Chapter 19 Origin of the Solar System

Size: px
Start display at page:

Download "Chapter 19 Origin of the Solar System"

Transcription

1 Foundations of Astronomy 13e Seeds Phys1411 Introductory Astronomy Instructor: Dr. Goderya Foundations of Astronomy 13e Seeds Chapter 19 Origin of the Solar System Topics for this Class I. Survey of Solar System A. Revolution and Rotation B. Two Kinds of Planet C. Cosmic Debris D. Age of the Solar System II. Origins of Solar System A. Early Hypotheses B. The Solar Nebular Theory Topics for next Class III. Building Planets A. Chemical Composition of the Solar Nebula B. Condensation of Solids C. Formation of Planetesimals D. Growth of Protoplanets E. Jovian Problem F. Clearing the Nebula IV. Planets Orbiting Other Stars IV. Planet forming disks V. Observing extrasolar Planets VI. The Kepler Planet-Finding Mission Survey of the Solar System Planets in the Our Solar System All the planets orbit in the same direction, in one plane, in approximately circular orbits. Comets, in contrast, normally have very eccentric orbits that are often inclined to the plane of the planets orbits. These are all clues to how the Solar System formed. The planets are shown here roughly 2000 times larger than their true diameters relative to the sizes of their orbits. The Solar System is flat and disk-shaped wikipedia 1

2 Revolution, Rotation and Inclination of Planets A planet revolves around the Sun but rotates on its own axis Orbit is counterclockwise and rotation on axis is counterclockwise Exceptions: Venus and Uranus rotate in different directions Universetoday com Two Kinds of Planets: Terrestrial and Jovian Planets The two kinds of planets are distinguished by their location Craters are common on most planets The two groups of planets are also distinguished by properties such as number of moons and presence or absence of rings Terrestrial Planets Inner four planets are small, dense, rocky with little or no atmosphere Jovian Planets Outer four planets: Are large, lowdensity worlds with thick atmospheres and liquid or ice interiors Possess rings and extensive satellite systems Slideshare.net 2

3 ClassAction: Astronomy Education at the University of Nebraska-Lincoln Web Site ( Cosmic Debris - Asteroids Common Misconception (a) Over a period of three weeks, the NEAR spacecraft approached the asteroid Eros and recorded a series of images arranged here in an entertaining pattern showing the irregular shape and 5 -hour rotation period of the asteroid. Eros is 34 km ( 21 mi) long. (b) This close-up of the surface of Eros shows an area about 11 km (7 mi) from top to bottom. Misconception: Asteroids are the remains of a planet that broke apart Truths: Planets are held together very tightly by their gravity and do not break apart Asteroids are debris left over from the failure of a planet to form at a distance of about 3 AU from the Sun Cosmic Debris - Comets Where Do Comets Come From? Kuiper Belt objects (KBOs): objects beyond Neptune Comets: icy nucleus and long dusty tail as it nears the Sun A comet may remain visible in the sky for weeks as it passes through the inner Solar System. Although comets are actually moving rapidly along their orbits, they are so distant that, on any particular evening, a comet seems to hang motionless in the sky relative to the background constellations. Comet Hyakutake is shown here near Polaris in Kuiper Belt Objects Beyond the orbit of Neptune Short Period comets Like Halley Contains millions of comet Oort Cloud Beyond the orbit of Pluto Most comets come from Oort cloud Contains trillions of comets cefns.nau.edu 3

