Search for & Characterizing Small Planets with NASA s Kepler Mission

Size: px
Start display at page:

Download "Search for & Characterizing Small Planets with NASA s Kepler Mission"

Transcription

1 Search for & Characterizing Small Planets with NASA s Kepler Mission Eric Ford University of Florida SAMSI Astrostatistics Workshop September 21, 2012 Image credit: NASA/ESA/StSci

2 Golden Age for Planet Discovery Image credit: Jorge Gallego

3 Questions We d Like To Answer How common is life beyond the Solar System in the Universe? What is the distribution of planets and planetary systems? How does planet formation work?

4 Refining the Question How common is life beyond the Solar System in the Universe? How common is Earth-like life in the Milky Way (MW; i.e., our galaxy)? How common are Earth-like planets in MW? How common are Earth-size (or Earth-mass) planets in the habitable zone of solar-type stars in MW?

5 Questions Kepler Can Answer How common are Earth-size planets in the habitable zone of solar-type stars in MW? What is the relationship between mass, radius & density for small planets? (i.e., constraints on bulk composition? What are the empirical constraints on theories of planet formation?

6 Questions Kepler Can Answer How common are Earth-size planets in the habitable zone of solar-type stars in MW? Planet detection & confirmation, understanding selection function What is the relationship between mass, radius & density for small planets? (i.e., constraints on bulk composition) Analysis of TTVs What are the empirical constraints on theories of planet formation? Comparing observations of exoplanet population to synthetic planet populations

7 NASA s Kepler Mission Photometry of >160,000 stars Looking for Earth-like planets in transit 50µmag in 6 hours; 30 minute cadence All current data public as of Oct 28, year Extended mission will yield ~2TB of light curves (much more pixel data) N NASA

8 NASA/Ames/JPL-Caltech

9 Detecting a Transiting Planet NASA/Kepler/Dana Berry

10 Transiting Planet Detection w/ Kepler For most practical purposes, searching for planet transits is a solved problem for sufficiently large planets (>~2 R Earth ) Still a challenge for Earth-size planets in HZ But making a real contribution to planet detection (or validation) would require extensive astronomical/instrument knowledge

11 NASA

12 Kepler s Planet Candidates as of Dec 2011 Feb 2011 Dec 2011 Size Relative to Earth Jun 2010 Orbital Period in days Batalha et al NASA

13 Potential False Positives & Validation For expected rates see: Borcuki et al. 2011b Morton & Johnson 2011 Howard et al. 2011

14 Transiting Planet Characterization Planet s Size, Mass & Density Basis for theorists to consider bulk composition, size of any atmosphere, implications for habitability Planet s Orbit (period, eccentricity, inclination) Relationship to masses and orbits of any other planets orbiting the same star Basis for theorists to constrain planet formation models

15 Systems w/ Multiple Transiting Planets Brightness Image credit: NASA Ames/Kepler Time (days)

16 Image credit: NASA/Tim Pyle

17 Kepler-11 Lissauer, Fabrycky, Ford et al. 2011

18 Kepler-11: Folded Light Curves Normalized Flux Time (hr) Time (hr) Lissauer+ 2011

19 Image credit: NASA Ames/Kepler Mission

20 Lissauer+ 2011

21 Composition of Kepler-11 s Planets Image credit: Sam Quinn, Harvard Smithsonian Center for Astrophysics

22 TTVs & Uniqueness Kepler-19b Ford & Holman 2007 Ballard+ 2011

23 Characterizing the Exoplanet Population

24 Sizes of Planet Candidates 1181 Neptune-size Super Earth-size 680 Earth-size 207 Jupiter-size 203 Super 27 Jupiter-size

25 Eccentricities, Inclinations & Multiplicity Three key probes of planet formation: Eccentricity distribution (+ stellar densities) Transit duration distribution Inclination distribution + Frequency of multiple planet systems (+ Period distribution) Frequency of multiply transiting systems Frequency of multiple planet systems + Eccentricity Distribution (+ Period distribution) Distribution of TTV signatures One complex inverse problem!

