PHYS f: Problem set #0 Solutions

Size: px
Start display at page:

Download "PHYS f: Problem set #0 Solutions"

Transcription

1 PHYS f: Problem set #0 Solutions. 1. Angles, magnitudes, inverse square law: a. How far from the Earth would the Sun have to be moved so that its apparent angular diameter would be 1 arc second? (Express your answer in cm, solar radii, and AU.) First convert arcsec to radians: 1 arcsec= π/( )= radians. Then D = 2R α = 2R = R = cm. (1) Another way to look at it is to recall the actual angular diameter of the Sun is about 0.5 o = 1800 arcsec. Thus to get to 1 arcsec, the Sun would have to move away by a factor 1800, or to 1800 AU. b. How far away would a Frisbee of diameter 30 cm have to be to subtend the same angle? By above, D = = cm = 63 km. (2) c. At the distance you calculated in (a), what would the Sun s flux here on Earth be (i.e. what would the solar constant be)? In class we noted that the solar constant is F = erg/s/cm 2. If we now move the Sun 1800 times further away, then by the inverse-square law, the flux (which is what we mean by the solar constant) would decrease by a factor 1/ Thus F,new = = 0.43erg/s/cm 2 (3) d. What would the Sun s apparent magnitude be? (Use m = for the actual Sun, the one that s at 1 AU.) The difference in apparent magnitude between two stars is just 2.5 times the log of the ratio of the flux. Remembering that a lower flux gives a larger magnitude (i.e. dimmer stars have bigger m), we have m,new = m log(f /F,new) = log( ) = (4)

2 2 Remembering that the brightest stars are around magnitude zero, we see that the sun would still be a very bright star, about 10,000 times brighter than the brightest actual star! (Since m=-10 is 10 magnitudes brighter than m=0, and each difference of 5 in magnitude represents a factor 100 in brightness, so =10,000). 2. Galaxies: distance, magnitude, and solid angle: a. What is the apparent magnitude of a galaxy that contains stars identical to the Sun (i.e., assume its luminosity is equal to ) if it s at a distance of 50 million parsecs? Using eqn. (14) in DocOnotes1-stars.pdf, the apparent magnitude m of an object with luminosity at a distance D is given by m = log(/ )+5 log(d/10 pc) = log(5) = +10.8, (5) with the latter equality plugging in the above numbers to give m b. What is the flux of this galaxy here on the Earth, in cgs units? F = 4πD 2 = erg/s 4π ( ) 2 cm 2 = erg/cm 2 /s (6) c. If the galaxy is circular in shape, as seen from the Earth, and has a diameter of 50,000 pc, what is its apparent angular diameter? α = s D = pc pc = 10 3 rad = 206 arcsec = 3.4 arcmin (7) d. What solid angle does it subtend (in steradians and in square arc seconds)? Ω = (π/4)206 2 arcsec 2 = arcsec 2 (8) Ω = 4π ( α ) ( ) = 4π = ster (9) 2π rad 2π e. How does the galaxy s surface brightness (energy/time/area/solid angle) compare to the Sun s (express this as a ratio)?

3 3 Assuming both the galaxy and the sun emit isotropically from their surface, then the ratio of surface brightness is just given by the ratio of their surface flux, I gal I = gal/4πr 2 gal /4πR 2 ( ) = = (10) Equilibrium Temperature of Earth: a. Assuming Earth is a blackbody, use the known luminosity and distance of the Sun to estimate Earth s average equilibrium surface temperature if the solar energy it intercepts is radiated to space according the Stefan-Boltzman law. Compare this to the temperature on a moderate spring day in Delaware. Equating the solar flux intercepted by the Earth s cross-sectional area πr 2 e to the total blackbody emission over its surface area 4πR 2 e, we find Thus T e = σte 4 4πRe 2 = πre 2 4πa 2 e (11) ( ) 1/4 = 281 K = 8 C (12) 16πa 2 e σ On moderate spring day in Delaware, temperature is a bit higher, ca. 20 C (68 F). But given the approxmiations, this is pretty close to the characteristic temperature computed for simple blackbody! b. According to Earth s albedo, meaning the fraction of received light that is absorbed is only ca , with the rest (63.3% ) being refected by, e.g. clouds, snow, etc., without contributing any heat to Earth. So now redo the calculation in (a) reducing the solar input energy by this amount. If only a fraction of Sun s luminosity is actually absorbed by Earth, then the equilibrium temperature should be reduced by a factor /4 = 0.78, reducing the above equilibrium temperature now to T e = 219 K = -54 C. c. Which result seems more reasonable? Briefly discuss what other physics might be important to include to understand the actual surface temperature of Earth. This apparently more realistic model thus seems to give a temperature that is much lower than the typical temperature of the actual Earth. The key piece of physics missing is the greenhouse effect, which blocks the re-radiation of solar energy, forcing the surface of the Earth to be warmer

