foundation of Modern Cosmology. Agenda. Lunar Eclipse. Saturn. Lunar Eclipse

Chapter 20 Galaxies And the Foundation of Modern Cosmology. Agenda. Lunar Eclipse. Saturn. Lunar Eclipse Chapter 20 Galaxies And the Foundation of Modern Cosmology Agenda Lunar Eclipse Gallery Saturn Pic/Movie Jim Carrey on Quantum Physics Gravitational Lensing Picture Ch. 20 Galaxies Crab Lab Lunar Eclipse

More information

A 103 Notes, Week 14, Kaufmann-Comins Chapter 15

A 103 Notes, Week 14, Kaufmann-Comins Chapter 15 NEARBY GALAXIES I. Brief History A 103 Notes, Week 14, Kaufmann-Comins Chapter 15 A. Kant B. Curtis-Shapley debate C. Distance to Andromeda II. Classification of nearby galaxies: Spirals, Ellipticals,

More information