4 Cosmic Debris - Meteoroids: objects weighing < 1 gram are often found falling into a planet s atmosphere A meteor is a sudden streak of glowing gases produced by a bit of material falling into Earth s atmosphere. Friction with the air vaporizes the material about 80 km (50 mi) above Earth s surface. This meteor is seen against the background of part of the Milky Way. Comparing Comets, Asteroids and Meteoroids Feature Comets Asteroids Meteoroids Origin Kuiper Belt and Oort Cloud Size 750 meters 20 kilometers Between Mars and Jupiter Most are less than 1 km, a few several hundred kilometers Debris from passing comets and asteroids Lot smaller than comets and asteroids Density Less than 1 g/cm3 Between 2 5 g/cm3 Between 3 4 g/cm3 Denser than most terrestrial rocks Composition Mainly Ice, and dust Rock Rock and Dust Radioactivity ClassAction: Astronomy Education at the University of Nebraska-Lincoln Web Site ( Radioactivity refers to particles or radiation which is emitted from unstable isotope or nuclei of an atom. There are three types of radiation, alpha, beta and gamma. In a radioactive process the parent atoms decays into another element called the daughter. The number of atoms left after a specific amount of time to decay is given by N o is the initial number of atoms and t is time and λ is the decay constant. The number of decays per second is called the activity of the sample. The speed at which the isotope decay is called the half life or the time it takes for half of the atoms to decay. Half life is calculated by 2 Age of the Solar System Creation of Solar System: Early Hypotheses Radioactive dating: measure half-life of radioactive substance in rocks and meteorites Solar System is 4.6 billion years old The radioactive atoms (red) in a mineral sample decay into daughter atoms (blue). Half the radioactive atoms are left after one half-life, a fourth after two half-lives, and eighth after three half-lives, and so on. Descartes: Evolutionary hypothesis Solar system formed gradually from a vortex of matter to make the sun and planets Ic.galegroup.com 4

5 Creation of Solar System: Early Hypotheses Buffon: Catastrophic hypothesis A comet pulled matter out of the solar system to build planets Later version: Passing Star hypothesis A star pulled matter out of the solar system to build planets Planets should be closer to the sun than they actually are Abyss.uoregon.edu Slideshare.net Creation of Solar System: Early Hypotheses Laplace s and Kent nebular hypothesis cannot explain the angular momentum of the sun. This is known as the angular momentum problem in which the sun should have a high angular momentum contrary to what is observed. Modern View All matter is made from H and He present from the time of big bang Atoms heavier than He (Metals) are formed in nuclear fusion reactions in Stars When stars explode the ejected matter forms a interstellar cloud of gas and dust The Sun and planets are formed in the interstellar cloud The Solar Nebula Theory Additional Videos for Review The solar nebula theory implies that the planets formed along with the Sun. 1. A rotating cloud of gas contracts and flattens 2.To form a thin disk of gas and dust around the forming Sun at the center. 3.Planets grow from gas and dust in the disk and are left behind when the disk clears minutes 50 minutes 5

6 Extrasolar (exoplanets) Planets These are planets around other stars. Astronomers have detected many thousands of planets There are 5 basic method of detecting exoplanet Direct Imaging Astrometry Radial Velocity (RV) measurements Gravitational lensing Transit Method Direct Imaging Method Planetary systems outside of our own do exist Most are like Jupiter, but planets like Earth have recently been found Image of a Jovian-size planet orbiting 9 AU from the star Beta Pictoris. In both images, the central circular blank region represents a combination of hardware and software masks implemented to block light from the central stars that are much brighter than the planets. Another Example Astrometry Four planets around HR 7899 observed with Palomar Telescope Astronomers can detect a planet orbiting another star by watching how the star moves as the planet tugs on it Astronomynotes.com Astrometry a) A person walking a lively dog is tugged off course by the dog. b) The star 51 Pegasi is pulled back and forth by the gravity of the planet that orbits it every 4.2 days. The wobble is detectable in precision observations of the star s Doppler shift. Astrometry a) A person walking multiple dogs has complicated motion. b) Doppler shifts of the star Upsilon Andromeda show the combined effects of at least four planets orbiting it. The influence of its shortest-period planet has been removed in this graph to reveal more clearly the orbital influences of the other three planets. 6

7 Radial Velocity Method Gravitational Microlensing Astronomers can detect a planet orbiting another star by using Doppler Shift and Obtaining Radial Velocity culturesciencesphysique.ens-lyon.fr NASA/ESA/STScI Transit Method Orbit of Extrasolar Planet and Inclination Majority of the extrasolar planets discovered so far are by using the radial velocity and transit method. Astronomers can detect a planet orbiting another star by looking for dips in light curve To see Transit or radial velocity the inclination of the orbit should be less then 90 degrees During Transit or occultation the radial velocity of the plane is approaching zero because we cannot detect Doppler shift. exoplanetes-lombards.eklablog.com Planet-Forming Disks Evidence of Dust Disks Dark bands (indicated by arrows) are edge-on disks of gas and dust around young stars seen in Hubble Space Telescope near-infrared images. Planets may eventually form in these disks. These systems are so young that material is still falling inward and being illuminated by light from the stars. 7