4 4 than it would otherwise be, much like a blanket at night keeps our skin at a higher temperature than it would otherwise be. Bottom line: the greenhouse effect and the albedo effect roughly cancel, making the simple blackbody temperature in part (a) come out about right! 4. Parallax of Mars: In 1672, an international effort was made to measure the parallax angle of Mars at opposition, when it was on the opposite side of the Earth from the Sun, and thus closest to Earth. a. Consider two observers at the same longitude but one at latitude of 45 degrees North and the other at 45 degrees South. Work out the physical separation s between the observers given the radius of Earth is R E 6400 km. Viewed from the center of the Earth, the two observers at ±45 o are separated by 90 o, thus forming a right angle. The radius lines to each observer thus form the two lengths of an isosceles triangle with the observers separated by the base, with length s = 2R e = km. (13) b. If the parallax angle measured is 25 arcsec, what is the distance to Mars? Give your answer in both km and AU. D = s α = km 25arcsec/ (arcsec/radian) = km = 0.48 au. (14) 5. Brightness of the full moon: a. Given the Sun s radius R and distance to Earth a e, compute the Sun s solid angle on the sky, both in steradians, and as a fraction of the full sky s 4π steradians. Ω /2π = 1 dµ = 1 µ = 1 1 (R /a e ) 2 (1/2)(R /a e ) (15) µ Ω ster (16) Ω /4π (17)

5 5 b. By coincidence, the moon covers about this same fraction. Use this fact together with the moon s albedo of 0.07 (meaning the moon reflects back 7% of the sunlight that hits its surface) to estimate how much dimmer the full moon appears in optical light compared to sunlight on Earth. Since the solar flux declines as (R /a e ) 2, then a perfectly reflecting moon would have its surface brightness reduced by this fraction. With an albedo of 0.07, this surface brightness would be reduced by that extra factor. Finally, since the solid angles are the same, the ratio of surface brightness is also the ratio of apparent brightness. f moon f = 0.07 ( R a e ) 2 = (18) c. Given that the Sun s apparent magnitude is m = 26.7, use your answer for part (c) to estimate the apparent magnitude of the full moon in optical light. m moon = log(f moon /F ) = 12.2 (19) d. Assume that the sunlight that is not reflected is re-radiated as if the moon were a blackbody. Compute the average equilibrium temperature of the moon. Surface flux of the moon s thermal emission is given by: F em = σt 4 moon = 0.93πR2 moon 4πa 2 e 4πR 2 moon = πR2 σt 4 16πa 2 e = 0.93R2 σt 4 4a 2 e (20) T moon = R 2a e T 0.048T 273 K (21) e. Estimate the peak wavelength at which the moon emits this blackbody radiation, comparing it to the peak wavelength of the Sun s spectrum. What part of the electromagnetic spectrum does this correspond to? λ max,moon = λ max, T T moon 500 nm , 400 nm (22) This is in the infrared.

6 6 f. For a filter that is centered broadly on this wavelength, what is difference in the apparent magnitude of the moon compared to the optical magnitude computed in part (c). m = 2.5 log[f moon,vis /f moon,ir ] = 2.5 log[0.07/(.93/4)] 1.3 (23) 6. The star Dschubba (δ Sco) has a parallax p = 8 mas: Assuming it is a spherical blackbody with radius R = 7.5 R and surface temperature T = 28, 000 K, compute Dshuba s a. uminosity, in erg/s, and ; By Stefan-Boltzmann law: = 4πR 2 σt 4 = erg/s = 30, 000 (24) b. Absolute magnitude: By definition of absolute magnitude normalized to the sun s value M sun = +4.8, we have M = log(30, 000) = 6.4. (25) c. Apparent magnitude; A parallax of α = 8 mas arcsec implies a distance of D = 1/0.008 = 125 pc. Thus the apparent magnitude is d. Distance modulus; m = M + 5 log(d/10pc) = log(12.5) = 0.9. (26) m M = 5 log(12.5) = 5.5 (27) e. Radiant flux at the star s surface, in CGS, and relative to surface flux of the Sun; F(R) = 4πR = 30, erg/s 2 4π( ) 2 cm = erg/cm 2 /s. (28) Relative to the flux at sun s surface, we have F(R) F (R ) = / (R/R ) = = 533. (29) 2 (7.5) 2