26 Eccentricities, Inclinations & Multiplicity Three key probes of planet formation: Eccentricity distribution (+ stellar densities) Transit duration distribution Inclination distribution + Frequency of multiple planet systems (+ Period distribution) Frequency of multiply transiting systems Frequency of multiple planet systems + Eccentricity Distribution (+ Period distribution) Distribution of TTV signatures One complex inverse problem! (Observables, Desired Distributions, Both)

27 Modern Statistical and Computational Methods for Analysis of Kepler Data SAMSI June 10-28, 2013 Contacts: Eric Ford (UF), Jim Berger (Duke), Paul Baines (UC Davis), David Hogg (NYU)

Kepler s Multiple Planet Systems

Kepler s Multiple Planet Systems Kepler s Multiple Planet Systems TITech & Kobe Univ. February 2018 Jack J. Lissauer NASA Ames Outline Solar System & Exoplanets Kepler Mission Kepler planets and planetery systems Principal Kepler findings

More information

A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field

A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field Authors: Daniel C. Fabrycky (U Chicago), Eric B. Ford (Penn State U), Matthew J. Payne (Harvard-Smithsonian

More information

Robert C. Morehead Curriculum Vitae

Robert C. Morehead Curriculum Vitae Robert C. Morehead Curriculum Vitae Department of Physics & Astronomy Texas Tech University Box 41051 Lubbock, TX 79409-1051 www.robertmorehead.com robert.morhead@ttu.edu (806) 834 7940 Education Doctoral

More information

The Kepler Exoplanet Survey: Instrumentation, Performance and Results

The Kepler Exoplanet Survey: Instrumentation, Performance and Results The Kepler Exoplanet Survey: Instrumentation, Performance and Results Thomas N. Gautier, Kepler Project Scientist Jet Propulsion Laboratory California Institute of Technology 3 July 2012 SAO STScI 2012

More information

Probabilistic modeling and Inference in Astronomy

Probabilistic modeling and Inference in Astronomy Probabilistic modeling and Inference in Astronomy Dan Foreman-Mackey Sagan Fellow, University of Washington github.com/dfm // @exoplaneteer // dfm.io Dan Foreman-Mackey Sagan Fellow, University of Washington

More information

Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission

Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission Calculating the Occurrence Rate of Earth-Like Planets from the NASA Kepler Mission Jessie Christiansen Kepler Participating Scientist NASA Exoplanet Science Institute/Caltech jessie.christiansen@caltech.edu

More information

Why Search for Extrasolar Planets?

Why Search for Extrasolar Planets? Why Search for Extrasolar Planets? What is the diversity of habitats for life in the universe? Are Earth-like planets common or rare in our region of the galaxy? We have an elaborate and self-consistent

More information

Stars from Kepler. Courtney Dressing

Stars from Kepler. Courtney Dressing Images: Pale Blue Dots (K. Mora) & KOI 961 (NASA/JPL Caltech) The Prevalence of Small Planets Around Small Stars from Kepler Courtney Dressing & David Charbonneau Harvard Smithsonian Center for Astrophysics

More information

Future Opportunities for Collaborations: Exoplanet Astronomers & Statisticians

Future Opportunities for Collaborations: Exoplanet Astronomers & Statisticians Future Opportunities for Collaborations: Exoplanet Astronomers & Statisticians Eric B. Ford Penn State Astronomy & Astrophysics Center for Astrostatistics Center for Exoplanets & Habitable Worlds Institute

More information

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets!

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets! The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets! Kepler Spacecraft Can we believe this result? What techniques and data were used to derive this important result? 1 How to

More information

Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars

Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars Geoff Marcy, Erik Petigura, Andrew Howard Planet Density vs Radius + Collaborators: Lauren Weiss, Howard Isaacson, Rea Kolbl, Lea Hirsch Thanks

More information

Earth 110 Exploration of the Solar System Assignment 6: Exoplanets Due in class Tuesday, March 3, 2015

Earth 110 Exploration of the Solar System Assignment 6: Exoplanets Due in class Tuesday, March 3, 2015 Name: Section: Earth 110 Exploration of the Solar System Assignment 6: Exoplanets Due in class Tuesday, March 3, 2015 Up until the mid 1990 s, we did not know if planets existed around other stars. Advancements

More information

Final Report for Summer Program on Modern Statistical and Computational Methods for Analysis of Kepler Data, June 2013