8 Kepler Mission The Kepler Planet-Finding Mission Kepler space telescope uses transit method to detect extrasolar planets Transit light curve of the first confirmed extrasolar Terrestrial planet, Kepler 10-b. The planet has an orbital period of 0.84 day. The depth of the transit dip indicates that the planet has 1.4 times the diameter of Earth. Spectroscopic measurements with ground-based telescopes of the parent star s radial velocity variation give a mass for the planet of 4.6 times Earth s mass. The planet s diameter and mass yield a density of 8.8 g/cm 3, higher than Earth s, indicating a mostly metallic composition. The Kepler Planet-Finding Mission (cont d.) confirmed extrasolar planets discovered Majority are hot Jupiters and hot Neptunes but about 150 are considered hot Earths Kepler-186f is the first confirmed discovery of Earth-size, Earth-temperature extrasolar planet (2014) Early this semester 3 more Earth like planes were discovered around another star Observing Extrasolar Planets Extrasolar planets discovered so far are massive with short orbital periods Contradiction to solar nebula theory: The mystery of hot Jupiter's But in our solar system Jupiter is far from the sun and is much cooler than Jupiter like planets that our found to be closer to their sun and much hotter. Eccentric orbits But in our solar system all planets are nearly circular in orbit Orbits with large angles to equators of parent star But in our solar system all planets orbit in a plane Acknowledgment The slides in this lecture is for Tarleton: PHYS1411/PHYS1403 class use only Images and text material have been borrowed from various sources with appropriate citations in the slides, including PowerPoint slides from Seeds/Backman text that has been adopted for class. 8

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

Chapter 15: The Origin of the Solar System

Chapter 15: The Origin of the Solar System Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Comparative Planetology I: Our Solar System

Comparative Planetology I: Our Solar System Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

More information

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The Solar System 1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids The distances to planets are known from Kepler s Laws (once calibrated with radar ranging to Venus) How are planet

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

More information

Class 15 Formation of the Solar System

Class 15 Formation of the Solar System Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

Chapter 4 The Solar System

Chapter 4 The Solar System Chapter 4 The Solar System Comet Tempel Chapter overview Solar system inhabitants Solar system formation Extrasolar planets Solar system inhabitants Sun Planets Moons Asteroids Comets Meteoroids Kuiper

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 4 The Solar System Lecture Presentation 4.0 What can be seen with the naked eye? Early astronomers knew about the Sun, Moon, stars, Mercury,

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

Which of the following correctly describes the meaning of albedo?

Which of the following correctly describes the meaning of albedo? Which of the following correctly describes the meaning of albedo? A) The lower the albedo, the more light the surface reflects, and the less it absorbs. B) The higher the albedo, the more light the surface

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

More information

m V Formation of the Solar System and Other Planetary Systems Questions to Ponder about Solar System

m V Formation of the Solar System and Other Planetary Systems Questions to Ponder about Solar System Formation of the Solar System and Other Planetary Systems Questions to Ponder about Solar System 1 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons

More information

The Formation of the Solar System

The Formation of the Solar System The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

Formation of the Solar System and Other Planetary Systems

Formation of the Solar System and Other Planetary Systems Formation of the Solar System and Other Planetary Systems 1 Questions to Ponder 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon?

More information

m V Density Formation of the Solar System and Other Planetary Systems Questions to Ponder

m V Density Formation of the Solar System and Other Planetary Systems Questions to Ponder Formation of the Solar System and Other Planetary Systems Questions to Ponder 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon?

More information

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1. The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

More information

Making a Solar System

Making a Solar System Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion?

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? These small, rocky worlds orbit the sun generally between the orbits of

More information

Clicker Question: Clicker Question: Clicker Question:

Clicker Question: Clicker Question: Clicker Question: Test results Last day to drop without a grade is Feb 29 Grades posted in cabinet and online F D C B A In which direction would the Earth move if the Sun s gravitational force were suddenly removed from

More information

9. Formation of the Solar System

9. Formation of the Solar System 9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy Have you ever wondered what is out there in space besides Earth? As you see the stars and moon, many questions come up with the universe, possibility of living on another planet

More information

Ag Earth Science Chapter 23

Ag Earth Science Chapter 23 Ag Earth Science Chapter 23 Chapter 23.1 Vocabulary Any of the Earth- like planets, including Mercury, Venus, and Earth terrestrial planet Jovian planet The Jupiter- like planets: Jupiter, Saturn, Uranus,

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 23.1 The Solar System The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets

More information

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

More information

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system Unit 2 Lesson 1 LESSON topic: formation of the solar system - Solar system formation - Star formation - Models of the solar system - Planets in our solar system Big bang theory Origin of the universe According

More information

Chapter 1 Lecture. The Cosmic Perspective Seventh Edition. A Modern View of the Universe Pearson Education, Inc.