7 7 f. Radiant flux at the Earth s surface, and the ratio of this to the solar irradiance; F = 4πD = 30, erg/s 2 4π( ) 2 cm = erg/cm 2 /s. (30) Relative to the solar flux at earth s orbit, we have g. Peak wavelength λ max. By Wien s displacement law, F F = / (D/au) 2 = ( , 000) 2 = (31) λ max = nm K T = nm 100nm. (32) Absorption by coal dust. Imagine you re a coal miner working under a 1000-watt lamp that is at distance of 10 meter away from your work location. a. Assuming the lamp emits its light isotropicallly, what is the flux of light on your workspace, in watt/m 2? (Assume the coal mine walls are perfect absorbers, i.e with zero albedo). Since the walls absorb all indirect light, the local flux is just due to the direct light, for which the flux decreases following the inverse-square law: F(r) = 4πr = π 10 = watt/m2. (33) b. Now suppose there is a cave-in that fills the mine with black, spherical coal dust particles of diameter 0.1 mm, and with a uniform number density of 20 particles per cubic centimeter. What is the optical depth between you and the lamp? The cross section of dust of diameter d = 0.1 mm is σ = (π/4)d 2 = cm 2. The optical depth is given in terms of number density n = 20/cm 3, cross section σ, and distance D = 1000 cm, τ = nσ D = = (34) c. What is now the flux on your workspace?

8 8 Applying the exponential attenuation by optical depth, we find F abs = F(r)e τ = 0.8 e 1.56 = 0.17 watt/m 2. (35) d. What distance had this flux value before the cave in? Solving the inverse-square law for distance, we find r = 4πF = π0.17 = 21.8 m. (36) 8. Absorption by interstellar dust. Imagine you re an astronomer observing a star with luminosity 1000 that is at a distance of 10 parsec. a. What is the flux of light you observe? Give your answer in both watt/m 2 and /parsec 2. Again, the flux decreases following the inverse-square law: F(r) = 4πr = π 10 = 0.8 /parsec 2 = (3 16 ) 2 = watt/m 2. (37) b. Now assume the space between you and the star contains spherical dust particles of diameter 1 micron and number density of 6000 particles per cubic kilometer. Assuming the dust absorbs or scatters light in proportion to its geometric cross-section, what is the optical depth between you and the star? Again, the cross section of dust of diameter d = 1 µm is σ = (π/4)d 2 = cm 2. The optical depth is given in terms of number density n = 6000/km 3 = 6 12 cm 3, cross section σ, and distance D = 10 pc = 3 19 cm, c. What is now the flux you observe? τ = nσ D = = 1.4. (38) Again, applying the exponential attenuation of optical depth, we find F obs = F(r)e τ = e 1.4 = watt/m 2. (39) d. If you knew the star s luminosity but didn t know about the dust, what distance would you infer for the star based on your observed flux??

9 9 Again, inverting the inverse-square law to infer a distance in terms of the known luminosity and the observed flux, you infer 10 r = = = 6 17 m = 20pc. (40) 4πF obs 4π8.6 8 e. What is the change in the apparent magitude m of this star resulting from the dust absorption. Using the definition of apparent magnitude, we have m = 2.5 log(f/f obs ) = 2.5 log(e 1.4 ) = log(e) = 1.5. (41) f. Finally, generalize your analysis to derive an expression for how the extinction magnitude A, defined as the change in apparent magnitude m due to absorption, depends on the absorption optical depth τ to any star. Again, applying the magnitude definition, A m = 2.5 log(e τ ) = 2.5τ log(e) = 1.08τ. (42)

PHYS-333: Problem set #1 Solutions

PHYS-333: Problem set #1 Solutions PHYS-333: Problem set #1 Solutions VERSION of February 10, 2018. 1. Energy flux and magnitude: a. Suppose two objects have energy fluxes of f and f + f, where f f. Derive an approximate expression for

More information

Ay 20 Basic Astronomy and the Galaxy Problem Set 2

Ay 20 Basic Astronomy and the Galaxy Problem Set 2 Ay 20 Basic Astronomy and the Galaxy Problem Set 2 October 19, 2008 1 Angular resolutions of radio and other telescopes Angular resolution for a circular aperture is given by the formula, θ min = 1.22λ

More information

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions Actual * q * Sky view q * * Fig. 2-1 Position usually means