Final Report for Summer Program on Modern Statistical and Computational Methods for Analysis of Kepler Data, June 2013 Final Report for Summer Program on Modern Statistical and Computational Methods for Analysis of Kepler Data, 10-28 June 2013 Summary. This three-week Summer Research Program can be viewed as a follow up

More information

The exoplanet eccentricity distribution from Kepler planet candidates

The exoplanet eccentricity distribution from Kepler planet candidates Mon. Not. R. Astron. Soc. 425, 757 762 (2012) doi:10.1111/j.1365-2966.2012.21627.x The exoplanet eccentricity distribution from Kepler planet candidates Stephen R. Kane, David R. Ciardi, Dawn M. Gelino

More information

Hierarchical Bayesian Modeling of Planet Populations. Angie Wolfgang NSF Postdoctoral Fellow, Penn State

Hierarchical Bayesian Modeling of Planet Populations. Angie Wolfgang NSF Postdoctoral Fellow, Penn State Hierarchical Bayesian Modeling of Planet Populations Angie Wolfgang NSF Postdoctoral Fellow, Penn State The Big Picture We ve found > 3000 planets, and counting. Earth s place in the Universe... We re

More information

Update on SysSim: Determining the Distribution of Exoplanetary Architectures

Update on SysSim: Determining the Distribution of Exoplanetary Architectures Update on SysSim: Determining the Distribution of Exoplanetary Architectures Darin Ragozzine (UF / Florida Tech), Eric Ford (UF / Penn State) ExoStats 2014 CMU June 19, 2014 Invitation to Join BayCEP Bayesian

More information

A review of TTV techniques, and their application to PLATO

A review of TTV techniques, and their application to PLATO A review of TTV techniques, and their application to PLATO Valerio Nascimbeni (UNIPD) & WP 112600 valerio.nascimbeni@unipd.it The WP 112600 (PSM) What a TTV is T0 Transiting planets allow us to measure

More information

Detection and characterization of exoplanets from space

Detection and characterization of exoplanets from space Detection and characterization of exoplanets from space Heike Rauer 1,2, 1:Institute for Planetary Research, DLR, Berlin 2:Center for Astronomy and Astrophysics, TU Berlin Exoplanet Space Missions and

More information

The Direct Study of Exoplanet Atmospheres

The Direct Study of Exoplanet Atmospheres The Direct Study of Exoplanet Atmospheres David Charbonneau (Harvard-Smithsonian Center for Astrophysics) Symposium in Honor of Giovanni Fazio 27 May 2008 Statement about the Astronomy & Astrophysics 2010

More information

High-Performance Computing, Planet Formation & Searching for Extrasolar Planets

High-Performance Computing, Planet Formation & Searching for Extrasolar Planets High-Performance Computing, Planet Formation & Searching for Extrasolar Planets Eric B. Ford (UF Astronomy) Research Computing Day September 29, 2011 Postdocs: A. Boley, S. Chatterjee, A. Moorhead, M.

More information

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

More information

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets. Lecture 23, 4/22/14 Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

More information

NASA's Kepler telescope uncovers a treasure trove of planets

NASA's Kepler telescope uncovers a treasure trove of planets NASA's Kepler telescope uncovers a treasure trove of planets By Los Angeles Times, adapted by Newsela on 03.04.14 Word Count 711 The Kepler Mission is specifically designed to survey a portion of our region

More information

Recent Results on Circumbinary Planets

Recent Results on Circumbinary Planets Recent Results on Circumbinary Planets Jerome A. Orosz with thanks to Bill Welsh, Don Short, Gur Windmiller, Dan Fabrycky, Josh Carter, Laurance Doyle, The Kepler EB and TTV Working Groups Importance of

More information

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

More information

Conceptual Themes for the 2017 Sagan Summer Workshop

Conceptual Themes for the 2017 Sagan Summer Workshop Conceptual Themes for the 2017 Sagan Summer Workshop Authors: Jennifer C. Yee (SAO) & Calen B. Henderson (JPL) Theme 1: The Scale of the Einstein Ring Microlensing is most sensitive to planets near the