Chapter 1 Lecture. The Cosmic Perspective Seventh Edition. A Modern View of the Universe Pearson Education, Inc. Chapter 1 Lecture The Cosmic Perspective Seventh Edition A Modern View of the Universe Chapter Opener 1.1 The Scale of the Universe Our goals for learning: What is our place in the universe? How big is

More information

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe? Other Planetary Systems (Chapter 13) Extrasolar Planets Is our solar system the only collection of planets in the universe? Based on Chapter 13 No subsequent chapters depend on the material in this lecture

More information

TEACHER BACKGROUND INFORMATION

TEACHER BACKGROUND INFORMATION TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a

More information

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran

GALAXIES AND STARS. 2. Which star has a higher luminosity and a lower temperature than the Sun? A Rigel B Barnard s Star C Alpha Centauri D Aldebaran GALAXIES AND STARS 1. Compared with our Sun, the star Betelgeuse is A smaller, hotter, and less luminous B smaller, cooler, and more luminous C larger, hotter, and less luminous D larger, cooler, and more

More information

Today. Solar System Formation. a few more bits and pieces. Homework due

Today. Solar System Formation. a few more bits and pieces. Homework due Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

More information

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System 23.1 The Solar System Orbits of the Planets The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets are the huge gas giants

More information

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system

More information

Chapter 23: Touring Our Solar System

Chapter 23: Touring Our Solar System Chapter 23: Touring Our Solar System The Sun The is the center of our solar system. The Sun makes up of all the mass of our solar system. The Sun s force holds the planets in their orbits around the Sun.

More information

1 Solar System Debris and Formation

1 Solar System Debris and Formation 1 Solar System Debris and Formation Chapters 14 and 15 of your textbook Exercises: Do all Review and Discussion and all Conceptual Self-Test 1.1 Solar System Debris Asteroids small rocky bodies Most under

More information

Exploring Our Solar System

Exploring Our Solar System Exploring Our Solar System Our Solar System What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 23 Touring Our Solar System 23.1 The Solar System The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus,

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects.

The Solar System. Sun. Rotates and revolves around the Milky Way galaxy at such a slow pace that we do not notice any effects. The Solar System Sun Center of the solar system About 150,000,000 km from the Earth An averaged sized, yellow star Spherical in shape due to gravity Made of about ¾ hydrogen and ¼ helium, both of which

More information

Announcements. HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day.

Announcements. HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day. Announcements The Albuquerque Astronomical Society (TAAS) is hosting a public lecture SATURDAY, SEPTEMBER 17TH - 7:00pm SCIENCE AND MATH LEARNING CENTER, UNM CAMPUS Free and open to the public USA Total

More information

Notes: The Solar System

Notes: The Solar System Notes: The Solar System The Formation of the Solar System 1. A gas cloud collapses under the influence of gravity. 2. Solids condense at the center, forming a protostar. 3. A falttened disk of matter surrounds

More information

1 of 5 5/2/2015 5:50 PM

1 of 5 5/2/2015 5:50 PM 1 of 5 5/2/2015 5:50 PM 1. A comet that has a semi-major axis of 100 AU must have a period of about 10 years. 20 years. 100 years. 1000 years. 2. Astronomers believe chondrite meteorites are about 4.6

More information

Universe Celestial Object Galaxy Solar System

Universe Celestial Object Galaxy Solar System ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

More information

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years U238>Pb206 Halflife: 4.5 billion years Oldest earth rocks 3.96 billion years Meteors and Moon rocks 4.6 billion years This is the time they solidified The solar system is older than this. Radioactive Dating

More information

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) Page1 Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) HS-ESSI-1; HS-ESS1-2; HS-ESS1-3; HS-ESSI-4 NGSS Civic Memorial High School - Earth Science A Concept # What we will be learning Mandatory

More information

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n) When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or