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Problem 1: A A hot blackbody will emit more photons per unit time per unit surface area than a cold blackbody. It does not, however, necessarily need to have a higher luminosity,

More information

Light and Stars ASTR 2110 Sarazin

Light and Stars ASTR 2110 Sarazin Light and Stars ASTR 2110 Sarazin Doppler Effect Frequency and wavelength of light changes if source or observer move Doppler Effect v r dr radial velocity dt > 0 moving apart < 0 moving toward Doppler

More information

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0. Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

More information

2. The Astronomical Context. Fig. 2-1

2. The Astronomical Context. Fig. 2-1 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions * θ * Fig. 2-1 Position usually means angle. Measurement accuracy

More information

Structure & Evolution of Stars 1

Structure & Evolution of Stars 1 Structure and Evolution of Stars Lecture 2: Observational Properties Distance measurement Space velocities Apparent magnitudes and colours Absolute magnitudes and luminosities Blackbodies and temperatures

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 31-05-2014 Examination time: 09:00 13:00 Permitted examination

More information

Physics 160: Stellar Astrophysics. Midterm Exam. 27 October 2011 INSTRUCTIONS READ ME!

Physics 160: Stellar Astrophysics. Midterm Exam. 27 October 2011 INSTRUCTIONS READ ME! Physics 160: Stellar Astrophysics 27 October 2011 Name: S O L U T I O N S Student ID #: INSTRUCTIONS READ ME! 1. There are 4 questions on the exam; complete at least 3 of them. 2. You have 80 minutes to

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

Observed Properties of Stars ASTR 2120 Sarazin

Observed Properties of Stars ASTR 2120 Sarazin Observed Properties of Stars ASTR 2120 Sarazin Extrinsic Properties Location Motion kinematics Extrinsic Properties Location Use spherical coordinate system centered on Solar System Two angles (θ,φ) Right

More information

Light. Geometric Optics. Parallax. PHY light - J. Hedberg

Light. Geometric Optics. Parallax. PHY light - J. Hedberg Light 1. Geometric Optics 1. Parallax 2. Magnitude Scale 1. Apparent Magnitude 2. Describing Brightness 3. Absolute Magnitude 3. Light as a Wave 1. Double Slit 2. The Poynting Vector 4. Blackbody Radiation

More information

Radiation from planets

Radiation from planets Chapter 4 Radiation from planets We consider first basic, mostly photometric radiation parameters for solar system planets which can be easily compared with existing or future observations of extra-solar

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

summary of last lecture

summary of last lecture radiation specific intensity flux density bolometric flux summary of last lecture Js 1 m 2 Hz 1 sr 1 Js 1 m 2 Hz 1 Js 1 m 2 blackbody radiation Planck function(s) Wien s Law λ max T = 2898 µm K Js 1 m

More information

Astronomy 7A Midterm #1 September 29, 2016

Astronomy 7A Midterm #1 September 29, 2016 Astronomy 7A Midterm #1 September 29, 2016 Name: Section: There are 2 problems and 11 subproblems. Write your answers on these sheets showing all of your work. It is better to show some work without an

More information

Greenhouse Effect & Habitable Zones Lab # 7

Greenhouse Effect & Habitable Zones Lab # 7 Greenhouse Effect & Habitable Zones Lab # 7 Objectives: To model the effect of greenhouse gases on the radiative balance on Earth, and to think about what factors that can affect the habitability of a

More information

Reading and Announcements. Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19

Reading and Announcements. Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19 Reading and Announcements Read Chapters 9.5, 9.6, and 11.4 Quiz #4, Thursday, March 7 Homework #5 due Tuesday, March 19 Stars The stars are distant and unobtrusive, but bright and enduring as our fairest

More information

Stellar Composition. How do we determine what a star is made of?

Stellar Composition. How do we determine what a star is made of? Stars Essential Questions What are stars? What is the apparent visual magnitude of a star? How do we locate stars? How are star classified? How has the telescope changed our understanding of stars? What

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Earth: the Goldilocks Planet

Earth: the Goldilocks Planet Earth: the Goldilocks Planet Not too hot (460 C) Fig. 3-1 Not too cold (-55 C) Wave properties: Wavelength, velocity, and? Fig. 3-2 Reviewing units: Wavelength = distance (meters or nanometers, etc.) Velocity

More information

Lecture 3: Emission and absorption

Lecture 3: Emission and absorption Lecture 3: Emission and absorption Senior Astrophysics 2017-03-10 Senior Astrophysics Lecture 3: Emission and absorption 2017-03-10 1 / 35 Outline 1 Optical depth 2 Sources of radiation 3 Blackbody radiation