More information

The Physics of Exoplanets

The Physics of Exoplanets The Physics of Exoplanets Heike Rauer Institut für Planetenforschung, DLR, Berlin-Adlershof, Zentrum für Astronomie und Astrophysik, TU Berlin Formation in protoplanetary disk, migration Loss of primary,

More information

Validation of Transiting Planet Candidates with BLENDER

Validation of Transiting Planet Candidates with BLENDER Validation of Transiting Planet Candidates with BLENDER Willie Torres Harvard-Smithsonian Center for Astrophysics Planet Validation Workshop, Marseille, 14 May 2013 2013 May 14 Planet Validation Workshop,

More information

Searching For Habitable Exoplanets

Searching For Habitable Exoplanets Searching For Habitable Exoplanets Gongjie Li, Harvard -> Georgia Tech Life in the Cosmos, Georgia Tech Credit: ESO Are we alone? How common are we in the Universe? Search for alien civilization. Credit:

More information

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence The obliquities of the planetary systems detected with CHEOPS Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence CHEOPS Characterizing Exoplanets Satellite Science Workshop

More information

EPOXI/EPOCh Observations of Transiting Extrasolar Planets

EPOXI/EPOCh Observations of Transiting Extrasolar Planets EPOXI/EPOCh Observations of Transiting Extrasolar Planets Drake Deming February 20, 2009 Use or disclosure of information contained on this sheet is subject to the restriction on the title page of this

More information

Amateur Astronomer Participation in the TESS Exoplanet Mission

Amateur Astronomer Participation in the TESS Exoplanet Mission Amateur Astronomer Participation in the TESS Exoplanet Mission Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 The Big Picture Is

More information

Exoplanetary transits as seen by Gaia

Exoplanetary transits as seen by Gaia Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9-13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and

More information

[25] Exoplanet Characterization (11/30/17)

[25] Exoplanet Characterization (11/30/17) 1 [25] Exoplanet Characterization (11/30/17) Upcoming Items APOD 12/2/16 1. Read chapters 24.1-24.3 for Tuesday 2. We will have a final exam review in the last discussion section (Friday, Dec 8) and also

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

SPICA Science for Transiting Planetary Systems

SPICA Science for Transiting Planetary Systems SPICA Science for Transiting Planetary Systems Norio Narita Takuya Yamashita National Astronomical Observatory of Japan 2009/06/02 SPICA Science Workshop @ UT 1 Outline For Terrestrial/Jovian Planets 1.

More information

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ) Search for Transiting Planets around Nearby M Dwarfs Norio Narita (NAOJ) Outline Introduction of Current Status of Exoplanet Studies Motivation for Transiting Planets around Nearby M Dwarfs Roadmap and

More information

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory Finding Extra-Solar Earths with Kepler William Cochran McDonald Observatory Who is Bill Cochran? Senior Research Scien;st McDonald Observatory Originally interested in outer planet atmospheres Started

More information

arxiv: v1 [astro-ph.sr] 22 Aug 2014

arxiv: v1 [astro-ph.sr] 22 Aug 2014 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Proceedings of Lowell Observatory (9-13 June 2014) Edited by G. van Belle & H. Harris Using Transiting Planets to Model Starspot Evolution

More information

Planet Occurrence Within 0.25 AU

Planet Occurrence Within 0.25 AU Planet Occurrence Within 0.25 AU Andrew W. Howard UC Berkeley California Planet Search Team: Geoff Marcy, Debra Fischer, John Johnson, Jason Wright, Howard Isaacson, Julien Spronck, Jeff ValenO, Jay Anderson,

More information

Exoplanet Microlensing Surveys with WFIRST and Euclid. David Bennett University of Notre Dame

Exoplanet Microlensing Surveys with WFIRST and Euclid. David Bennett University of Notre Dame Exoplanet Microlensing Surveys with WFIRST and Euclid David Bennett University of Notre Dame Why Space-based Microlensing? Space-based microlensing is critical for our understanding of exoplanet demographics

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

Beyond the Book. FOCUS Book

Beyond the Book. FOCUS Book FOCUS Book At the bottom of page 4 is an example of a transit graph. A transit graph shows changes in the brightness of a star s light as a planet crosses in front of the star as seen from Earth. Suppose