More information

Earth in the Universe Unit Notes

Earth in the Universe Unit Notes Earth in the Universe Unit Notes The Universe - everything everywhere, 15-20 billion years old Inside the universe there are billions of Galaxies Inside each Galaxy there are billions of Solar Systems

More information

Formation of the Solar System

Formation of the Solar System Formation of the Solar System What theory best explains the features of our solar system? The nebular theory states that our solar system formed from the gravitational collapse of a giant interstellar

More information

Astronomy Ch. 6 The Solar System. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 6 The Solar System. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 6 The Solar System MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The largest asteroid, and probably the only

More information

Astronomy Ch. 6 The Solar System: Comparative Planetology

Astronomy Ch. 6 The Solar System: Comparative Planetology Name: Period: Date: Astronomy Ch. 6 The Solar System: Comparative Planetology MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The largest asteroid,

More information

Astro 1: Introductory Astronomy

Astro 1: Introductory Astronomy Astro 1: Introductory Astronomy David Cohen Class 16: Thursday, March 20 Spring 2014 large cloud of interstellar gas and dust - giving birth to millions of stars Hubble Space Telescope: Carina Nebula

More information

Brooks Observatory telescope observing this week

Brooks Observatory telescope observing this week Brooks Observatory telescope observing this week Mon. - Thurs., 7:30 9:15 PM MW, 7:30 8:45 PM TR See the class web page for weather updates. This evening s session is cancelled. Present your blue ticket

More information

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei The Sun, with all the planets revolving around it, and depending on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei What We Will Learn Today Where

More information

Joy of Science Experience the evolution of the Universe, Earth and Life

Joy of Science Experience the evolution of the Universe, Earth and Life Joy of Science Experience the evolution of the Universe, Earth and Life Review Introduction Main contents Quiz Unless otherwise noted, all pictures are taken from wikipedia.org Review 1 The presence of

More information

Extrasolar Planets: Molecules and Disks

Extrasolar Planets: Molecules and Disks Extrasolar Planets: Molecules and Disks The basic question: Is our solar system typical of what we should affect around other stars (inhabited or not), or is it an unusual freak? One approach is to look

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration CHAPTER 11 We continue to Learn a lot about the Solar System by using Space Exploration Section 11.1 The Sun page 390 -Average sized star -Millions of km away -300,000 more massive then Earth, 99% of all

More information

Astronomy 1140 Quiz 4 Review

Astronomy 1140 Quiz 4 Review Astronomy 1140 Quiz 4 Review Anil Pradhan December 6, 2016 I The Outer Planets in General 1. How do the sizes, masses and densities of the outer planets compare with the inner planets? The outer planets

More information

Cosmic Microwave Background Radiation

Cosmic Microwave Background Radiation Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

More information

3/26/2018. The Sun. Phys1403 Introductory Astronomy. Topics in Chapter 8 that we will cover. Topics in Chapter 8 that we will cover.

3/26/2018. The Sun. Phys1403 Introductory Astronomy. Topics in Chapter 8 that we will cover. Topics in Chapter 8 that we will cover. Foundations of Astronomy 13e Seeds Phys1403 Introductory Astronomy Instructor: Dr. Goderya Chapter 8 The Sun Topics in Chapter 8 that we will cover General Properties Solar Atmosphere and Surface Temperature

More information

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a

More information

What does the solar system look like?

What does the solar system look like? What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more important and interesting than numbers, names, and other trivia. Relative

More information

12.3 Pluto: Lone Dog No More

12.3 Pluto: Lone Dog No More 12.3 Pluto: Lone Dog No More Our goals for learning: How big can a comet be? What are the large objects of the Kuiper belt like? Are Pluto and Eris planets? How big can a comet be? Pluto s Orbit Pluto

More information

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds 10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

More information

Chapter 06 Let s Make a Solar System

Chapter 06 Let s Make a Solar System like? Big picture. Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? The solar system exhibits clear patterns of

More information

Section 25.1 Exploring the Solar System (pages )

Section 25.1 Exploring the Solar System (pages ) Name Class Date Chapter 25 The Solar System Section 25.1 Exploring the Solar System (pages 790 794) This section explores early models of our solar system. It describes the components of the solar system

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way Celestial bodies are all of the natural objects in space ex. stars moons, planets, comets etc. Star: celestial body of hot gas that gives off light and heat the closest star to earth is the sun Planet:

More information

What is Earth Science?