More information

Today in Astronomy 142: observations of stars

Today in Astronomy 142: observations of stars Today in Astronomy 142: observations of stars What do we know about individual stars?! Determination of stellar luminosity from measured flux and distance Magnitudes! Determination of stellar surface temperature

More information

Solutions Mock Examination

Solutions Mock Examination Solutions Mock Examination Elena Rossi December 18, 2013 1. The peak frequency will be given by 4 3 γ2 ν 0. 2. The Einstein coeffients present the rates for the different processes populating and depopulating

More information

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work Solar Radiation Emission and Absorption Take away concepts 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wien s Law). Radiation vs. distance

More information

Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass. Dr. Ugur GUVEN

Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass. Dr. Ugur GUVEN Astronomical Measurements: Brightness-Luminosity-Distance-Radius- Temperature-Mass Dr. Ugur GUVEN Space Science Distance Definitions One Astronomical Unit (AU), is the distance from the Sun to the Earth.

More information

Friday 8 September, :00-4:00 Class#05

Friday 8 September, :00-4:00 Class#05 Friday 8 September, 2017 3:00-4:00 Class#05 Topics for the hour Global Energy Budget, schematic view Solar Radiation Blackbody Radiation http://www2.gi.alaska.edu/~bhatt/teaching/atm694.fall2017/ notes.html

More information

AST111 PROBLEM SET 4 SOLUTIONS. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars.

AST111 PROBLEM SET 4 SOLUTIONS. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars. AST111 PROBLEM SET 4 SOLUTIONS Homework problems 1. On Astronomical Magnitudes You observe a binary star. Ordinarily the binary has a magnitude of 10 and this is due to the brightness of both stars. The

More information

PHYS-333: Fundamentals of Astrophysics

PHYS-333: Fundamentals of Astrophysics PHYS-333: Fundamentals of Astrophysics Stan Owocki Department of Physics & Astronomy, University of Delaware, Newark, DE 19716 Version of August 27, 2014 I. STELLAR PROPERTIES Contents 1 Observational

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Chapter 1 Degrees- basic unit of angle measurement, designated by the symbol -a full circle is divided into 360 and a right angle measures 90. arc minutes-one-sixtieth

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Problem Solving 10: The Greenhouse Effect Section Table and Group Names Hand in one copy per group at the end of the Friday Problem Solving

More information

Radiation Conduction Convection

Radiation Conduction Convection Lecture Ch. 3a Types of transfers Radiative transfer and quantum mechanics Kirchoff s law (for gases) Blackbody radiation (simplification for planet/star) Planck s radiation law (fundamental behavior)

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

ATMOS 5140 Lecture 7 Chapter 6

ATMOS 5140 Lecture 7 Chapter 6 ATMOS 5140 Lecture 7 Chapter 6 Thermal Emission Blackbody Radiation Planck s Function Wien s Displacement Law Stefan-Bolzmann Law Emissivity Greybody Approximation Kirchhoff s Law Brightness Temperature

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 October 28, 2003 Name: Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. No

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Rob Hibbins Phone: 94820834 Examination date: 01-06-2015 Examination time: 09:00 13:00 Permitted examination

More information

Guiding Questions. Measuring Stars

Guiding Questions. Measuring Stars Measuring Stars Guiding Questions 1. How far away are the stars? 2. What is meant by a first-magnitude or second magnitude star? 3. Why are some stars red and others blue? 4. What are the stars made of?

More information

Astro Week 1. (a) Show that the transit duration for a non-central transit (see Figures) is: R R. b = a cos i

Astro Week 1. (a) Show that the transit duration for a non-central transit (see Figures) is: R R. b = a cos i Astro-286 - Week 1 1. Radial Velocity (10 pt) What is the expected amplitude of velocity oscillations of 1 M star that is orbited by a Jupiter mass planet (m J = 0.001 M ) at 1 AU separation? What is the

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

Properties of Stars (continued) Some Properties of Stars. What is brightness?