More information

IDENTIFICATION AND PHOTOMETRY OF CANDIDATE TRANSITING EXOPLANET SIGNALS

IDENTIFICATION AND PHOTOMETRY OF CANDIDATE TRANSITING EXOPLANET SIGNALS IDENTIFICATION AND PHOTOMETRY OF CANDIDATE TRANSITING EXOPLANET SIGNALS Emily K. Chang School of Ocean and Earth Science and Technology University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Exoplanet

More information

WP the Mass-Radius relationship for gas giants

WP the Mass-Radius relationship for gas giants WP 115 100 the Mass-Radius relationship for gas giants Tristan Guillot, Mathieu Havel Observatoire de la Côte d'azur, CNRS UMR 6202 Objectives: Understand the expected impact of PLATO photometry on the

More information

Exoplanets: a dynamic field

Exoplanets: a dynamic field Exoplanets: a dynamic field Alexander James Mustill Amy Bonsor, Melvyn B. Davies, Boris Gänsicke, Anders Johansen, Dimitri Veras, Eva Villaver The (transiting) exoplanet population Solar System Hot Jupiters:

More information

Exoplanet Science in the 2020s

Exoplanet Science in the 2020s Exoplanet Science in the 2020s NOAO 2020 Decadal Survey Community Planning Workshop Courtney Dressing Assistant Professor of Astronomy at University of California, Berkeley February 20, 2018 Origins Space

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation

PLATO. revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation PLATO PLAnetary Transits and Oscillations of Stars revealing the interior of planets and stars completing the age of planet discovery for Earth-sized planets constraining planet formation The PLATO Consortium:

More information

High-Accuracy Measurements of Variations in Transit Timing: A New Method for Detecting Terrestrial-Class Extrasolar Planets

High-Accuracy Measurements of Variations in Transit Timing: A New Method for Detecting Terrestrial-Class Extrasolar Planets High-Accuracy Measurements of Variations in Transit Timing: A New Method for Detecting Terrestrial-Class Extrasolar Planets A science white paper submitted to Astro2010 Decadal Survey (Planetary Systems

More information

Exomoons around transiting exoplanets

Exomoons around transiting exoplanets UNIVERSITY OF SZEGED THE FACULTY OF SCIENCE AND INFORMATICS DEPARTMENT OF EXPERIMENTAL PHYSICS DOCTORAL SCHOOL IN PHYSICS Exomoons around transiting exoplanets PhD thesis Author: Supervisors: Attila Simon,

More information

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry Exoplanets Saturday Physics for Everyone Jon Thaler October 27, 2012 Credit: NASA/Kepler Mission/Dana Berry Outline What is an exoplanet? Why are they intereskng? How can we find them? Exolife?? The future...

More information

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute)

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute) Characterizing the Atmospheres of Extrasolar Planets Julianne I. Moses (Space Science Institute) Intern Brown Bag, 18 June 2014 1795 Confirmed Exoplanets as of 16 June 2014 hot Jupiters Jupiter Super Earths

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

More information

DETECTING TRANSITING PLANETS WITH COROT. Stefania Carpano ESAC (25th of November 2009)

DETECTING TRANSITING PLANETS WITH COROT. Stefania Carpano ESAC (25th of November 2009) DETECTING TRANSITING PLANETS WITH COROT Stefania Carpano ESAC (25th of November 2009) Outline 1) Introduction: Exoplanet science and detection methods Detection of exoplanets using the transit method The

More information

The Search for Habitable Worlds Lecture 3: The role of TESS

The Search for Habitable Worlds Lecture 3: The role of TESS The Search for Habitable Worlds Lecture 3: The role of TESS David W. Latham Lucchin PhD School, Asiago, 26 June 2013 A aaaaaaaa Dave Latham, Science Director, CfA AAAAAAAAAAAA Selected for launch in 2017

More information

Design Reference Mission. DRM approach

Design Reference Mission. DRM approach Design Reference Mission The Design Reference Mission (DRM) is a set of observing programs which together provide a tool to assist with tradeoff decisions in the design of the E-ELT (examples of observing