What is Earth Science? What is Earth Science? A.EARTH SCIENCE: the study of Earth and its history B. Earth science is divided into 4 main branches: 1. Geology: study of the lithosphere 2. Oceanography: study of oceans 3. Meteorology:

More information

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like?

9/22/ A Brief Tour of the Solar System. Chapter 6: Formation of the Solar System. What does the solar system look like? 9/22/17 Lecture Outline 6.1 A Brief Tour of the Solar System Chapter 6: Formation of the Solar System What does the solar system look like? Our goals for learning: What does the solar system look like?

More information

How did it come to be this way? Will I stop sounding like the

How did it come to be this way? Will I stop sounding like the Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? What does the solar system look like? Big picture. The solar system

More information

Chapter 1 Our Place in the Universe

Chapter 1 Our Place in the Universe Chapter 1 Our Place in the Universe 1.1 Our Modern View of the Universe Topics we will explore: What is our place in the universe? How did we come to be? How can we know what the universe was like in the

More information

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

The History of the Solar System. From cloud to Sun, planets, and smaller bodies

The History of the Solar System. From cloud to Sun, planets, and smaller bodies The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of

More information

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

Solar System revised.notebook October 12, 2016 Solar Nebula Theory Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity

More information

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley ASTR 200 : Lecture 6 Introduction to the Solar System 1 2004 Pearson Education Inc., publishing as Addison-Wesley Comparative Planetology Studying the similarities among and differences between the planets

More information

Astronomy 1 Winter Lecture 11; January

Astronomy 1 Winter Lecture 11; January Astronomy 1 Winter 2011 Lecture 11; January 31 2011 Previously on Astro-1 Properties of the Planets: Orbits in the same plane and direction Inner planets are small and made of heavy elements Outer planets

More information

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the

More information

Astronomy 241: Foundations of Astrophysics I. The Solar System

Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241: Foundations of Astrophysics I. The Solar System Astronomy 241 is the first part of a year-long introduction to astrophysics. It uses basic classical mechanics and thermodynamics to analyze

More information

Cosmology Vocabulary

Cosmology Vocabulary Cosmology Vocabulary Vocabulary Words Terrestrial Planets The Sun Gravity Galaxy Lightyear Axis Comets Kuiper Belt Oort Cloud Meteors AU Nebula Solar System Cosmology Universe Coalescence Jovian Planets

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

ASTRONOMY 1 FINAL EXAM 1 Name

ASTRONOMY 1 FINAL EXAM 1 Name ASTRONOMY 1 FINAL EXAM 1 Name Multiple Choice (2 pts each) 1. Sullivan Star is an F spectral class star that is part of a binary star system. It has a MS lifetime of 5 billion years. Its life will eventually

More information

Our Solar System. Lesson 5. Distances Between the Sun and the Planets

Our Solar System. Lesson 5. Distances Between the Sun and the Planets Our Solar System Lesson 5 T he Solar System consists of the Sun, the Moon, planets, dwarf planets, asteroids, comets, meteors and other celestial bodies. All these celestial bodies are bound to the Sun

More information

CST Prep- 8 th Grade Astronomy

CST Prep- 8 th Grade Astronomy CST Prep- 8 th Grade Astronomy Chapter 15 (Part 1) 1. The theory of how the universe was created is called the 2. Which equation states that matter and energy are interchangeable? 3. All matter in the

More information

ASTRONOMY SNAP GAME. with interesting facts

ASTRONOMY SNAP GAME. with interesting facts ASTRONOMY SNAP GAME with interesting facts Sun Sun The Sun is the largest object in the solar system The Sun's life expectancy is approximately 5 billion more years At its core, the Sun s temperature is

More information

Our Planetary System & the Formation of the Solar System

Our Planetary System & the Formation of the Solar System Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities

More information

Dating the Universe. But first... Lecture 6: Formation of the Solar System. Observational Constraints. How did the Solar System Form?

Dating the Universe. But first... Lecture 6: Formation of the Solar System. Observational Constraints. How did the Solar System Form? Dating the Universe Lecture 6: Formation of the Solar System Astro 202 Prof. Jim Bell (jfb8@cornell.edu) Spring 2008 But first... Graded Paper 1 returned today... Paper 2 is due at beginning of class on

More information