Properties of Stars (continued) Some Properties of Stars. What is brightness? Properties of Stars (continued) Some Properties of Stars Luminosity Temperature of the star s surface Mass Physical size 2 Chemical makeup 3 What is brightness? Apparent brightness is the energy flux (watts/m

More information

Review Lecture 15. Luminosity = L, measured in Watts, is the power output(at all wavelengths) of the star,

Review Lecture 15. Luminosity = L, measured in Watts, is the power output(at all wavelengths) of the star, Review Lecture The Central Problem in astronomy is distance. What we see is basically a twodimensional picture of the sky. To interpret many pieces of information available to the astronomer we need to

More information

a. Star A c. The two stars are the same distance b. Star B d. Not enough information

a. Star A c. The two stars are the same distance b. Star B d. Not enough information Name: Astro 102 S17 Test 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Your test is Version A. Please fill in the circle for A for this question on

More information

Astro 201 Radiative Processes Solution Set 1. by Roger O Brient and Eugene Chiang

Astro 201 Radiative Processes Solution Set 1. by Roger O Brient and Eugene Chiang Astro 21 Radiative Processes Solution Set 1 by Roger O Brient and Eugene Chiang Readings: Rybicki & Lightman Chapter 1 except the last section 1.8. Problem 1. Blackbody Flux Derive the blackbody flux formula

More information

PHYS-333: Fundamentals of Astrophysics

PHYS-333: Fundamentals of Astrophysics PHYS-333: Fundamentals of Astrophysics Stan Owocki Department of Physics & Astronomy, University of Delaware, Newark, DE 19716 Version of March 8, 2018 I. STELLAR PROPERTIES Contents 1 Introduction 1.1

More information

HOMEWORK - Chapter 17 The Stars

HOMEWORK - Chapter 17 The Stars Astronomy 20 HOMEWORK - Chapter 7 The Stars Use a calculator whenever necessary. For full credit, always show your work and explain how you got your answer in full, complete sentences on a separate sheet

More information

Parallax: Measuring the distance to Stars

Parallax: Measuring the distance to Stars Measuring the Stars Parallax: Measuring the distance to Stars Use Earth s orbit as baseline Parallactic angle = 1/2 angular shift Distance from the Sun required for a star to have a parallactic angle of

More information

Astronomy 150: Killer Skies. Lecture 20, March 7

Astronomy 150: Killer Skies. Lecture 20, March 7 Assignments: Astronomy 150: Killer Skies HW6 due next time at start of class Lecture 20, March 7 Office Hours begin after class or by appointment Night Observing continues this week, 7-9 pm last week!

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Solar Flux

A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Solar Flux When you compare gamma ray photons with photons of radio waves, which of the following is true? Gamma rays have a shorter wavelength and less energy Gamma rays have a shorter wavelength and same energy

More information

ASTR271 Angles, Powers-of-Ten, Units, Temperature, Light. Chapters 1 and 5

ASTR271 Angles, Powers-of-Ten, Units, Temperature, Light. Chapters 1 and 5 ASTR271 Angles, Powers-of-Ten, Units, Temperature, Light Chapters 1 and 5 Announcements Research Experience for Undergrads (REU) for summer 2019 applications due soon. ASTRON/JIVE due Feb 1 Arecibo due

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Announcements HW#3 due Tuesday (Tomorrow) at 3 pm Lab Observing Trip Tues (9/28) & Thurs (9/30) First Exam next Wed. (9/22) in class - will post review sheet, practice exam

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Observed Properties of Stars - 2 ASTR 2120 Sarazin Observed Properties of Stars - 2 ASTR 2120 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Hipparchus 1) Classified stars by brightness,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Quiz 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Quiz 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.282 April 16, 2003 Quiz 2 Name SOLUTIONS (please print) Last First 1. Work any 7 of the 10 problems - indicate clearly which 7 you want

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc. Chapter 15 Lecture The Cosmic Perspective Seventh Edition Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?

More information

IB Physics Lesson Year Two: Standards from IB Subject Guide beginning 2016

IB Physics Lesson Year Two: Standards from IB Subject Guide beginning 2016 IB Physics Lesson Year Two: Standards from IB Subject Guide beginning 2016 Planet Designer: Kelvin Climber IB Physics Standards taken from Topic 8: Energy Production 8.2 Thermal energy transfer Nature

More information

Answer Key Testname: MT S

Answer Key Testname: MT S Answer Key Testname: MT1-333-12S 1) B 2) A 3) E 4) C 5) C 6) C 7) C 8) A 9) E 10) C 11) A 12) C 13) C 14) C 15) C 16) D 17) A 18) D 19) A 20) C 21) B 22) A 23) A 24) C 25) B 26) C 27) A star with apparent

More information

Lecture 6. Solar vs. terrestrial radiation and the bare rock climate model.