More information

HARPS-N Contributions to the Mass-Radius

HARPS-N Contributions to the Mass-Radius HARPS-N Contributions to the Mass-Radius Diagram for Rocky Exoplanets David Latham for the HARPS-N team HARPS-N Collaboration Francesco Pepe, Andrew Collier Cameron, David W. Latham, Emilio Molinari, Stéphane

More information

arxiv: v1 [astro-ph.ep] 20 Mar 2011

arxiv: v1 [astro-ph.ep] 20 Mar 2011 Version 10, 19 March 2011 arxiv:1103.3896v1 [astro-ph.ep] 20 Mar 2011 A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS David W. Latham 1, Jason F. Rowe 2, Samuel N. Quinn 1,

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

WFIRST is not just for Cold Planets: Transiting Planets with the WFIRST Microlensing Survey

WFIRST is not just for Cold Planets: Transiting Planets with the WFIRST Microlensing Survey is not just for Cold Planets: Transiting Planets with the Microlensing Survey Matthew Penny, Ben Montet, Jennifer Yee Microlensing Science Investiagion Team Ohio State University penny@astronomy.ohio-state.edu

More information

Searching For Planets Like Earth around stars like the Sun

Searching For Planets Like Earth around stars like the Sun Searching For Planets Like Earth around stars like the Sun Derek Buzasi FGCU Roadmap Who am I and how did I get here? Motivation for my research What makes a star like the Sun? How do we find planets?

More information

Extrasolar Transiting Planets: Detection and False Positive Rejection

Extrasolar Transiting Planets: Detection and False Positive Rejection 4 Harvard-Smithsonian Center for Astrophysics Extrasolar Transiting Planets: Detection and False Positive Rejection Willie Torres Harvard-Smithsonian Center for Astrophysics Young Planetary Systems Workshop

More information

Planets Around M-dwarfs Astrometric Detection and Orbit Characterization

Planets Around M-dwarfs Astrometric Detection and Orbit Characterization Planets Around M-dwarfs Page of 7 Planets Around M-dwarfs Astrometric Detection and Orbit Characterization N. M. Law (nlaw@astro.caltech.edu), S. R. Kulkarni, R. G. Dekany, C. Baranec California Institute

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

Finding terrestrial planets in the habitable zones of nearby stars

Finding terrestrial planets in the habitable zones of nearby stars Finding terrestrial planets in the habitable zones of nearby stars Part II Astrophysics Essay Simon Hodgkin & Mark Wyatt (on sabbatical) Terrestrial? 15 Exoplanets Solar system 5 4.5 g cm 3 Winn et al.

More information

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute How Common Are Planets Around Other Stars? Transiting Exoplanets Kailash C. Sahu Space Tel. Sci. Institute Earth as viewed by Voyager Zodiacal cloud "Pale blue dot" Look again at that dot. That's here.

More information

Pan-Planets. A Search for Transiting Planets Around Cool stars. J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team

Pan-Planets. A Search for Transiting Planets Around Cool stars. J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team Pan-Planets A Search for Transiting Planets Around Cool stars J. Koppenhoefer, Th. Henning and the Pan-PlanetS Team Pan-STARRS 1: 1.8m prototype telescope operated on Haleakala/Hawaii consortium of few

More information

Comments on WFIRST AFTA Coronagraph Concept. Marc Kuchner NASA Goddard Space Flight Center

Comments on WFIRST AFTA Coronagraph Concept. Marc Kuchner NASA Goddard Space Flight Center Comments on WFIRST AFTA Coronagraph Concept Marc Kuchner NASA Goddard Space Flight Center Exoplanet Science Has Changed Since 2010 35 Habitable Zone Kepler Planet Candidates known, ~12 confirmed planets

More information

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging Photometry of planetary atmospheres from direct imaging Exoplanets Atmospheres Planets and Astrobiology (2016-2017) G. Vladilo Example: planetary system detected with direct imaging HR 8799 b, c, d (Marois

More information

Circumbinary Planets/Disks

Circumbinary Planets/Disks Circumbinary Planets/Disks Dong Lai Cornell University -- Simula6ons of circumbinary accre6on: Eccentric Disks, Ang. Mom. Transfer Diego Munoz & DL 2016 Ryan Miranda, Munoz, DL 2016 -- Misaligned circumbinary