Lecture 6. Solar vs. terrestrial radiation and the bare rock climate model. Lecture 6 Solar vs. terrestrial radiation and the bare rock climate model. Radiation Controls energy balance of Earth Is all around us all the time. Can be labeled by its source (solar, terrestrial) or

More information

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 1 Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 3 Continuous Spectra: Thermal Radiation The equations below quantitatively summarize the light-emitting

More information

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th 1) RADIANT ENERGY (Stefan-Boltzmann Law & Wien s Law) Pgs 154-156 Pgs 154-156 - an in-class exercise 2) Earn a good

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Robert Hibbins Phone: 94 82 08 34 Examination date: 04-06-2013 Examination time: 09:00 13:00 Permitted

More information

AT622 Section 3 Basic Laws

AT622 Section 3 Basic Laws AT6 Section 3 Basic Laws There are three stages in the life of a photon that interest us: first it is created, then it propagates through space, and finally it can be destroyed. The creation and destruction

More information

Properties of Stars. 1.1 Brightnesses of Stars

Properties of Stars. 1.1 Brightnesses of Stars Properties of Stars 1.1 Brightnesses of Stars I m sure you have noticed that some stars are very bright, others less bright, and some are quite dim. There is a true brightness of a star and an apparent

More information

Solutions to Homework #3, AST 203, Spring 2009

Solutions to Homework #3, AST 203, Spring 2009 Solutions to Homework #3, AST 203, Spring 2009 Due on March 5, 2009 General grading rules: One point off per question (e.g., 1a or 2c) for egregiously ignoring the admonition to set the context of your

More information

r p L = = So Jupiter has the greater angular momentum.

r p L = = So Jupiter has the greater angular momentum. USAAAO 2015 Second Round Solutions Problem 1 T 10000 K, m 5, d 150 pc m M 5 log(d/10) M m 5 log(d/10) 5 5 log(15) 0.88 We compare this with the absolute magnitude of the sun, 4.83. solar 100 (4.83 0.88)/5

More information

Observed Properties of Stars - 2 ASTR 2110 Sarazin

Observed Properties of Stars - 2 ASTR 2110 Sarazin Observed Properties of Stars - 2 ASTR 2110 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Stellar Colors Stellar Colors Stellar Colors Stars

More information

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are concept questions, some involve working with equations,

More information

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! NAME: 1. Define using complete sentences: Globular Cluster: OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! Open Cluster: Main Sequence: Turnoff point: Answer the following

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars 8-2 Parallax For nearby stars - measure distances with parallax July 1 AU d p A A A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

More information

= 4,462K T eff (B) =

= 4,462K T eff (B) = Homework 1 Solutions Problem 1: Star A emits most of its light in the orange, Star B in the gre en and Star C in the blue color range. What wavelengths are these most likely to be, and what effective temperature

More information

The Distance Modulus. Absolute Magnitude. Chapter 9. Family of the Stars

The Distance Modulus. Absolute Magnitude. Chapter 9. Family of the Stars Foundations of Astronomy 13e Seeds Phys1403 Introductory Astronomy Instructor: Dr. Goderya Chapter 9 Family of the Stars Cengage Learning 016 Topics for Today s Class 1. Recap: Intrinsic Brightness a)

More information

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody.

Blackbody Radiation. A substance that absorbs all incident wavelengths completely is called a blackbody. Blackbody Radiation A substance that absorbs all incident wavelengths completely is called a blackbody. What's the absorption spectrum of a blackbody? Absorption (%) 100 50 0 UV Visible IR Wavelength Blackbody

More information

Today in Astronomy 111: the Sun and other blackbodies

Today in Astronomy 111: the Sun and other blackbodies Today in Astronomy 111: the Sun and other blackbodies A few salient facts about the Sun Nucleosynthesis Blackbody radiation and temperatures of stars The spectrum of blackbodies, and solid angle Wien s

More information

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities L = 3.9 x 10 33 erg s 1 M = 2 x 10 33 g M bol = 4.74 R = 7 x 10 10 cm 1 A.U. = 1.5 x 10 13 cm 1 pc = 3.26 l.y. = 3.1 x 10 18 cm a = 7.56 x 10 15 erg cm 3 K 4 c= 3.0 x 10 10 cm s 1 σ = ac/4 = 5.7 x 10 5

More information

2. Illustration of Atmospheric Greenhouse Effect with Simple Models

2. Illustration of Atmospheric Greenhouse Effect with Simple Models 2. Illustration of Atmospheric Greenhouse Effect with Simple Models In the first lecture, I introduced the concept of global energy balance and talked about the greenhouse effect. Today we will address

More information

Astronomy 102: Stars and Galaxies Exam 2

Astronomy 102: Stars and Galaxies Exam 2 October 13, 2004 Name: Astronomy 102: Stars and Galaxies Exam 2 Instructions: Write your answers in the space provided; indicate clearly if you continue on the back of a page. No books, notes, or assistance

More information

Solar radiation / radiative transfer

Solar radiation / radiative transfer Solar radiation / radiative transfer The sun as a source of energy The sun is the main source of energy for the climate system, exceeding the next importat source (geothermal energy) by 4 orders of magnitude!

More information

Lecture 3: Specific Intensity, Flux and Optical Depth

Lecture 3: Specific Intensity, Flux and Optical Depth Lecture 3: Specific Intensity, Flux and Optical Depth We begin a more detailed look at stellar atmospheres by defining the fundamental variable, which is called the Specific Intensity. It may be specified

More information

Introduction and Fundamental Observations

Introduction and Fundamental Observations Notes for Cosmology course, fall 2005 Introduction and Fundamental Observations Prelude Cosmology is the study of the universe taken as a whole ruthless simplification necessary (e.g. homogeneity)! Cosmology

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Birth Life Death Part I: Stellar Atmospheres Part I: Stellar Atmospheres Jan. 23: Intro and Overview of Observational Data (Chapters 3 and 5) Jan. 28: Basics of Stellar

More information

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA Ay 1 Midterm Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA You have THREE HOURS to complete the exam, but it is about two hours long. The

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

Properties of Stars. For such huge objects, stars have comparatively simple properties when seen from a long way off

Properties of Stars. For such huge objects, stars have comparatively simple properties when seen from a long way off Properties of Stars For such huge objects, stars have comparatively simple properties when seen from a long way off apparent magnitude distance and direction in space luminosity - absolute magnitude temperature

More information

Astronomy. The Nature of Stars

Astronomy. The Nature of Stars Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am The Nature of Stars Distances to stars A Star's brightness and Luminosity A Magnitude scale Color indicates a Star's temperature

More information

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars Family of stars Reminder: the stellar magnitude scale In the 1900 s, the magnitude scale was defined as follows: a difference of 5 in magnitude corresponds to a change of a factor 100 in brightness. Dm

More information

PH104 Lab 5 Stellar Classification Pre-Lab

PH104 Lab 5 Stellar Classification Pre-Lab Name: Lab Time: 1 PH104 Lab 5 Stellar Classification Pre-Lab 5.1 Goals This is a series of labs designed to help is in understanding the nature and lives of stars. There are 3 total labs in this sequence.

More information

Distance and Size of a Celestial Body

Distance and Size of a Celestial Body PHYS 320 Lecture 2 Distance and Size of a Celestial Body Jiong Qiu MSU Physics Department Wenda Cao NJIT Physics Department Outline q Lecture 2 Distance and Size of a Celestial Body n n n n n n n n 2.1

More information

PLANETARY ATMOSPHERES

PLANETARY ATMOSPHERES NAME: What will you learn in this Lab? PLANETARY ATMOSPHERES How important is a planet s atmosphere in controlling its surface temperature? What keeps the Earth at a habitable temperature, its distance

More information

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions

1. Radiative Transfer. 2. Spectrum of Radiation. 3. Definitions 1. Radiative Transfer Virtually all the exchanges of energy between the earth-atmosphere system and the rest of the universe take place by radiative transfer. The earth and its atmosphere are constantly

More information

Tuesday, August 27, Stellar Astrophysics

Tuesday, August 27, Stellar Astrophysics Stellar Astrophysics Policies No Exams Homework 65% Project 35% Oral Presentation 5% More on the project http://myhome.coloradomesa.edu/ ~jworkman/teaching/fall13/396/ syllabus396.pdf You need to self

More information

Astro Fall 2012 Lecture 8. T. Howard

Astro Fall 2012 Lecture 8. T. Howard Astro 101 003 Fall 2012 Lecture 8 T. Howard Measuring the Stars How big are stars? How far away? How luminous? How hot? How old & how much longer to live? Chemical composition? How are they moving? Are

More information

The table summarises some of the properties of Vesta, one of the largest objects in the asteroid belt between Mars and Jupiter.

The table summarises some of the properties of Vesta, one of the largest objects in the asteroid belt between Mars and Jupiter. Q1.(a) The table summarises some of the properties of Vesta, one of the largest objects in the asteroid belt between Mars and Jupiter. Diameter / m Distance from the Sun / AU smallest largest 5.4 10 5

More information