More information

Detecting Other Worlds with a Backyard Telescope! Dennis M. Conti Chair, AAVSO Exoplanet Section

Detecting Other Worlds with a Backyard Telescope! Dennis M. Conti Chair, AAVSO Exoplanet Section Detecting Other Worlds with a Backyard Telescope! Dennis M. Conti Chair, AAVSO Exoplanet Section www.astrodennis.com The Night Sky Q: Which stars have one or more planets (exoplanets) around them? A: Most

More information

The Gravitational Microlensing Planet Search Technique from Space

The Gravitational Microlensing Planet Search Technique from Space The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Abstract: Gravitational microlensing is the only known extra-solar planet search

More information

Searching for planets around other stars. Searching for planets around other stars. Searching for other planetary systems this is a hard problem!

Searching for planets around other stars. Searching for planets around other stars. Searching for other planetary systems this is a hard problem! Reading: Chap. 21, Sect.21.4-21.6 Final Exam: Tuesday, December 12; 4:30-6:30PM Homework 10: Due in recitation Dec. 1,4 1 Brief review of last time: Formation of Planetary Systems Observational Clues:

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

Exoplanet False Positive Detection with Sub-meter Telescopes

Exoplanet False Positive Detection with Sub-meter Telescopes Exoplanet False Positive Detection with Sub-meter Telescopes Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 Topics What are typical

More information

Professional / Amateur collaborations in exoplanetary science

Professional / Amateur collaborations in exoplanetary science Professional / Amateur collaborations in exoplanetary science Alexandre Santerne Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto alexandre.santerne@astro.up.pt Outline Exoplanets:

More information

arxiv: v1 [astro-ph.ep] 28 Aug 2013

arxiv: v1 [astro-ph.ep] 28 Aug 2013 arxiv:1308.6328v1 [astro-ph.ep] 28 Aug 2013 Formation, detection, and characterization of extrasolar habitable planets Proceedings IAU Symposium No. 293, 2013 c 2013 International Astronomical Union Nader

More information

Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars 1

Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars 1 Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars 1 Benjamin T. Montet 2,3, Ruth Angus 4, Tom Barclay 5, Rebekah Dawson 6, Rob Fergus 7, Dan Foreman-Mackey

More information

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk ascension.html

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk  ascension.html Astronomy 330 This class (Lecture 11): What is f p? Eric Gobst Suharsh Sivakumar Next Class: Life in the Solar System HW 2 Kira Bonk http://www.ufodigest.com/news/0308/ ascension.html Matthew Tenpas http://morphman.hubpages.com/hub/alien-

More information

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 1 Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 2 Why Should We Expect to Find Other Planets? Observations show young stars are surrounded

More information

Detecting Planets via Gravitational Microlensing

Detecting Planets via Gravitational Microlensing Detecting Planets via Gravitational Microlensing -- Toward a Census of Exoplanets Subo Dong Institute for Advanced Study Collaborators: Andy Gould (Ohio State) [MicroFUN], Andrzej Udalski (Warsaw) [OGLE],

More information

Amateur Astronomer Participation in the TESS Exoplanet Mission

Amateur Astronomer Participation in the TESS Exoplanet Mission Amateur Astronomer Participation in the TESS Exoplanet Mission Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program Copyright Dennis M. Conti 2018 1 Copyright Dennis

More information

GJ 436. Michaël Gillon (Geneva)

GJ 436. Michaël Gillon (Geneva) Michaël Gillon (Geneva) Michelson Summer Workshop - July 25, 2007 2004: first hot Neptunes detected by radial velocity Among them: b (Butler et al. 2004, Maness et al. 2007) M * ~ 0.44 M Sun (M2.5V) R

More information

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations Dr. Katja Poppenhaeger Sagan Fellow Harvard-Smithsonian Center for Astrophysics Exoplanets Exoplanets in 2005 (from the

More information

Lab 4. Habitable Worlds: Where Should NASA Send a Probe to Look for Life?

Lab 4. Habitable Worlds: Where Should NASA Send a Probe to Look for Life? Lab Handout Lab 4. Habitable Worlds: Where Should NASA Send a Probe to Look for Life? Introduction Our solar system consists of the star we call the Sun, the planets and dwarf plants that orbit it, and

More information

3.4 Transiting planets

3.4 Transiting planets 64 CHAPTER 3. TRANSITS OF PLANETS: MEAN DENSITIES 3.4 Transiting planets A transits of a planet in front of its parent star occurs if the line of sight is very close to the orbital plane. The transit probability

More information

CHARACTERIZING EXOPLANETS SATELLITE

CHARACTERIZING EXOPLANETS SATELLITE JWST Transit Workshop Pasadena CHARACTERIZING EXOPLANETS SATELLITE David Ehrenreich! CHEOPS Mission Scientist s first small-class mission Mass-radius diagram Apparent continuity of masses for exoplanets

More information

NSTA Web Seminar: Discover the Universe from Galileo to Today

NSTA Web Seminar: Discover the Universe from Galileo to Today LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSTA Web Seminar: Discover the Universe from Galileo to Today Presented by: Dr. Natalie Batalha Tuesday, January 20, 2009 International Year of Astronomy: Advances

More information

PROXIMA CENTAURI B: DISCOVERY AND HABITABILITY XIANG ZHANG

PROXIMA CENTAURI B: DISCOVERY AND HABITABILITY XIANG ZHANG PROXIMA CENTAURI B: DISCOVERY AND HABITABILITY XIANG ZHANG Advertisement time Discovery methods of exoplanets Discovery Method Number Astrometry 1 Imaging 44 Radial Velocity 621 Transit 2707 Transit timing

More information

Improving Precision in Exoplanet Transit Detection. Aimée Hall Institute of Astronomy, Cambridge Supervisor: Simon Hodgkin

Improving Precision in Exoplanet Transit Detection. Aimée Hall Institute of Astronomy, Cambridge Supervisor: Simon Hodgkin Improving Precision in Exoplanet Transit Detection Supervisor: Simon Hodgkin SuperWASP Two observatories: SuperWASP-North (Roque de los Muchachos, La Palma) SuperWASP-South (South African Astronomical

More information

Fundamentals of Exoplanet Observing

Fundamentals of Exoplanet Observing Fundamentals of Exoplanet Observing Dennis M. Conti Chair, AAVSO Exoplanet Section Copyright Dennis M. Conti 2017 1 The Strange World of Exoplanets Most exoplanets we have discovered are close-in, large

More information

Fundamentals of Exoplanet Observing

Fundamentals of Exoplanet Observing Fundamentals of Exoplanet Observing Dennis M. Conti Chair, AAVSO Exoplanet Section Copyright Dennis M. Conti 2017 1 The Strange World of Exoplanets Most exoplanets we have discovered are close-in, large

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

Deciphering colors of a pale blue dot

Deciphering colors of a pale blue dot Deciphering colors of a pale blue dot Nightfall: We didn t know anything (Alisa Haba) n No night except the total eclipse due to another planet every 2049 years on the Illustration planet Lagash by Alisa

More information

The Use of Transit Timing to Detect Extrasolar Planets with Masses as Small as Earth

The Use of Transit Timing to Detect Extrasolar Planets with Masses as Small as Earth arxiv:astro-ph/41228v1 1 Dec 24 The Use of Transit Timing to Detect Extrasolar Planets with Masses as Small as Earth Matthew J. Holman, 1 Norman W. Murray 2,3 1 Harvard-Smithsonian Center for Astrophysics,

More information

Exoplanetary Science in Australia: Detection, Characterisation, and Destruction Rob Wittenmyer

Exoplanetary Science in Australia: Detection, Characterisation, and Destruction Rob Wittenmyer Exoplanetary Science in Australia: Detection, Characterisation, and Destruction Rob Wittenmyer National Astronomical Observatories of China 2013 June 21 Unseen planets pull on the star as they orbit.

More information

Exoplanets and The Transiting Exoplanet Survey Satellite (TESS)

Exoplanets and The Transiting Exoplanet Survey Satellite (TESS) Exoplanets and The Transiting Exoplanet Survey Satellite (TESS) Ryan J. Oelkers Monday, June 25, 2018 QuarkNET 2018 It is estimated that nearly all stars in the Milky Way Galaxy have 1-1.5 planets orbiting

More information